Web Appendix

Proof of Proposition 1.

(a) It is asserted in the text that $\pi_{\mathrm{i}}^{\mathrm{F} *}>\pi_{\mathrm{i}}^{\mathrm{CN} *}>\pi_{\mathrm{i}}^{\mathrm{L} *}$. Direct comparison and simplification yields:

$$
\begin{aligned}
& \pi_{i}^{\mathrm{F} *}>\pi_{i}^{\mathrm{L} *} \text { if and only if }(1) 128 b^{6}-128 b^{5} d-64 b^{4} d^{2}+80 b^{3} d^{3}-12 b d^{5}+3 d^{6}>0 \\
& \pi_{i}^{\mathrm{F} *}>\pi_{i}^{\mathrm{CN} *} \text { if and only if }(2)-\left(32 b^{4}-24 b^{2} d^{2}+d^{4}\right)<0 . \\
& \pi_{i}^{\mathrm{CN} *}>\pi_{i}^{L *} \text { if and only if }(3) 1024 b^{10}-2048 b^{8} d^{2}+128 b^{7} d^{3}+1408 b^{6} d^{4}-192 b^{5} d^{5}-384 b^{4} d^{6} \\
& +88 b^{3} d^{7}+34 b^{2} d^{8}-12 b d^{9}+d^{10}>0 .
\end{aligned}
$$

Claim 1. The inequalities (1), (2) and (3) hold for all $d \in(-b, b)$.
$\underline{\text { Proof of Claim 1. First consider inequality (1). Set } d=t b \text {, where } t \in(-1,1) . \text { Then the expression }}$ above reduces to $g_{1}(t)=128-128 t-64 t^{2}+80 t^{3}-12 t^{5}+3 t^{6}$. It is clear that $g_{1}(-1)>0, g_{1}(0)>0$ and $g_{1}(1)>0$. First we prove the claim for $t<0$. For $t \in(-1,0)$, write $g_{1}(t)=\left\{128-64 t^{2}\right\}-t\left\{128-80 t^{2}\right\}$ $-12 t^{5}+3 t^{6}$. Both expressions in curly brackets are positive, $-t$ is positive, $-12 t^{5}$ is positive and $3 t^{6}$ is positive. Hence $g_{1}(t)>0$ for $t \in(-1,0)$. Now consider $t \in(0,1)$. Since $g_{1}(0)>0, g_{1}(1)>0$ and $\mathrm{g}_{1}{ }^{\prime}(\mathrm{t})=-128-128 \mathrm{t}+240 \mathrm{t}^{2}-60 \mathrm{t}^{4}+18 \mathrm{t}^{5}<0$ for all $\mathrm{t} \in(0,1)$, it follows that $\mathrm{g}_{1}(\mathrm{t})>0$ for all $\mathrm{t} \in(0,1)$. Thus, inequality (1) holds for all $d \in(-b, b)$. Inequality (2) clearly holds for all $d \in(-b, b)$. Finally, consider inequality (3). Again, set $\mathrm{d}=\mathrm{tb}$, where $\mathrm{t} \in(-1,1)$. Then the expression above reduces to $g_{2}(t)=1024-2048 t^{2}+128 t^{3}+1408 t^{4}-192 t^{5}-384 t^{6}+88 t^{7}+34 t^{8}-12 t^{9}+t^{10}$. Notice that $g_{2}(0)=$ 1024, $g_{2}(1)=47$ and $g_{2}(-1)=23$. For $t \in(0,1), g_{2}(t)$ can be written as a combination of four expressions, each of which is itself positive for $t \in(0,1): g_{2}(t)=h_{1}(t)+t^{3} h_{2}(t)+t^{4} h_{3}(t)+t^{8} h_{4}(t)$, where $h_{1}(t)=1024-2048 t^{2}+1024 t^{4}, h_{2}(t)=128-192 t^{2}+88 t^{4}, h_{3}(t)=384-384 t^{2}$ and $h_{4}(t)=34-$ $12 t+t^{2}$. The expression $h_{1}(t)=1024\left(1-t^{2}\right)^{2}>0$ for $t \in(0,1)$. The expression $h_{2}(t)=128-192 t^{2}$ $+88 t^{4}$ has $\mathrm{h}_{2}(0)=128$ and $\mathrm{h}_{2}{ }^{\prime}(\mathrm{t})=-384 \mathrm{t}+352 \mathrm{t}^{2}<0$. Thus, $\mathrm{h}_{2}(\mathrm{t})$ starts at 128 and decreases over the
interval $\mathrm{t} \in(0,1)$; since it is still positive at $\mathrm{t}=1$, where $\mathrm{h}_{2}(1)=24$, it follows that $\mathrm{h}_{2}(\mathrm{t})>0$ for all $t \in(0,1)$. The expression $h_{3}(t)$ is clearly positive for all $t \in(0,1)$. Finally, the expression $h_{4}(t)$ has $h_{4}(0)=34$ and $h_{4}{ }^{\prime}(t)=-12+2 t<0$. Thus, $h_{4}(t)$ starts at 34 and decreases over the interval $t \in(0$, 1); since it is still positive at $t=1$, where $h_{4}(1)=23$, it follows that $h_{4}(t)>0$ for all $t \in(0,1)$. Combining these results implies that $g_{2}(t)=h_{1}(t)+t^{3} h_{2}(t)+t^{4} h_{3}(t)+t^{8} h_{4}(t)>0$ for all $t \in(0,1)$.

For $t \in(-1,0), \mathrm{g}_{2}(\mathrm{t})$ can again be written as a combination of four expressions, each of which is itself positive for $t \in(-1,0)$ (however, these are different expressions): $g_{2}(t)=h_{5}(t)+h_{6}(t)+t^{4} h_{7}(t)$ $+t^{4} h_{8}(t)$, where $h_{5}(t)=896-2048 t^{2}+1175 t^{4}, h_{6}(t)=128+128 t^{3}, h_{7}(t)=192-192 t-384 t^{2}$ and $h_{8}(t)$ $=41+88 t^{3}+34 t^{4}-12 t^{5}+t^{6}$. The expression $h_{5}(t)=896-2048 t^{2}+1175 t^{4}$ has $h_{5}(0)=896$ and $h(-1)$ $=23$. Moreover, since $h_{5}{ }^{\prime}(t)=-4096 t+4700 t^{3}$ and $h_{5}{ }^{\prime \prime}(t)=-4096+14100 t^{2}$, this function has a maximum at $\mathrm{t}=0$ and a minimum at $\mathrm{t}=-(4096 / 4700)^{1 / 2}$. Evaluating $\mathrm{h}_{5}(\mathrm{t})$ at $\mathrm{t}=-(4096 / 4700)^{1 / 2}$ yields $h_{5}\left(-(4096 / 4700)^{1 / 2}\right)=3.6>0$. Thus, $h_{5}(t)>0$ for all $t \in(-1,0)$. The expression $h_{6}(t)=128+128 t^{3}$ is clearly positive for all $t \in(-1,0)$. The expression $h_{7}(t)=192-192 t-384 t^{2}$ is also clearly positive for all $t \in(-1,0)$. Finally, the expression $h_{8}(t)=41+88 t^{3}+34 t^{4}-12 t^{5}+t^{6}$ has $h_{8}(0)=41$ and $h_{8}(-1)$ $=0$. Moreover, $\mathrm{h}_{8}{ }^{\prime}(\mathrm{t})=\mathrm{t}^{2}\left[264+136 \mathrm{t}-60 \mathrm{t}^{2}+6 \mathrm{t}^{3}\right]>0$; thus, $\mathrm{h}_{8}(\mathrm{t})>0$ for all $\mathrm{t} \in(-1,0)$. Combining these results implies that $\mathrm{g}_{2}(\mathrm{t})=\mathrm{h}_{5}(\mathrm{t})+\mathrm{h}_{6}(\mathrm{t})+\mathrm{t}^{4} \mathrm{~h}_{7}(\mathrm{t})+\mathrm{t}^{4} \mathrm{~h}_{8}(\mathrm{t})>0$ for all $\mathrm{t} \in(-1,0)$. QED: Claim 1 . (b) It is asserted in the text that $\mathrm{w}_{\mathrm{i}}^{\mathrm{F} *}>\mathrm{w}_{\mathrm{i}}^{\mathrm{CN} *}>\mathrm{w}_{\mathrm{i}}^{\mathrm{L} *}$ for $\mathrm{d}>0$ and $\mathrm{w}_{\mathrm{i}}^{\mathrm{L} *}>\mathrm{w}_{\mathrm{i}}^{\mathrm{F} *}>\mathrm{w}_{\mathrm{i}}^{\mathrm{CN} *}$ for $\mathrm{d}<0$. Direct comparison and simplification yields:

$$
\begin{aligned}
& w_{i}^{\mathrm{F} *}>w_{i}^{L *} \text { if and only if (4) } d\left(16 b^{3}-16 b^{2}-4 b d^{2}+5 d^{3}\right)>0 . \\
& w_{i}^{F *}>w_{i}^{C N *} \text { if and only if }(5) d^{2}-4 b^{2}<0 . \\
& w_{i}^{C N *}>w_{i}^{L *} \text { if and only if }(6) d^{5}\left(64 b^{5}-64 b^{3} d^{2}+12 b d^{4}-d^{5}\right)>0 .
\end{aligned}
$$

Claim 2. Inequality (4) holds if and only if $\mathrm{d}>0$; inequality (5) holds for all $\mathrm{d} \in(-\mathrm{b}, \mathrm{b})$; and
inequality (6) holds if and only if $d>0$.
$\underline{\text { Proof of Claim 2. First consider inequality (4). To verify that } 16 b^{3}-16 b^{2} d-4 b d^{2}+5 d^{3}>0 \text { for all }}$ $d \in(-b, b)$, set $d=t b$, where $t \in(-1,1)$. Then the expression above reduces to $g_{3}(t)=16-16 t-4 t^{2}$ $+5 t^{3}$. It is clear that $g_{3}(-1)>0, g_{3}(0)>0$ and $g_{3}(1)>0$. First we prove the claim for $t<0$. For $t \in$ $(-1,0)$, write $\mathrm{g}_{3}(\mathrm{t})=\left\{16-4 \mathrm{t}^{2}\right\}-\mathrm{t}\left\{16-5 \mathrm{t}^{2}\right\}$. Both expressions in curly brackets are positive and - t is positive for $t \in(-1,0)$. Hence $g_{3}(t)>0$ for $t \in(-1,0)$. Now consider $t \in(0,1)$. Since $g_{3}(0)>0$, $\mathrm{g}_{3}(1)>0$ and $\mathrm{g}_{3}{ }^{\prime}(\mathrm{t})=-16-8 \mathrm{t}+15 \mathrm{t}^{2}<0$ for all $\mathrm{t} \in(0,1)$, it follows that $\mathrm{g}_{3}(\mathrm{t})>0$ for all $\mathrm{t} \in(0,1)$. Thus, inequality (4) holds if and only if $d>0$. Inequality (5) clearly holds for all $d \in(-b, b)$. Finally, consider inequality (6). To see that $64 b^{5}-64 b^{3} d^{2}+12 b d^{4}-d^{5}>0$ for all $d \in(-b, b)$, set d $=\mathrm{tb}$, where $\mathrm{t} \in(-1,1)$. Then the expression above reduces to $\mathrm{g}_{4}(\mathrm{t})=64-64 \mathrm{t}^{2}+12 \mathrm{t}^{4}-\mathrm{t}^{5}$. It is clear that $64-64 t^{2}>0$ for all $t \in(-1,1)$ and $12 t^{4}-t^{5}>0$ for all $t \in(-1,1)$. Thus, inequality (6) holds if and only if $\mathrm{d}>0$. QED: Claim 2. QED: Proposition 1.

Proof of Proposition 2.

(a) It is asserted in the text that $\Pi^{L *}>\pi^{L *}$ if $\mathrm{d}>0$ and $\Pi^{L *}<\pi^{L *}$ if $\mathrm{d}<0$. Direct comparison and simplification yields: $\Pi^{L *}>\pi^{L *}$ if and only if the expression $d^{3}\left(16 b^{3}-16 b^{2} d-4 b d^{2}+5 d^{3}\right)>0$. But we have already shown (see Claim 2 above) that the term in parentheses is positive. It is asserted in the text that $\pi^{\mathrm{F} *}>\Pi^{\mathrm{F} *}$ for all $\mathrm{d} \in(-\mathrm{b}, \mathrm{b})$. Direct comparison and simplification yields: $\pi^{\mathrm{F} *}>$ $\Pi^{\mathrm{F} *}$ if and only if the expression $\mathrm{d}^{2}\left(5 \mathrm{~d}^{2}-8 \mathrm{~b}^{2}\right)<0$, which is clearly true for all $\mathrm{d} \in(-\mathrm{b}, \mathrm{b})$.
(b) It is asserted in the text that $\mathrm{w}^{\mathrm{F} *}>\mathrm{W}^{\mathrm{F} *}$ for all $\mathrm{d} \in(-\mathrm{b}, \mathrm{b})$. Direct comparison and simplification yields $\mathrm{w}^{\mathrm{F} *}>\mathrm{W}^{\mathrm{F} *}$ if and only if $\mathrm{d}^{2}-4 \mathrm{~b}^{2}<0$, which clearly holds. QED: Proposition 2.

Proof of Proposition 3. It is asserted in the text that $W^{L *}+W^{F *}>w^{L *}+w^{F *}$ for the case of substitutes $(d \in(0, b))$. Direct comparison and simplification (using $d=t b$ for $t \in(0,1))$ yields $W^{L} *$

Web Appendix 4
$+W^{F} *>w^{L *}+W^{F *}$ if and only if $g_{5}(t)=256-192 t-352 t^{2}+256 t^{3}+152 t^{4}-104 t^{5}-22 t^{6}+13 t^{7}>0$.
Claim 3. $g_{5}(t)=256-192 t-352 t^{2}+256 t^{3}+152 t^{4}-104 t^{5}-22 t^{6}+13 t^{7}>0$ for all $t \in(0,1)$.
Proof of Claim 3: Since $g_{5}(0)=256, g_{5}(1)=7$ and $g_{5}{ }^{\prime}(t)<0$ for all $t \in(0,1)$, it follows that $g_{5}(t)$ >0 for all $\mathrm{t} \in(0,1)$. To see that $\mathrm{g}_{5}{ }^{\prime}(\mathrm{t})<0$ for all $\mathrm{t} \in(0,1)$, note that $\mathrm{g}_{5}{ }^{\prime}(\mathrm{t})=-192-704 \mathrm{t}+768 \mathrm{t}^{2}+$ $608 t^{3}-520 t^{4}-132 t^{5}+91 t^{6}$. This can be written as a combination of three functions, each of which is itself negative for $t \in(0,1): \mathrm{g}_{5}{ }^{\prime}(\mathrm{t})=\mathrm{h}_{9}(\mathrm{t})+\mathrm{h}_{10}(\mathrm{t})+\mathrm{t}^{5} \mathrm{~h}_{11}(\mathrm{t})$, where $\mathrm{h}_{9}(\mathrm{t})=-192+192 \mathrm{t}^{2}-576 \mathrm{t}+$ $576 t^{2}, h_{10}(t)=-128 t+608 t^{3}-520 t^{4}$ and $h_{11}(t)=-132+91 t$. It is clear that $h_{9}(t)<0$ and $h_{11}(t)<0$ for all $t \in(0,1)$. To see that $h_{10}(t)=-128 t+608 t^{3}-520 t^{4}<0$ for all $t \in(0,1)$, notice that $h_{10}(t)=-2 t\{64$ $\left.-304 \mathrm{t}^{2}+260 \mathrm{t}^{3}\right\}=-2 \mathrm{tH}(\mathrm{t})$, where $\mathrm{H}(\mathrm{t})=64-304 \mathrm{t}^{2}+260 \mathrm{t}^{3}>0$. To see this, note that $\mathrm{H}(0)=64$ and $\mathrm{H}(1)=$ 20. $\mathrm{H}^{\prime}(\mathrm{t})=-608 \mathrm{t}+720 \mathrm{t}^{2}=0$ at $\mathrm{t}=0$ and $\mathrm{t}=608 / 720$, the latter of which provides a minimum of $\mathrm{H}(\mathrm{t})$ since $\mathrm{H}^{\prime \prime}(\mathrm{t})=[720 \mathrm{t}-608]+\mathrm{t} 720>0$ at $\mathrm{t}=608 / 720$. Moreover, $\mathrm{H}(608 / 720)=$ $2.42984>0$. Thus $\mathrm{H}(\mathrm{t})>0$, which implies that $\mathrm{h}_{10}(\mathrm{t})<0$, which implies that $\mathrm{g}_{5}{ }^{\prime}(\mathrm{t})<0$, which implies that $\mathrm{g}_{5}(\mathrm{t})>0$, for all $\mathrm{t} \in(0,1)$. QED: Claim 3. QED: Proposition 3.

Proof of Proposition 4. Proposition 4 follows from the assertion in the text that, for the case of substitutes $(d \in(0, b)), \Pi^{C N} *>\pi^{L *}$. Direct comparison and simplification (using $d=t b$ for $t \in$ $(0,1))$ yields $\Pi^{\mathrm{CN} *}>\pi^{\mathrm{L} *}$ if and only if $-\mathrm{t}\left[32-40 \mathrm{t}-8 \mathrm{t}^{2}+24 \mathrm{t}^{3}-8 \mathrm{t}^{4}+\mathrm{t}^{5}\right]<0$.

Claim 4. $\mathrm{g}_{6}(\mathrm{t})=32-40 \mathrm{t}-8 \mathrm{t}^{2}+24 \mathrm{t}^{3}-8 \mathrm{t}^{4}+\mathrm{t}^{5}>0$ for all $\mathrm{t} \in(0,1)$.
Proof of Claim 4. First, $\mathrm{g}_{6}(0)=32$ and $\mathrm{g}_{6}(1)=1$. Next, $\mathrm{g}_{6}(\mathrm{t})$ can be re-written as $\mathrm{g}_{6}(\mathrm{t})=8\left(1-\mathrm{t}^{2}+\right.$ $\left.t^{3}-t^{4}\right)+h_{12}(t)$, where $h_{12}(t)=24-40 t+16 t^{3}+t^{5}$. The expression in parentheses is positive, as is $h_{12}(t)$, for all $t \in(0,1)$. To see this, note that $h_{12}(0)=24, h_{12}(1)=1$ and $h_{12}(t)$ is convex on $(0,1)$, achieving its minimum at $\mathrm{t}=.88$, where $\mathrm{h}_{12}(.88)=.23>0$. QED: Claim 4. Since the bracketed term is positive, $\Pi^{\mathrm{CN} *}>\pi^{\mathrm{L} *}$ if $\mathrm{t}>0$; that is, if the goods are substitutes. QED: Proposition 4.

Claim 5. When the firms compete in prices, and the potential leader can choose either the Leader role or the Cournot role: when the goods are substitutes, firm 1 will choose the Leader role, and the trade regime will involve (negative) subsidies; when the goods are complements, firm 1 will choose the Cournot role, and the trade regime will be free trade.

Proof of Claim 5. First consider the case of substitute goods. If firm 1 chooses Leader, then the equilibrium in the one-shot strategic trade game involves a subsidy regime with payoffs of ($w^{\mathrm{L} *}$, $\left.w^{\mathrm{F} *}\right)$ for the governments. On the other hand, if firm 1 chooses Cournot, then the equilibrium in the one-shot strategic trade game involves a subsidy regime with payoffs of ($\mathrm{w}^{\mathrm{CN} *}, \mathrm{w}^{\mathrm{CN} *}$) for the governments. Moreover, both governments prefer these outcomes to free trade (see Table 4), so the equilibria are the same under repeated play. Thus, if firm 1 chooses Leader, then it anticipates a payoff of $\pi^{\mathrm{L} *}$, while if firm 1 chooses Cournot, it anticipates a payoff of $\pi^{\mathrm{CN} *}$. Since $\pi^{\mathrm{L} *}>\pi^{\mathrm{CN} *}$ (see Table 3), firm 1 chooses Leader, and the trade regime involves (negative) subsidies.

Now consider the case of complementary goods. If firm1 chooses Leader, then the equilibrium in the one-shot strategic trade game involves a subsidy regime with payoffs of ($\mathrm{w}^{\mathrm{L} *}$, $\left.w^{\mathrm{F} *}\right)$ for the governments. Moreover, firm 2's government prefers this to free trade (see Table 4), so the equilibrium is the same under repeated play. Thus, if firm 1 chooses Leader, then it anticipates a payoff of $\pi^{L *}$. On the other hand, if firm 1 chooses Cournot, then the equilibrium in the one-shot strategic trade game involves a subsidy regime with payoffs of $\left(\mathrm{w}^{\mathrm{CN} *}, \mathrm{w}^{\mathrm{CN} *}\right)$ for the governments. However, now both governments prefer free trade, and will employ trigger strategies in the repeated game to support it. Thus, if firm 1 chooses Cournot, then it anticipates a payoff of $\Pi^{\mathrm{CN} *}$. Since $\Pi^{\mathrm{CN} *}>\pi^{\mathrm{L} *}$ for the case of complementary goods and price strategies, firm 1 chooses Cournot, and the trade regime involves free trade.

