
Training Scenario
Prototyping for VR-Based
Simulation of Neonatal
Decision-Making

A. HOLOBAR, M. DIVJAK, D. KOROŠEC, D. ZAZULA

University of Maribor, Faculty of Electrical Engineering and Computer Science, Smetanova 17, 2000 Maribor, Slovenia

Received 3 February 2006; accepted 15 November 2006

ABSTRACT: This paper presents the design and implementation of a real-time system for

virtual reality (VR)-based training in neonatal medicine, with main emphasis on simple
creation of various training scenarios. This system combines an articulated 3D model of a
virtual newborn with text-based descriptions of its physiological and behavioral responses,

enabling medical experts to easily construct, simulate and revise an arbitrary postnatal critical
situation. Afterwards, the resulting descriptions of newborn’s behavior can be used for
technical specifications (and even for automatic generation) of more complex behavioral
models, such as finite-state automata. ! 2007 Wiley Periodicals, Inc. Comput Appl Eng Educ 15:

317!328, 2007; Published online in Wiley InterScience (www.interscience.wiley.com); DOI 10.1002/cae.20121

Keywords: virtual reality; decision-making; medical training; neonatology; training scenarios

INTRODUCTION

The ideas regarding virtual reality (VR)-based
environments have slowly attained their current
prominence over the past few decades. Various VR
systems have been developed and strenuous efforts
dedicated to the study of human sensing and control in
virtual environments (VE). Today, although limited

in their scope, successful VR-based applications exist
in the fields of the military, aeronautics and recently in
medicine. By combining demonstration and explora-
tion capabilities they provide a unique supplement
to standard education and training, which can now be
done anytime and anywhere, without risks.

Although far from being trivial, the actual
implementation of VR systems proves to be just one
of the many possible problems. The major difficulties
experienced in VR-based training development orig-
inate from the gap between the trainee’s expectations
(specifications) and the technical possibilities (imple-
mentation). Namely, today’s computers still lack
sufficient power to successfully imitate reality in its

Correspondence to A. Holobar (ales.holobar@uni-mb.si).
Contract grant sponsor: Slovenian Ministry of Education,

Science and Sport; contract grant numbers: 3411-98-71-0001, S2-
796-010/21301/2000, and Programme Funding P2-0041.

! 2007 Wiley Periodicals Inc.

317



entirety. Moreover, quite often no technical descrip-
tion is available on the phenomena under investiga-
tion. As a result, different compromises have to be
made between the functionality and representative-
ness of developed VR systems. Their exact definition
proves to be a very complex task depending on both
objective and subjective factors, such as costs,
simulation’s reliability and accuracy, modularity and
versatility of the training procedures, trainee’s accept-
ance of VR, trust factors, etc. While highly crucial,
some of these factors are not even tractable in the
initial stages of design or implementation. Conse-
quently, various evaluation studies of different VR-
based training systems report controversial results.
While the trainees usually still prefer traditional
trainings [1,2], VR systems are often demonstrated
to provide superior efficiency [3,4,5].

A possible solution for the encountered problems
is to build general simulation systems that can be cali-
brated to fit the varying needs of training professionals.
This, however, still calls for close cooperation among
the VR system’s developers and its actual users. We
believe a much better idea is to raise the programming
abstraction level to provide a general, simple to use
simulation tool to the training providers, which can be
used to create and change the different VR courses.
Such an approach has at least two major advantages.
First, the complex VR entities, such as autonomous
virtual patients, for example, become tools in the
hands of field experts and slowly gain their final form
and behavior through an evolutionary process. This
enables course instructors to easily capture and
constantly adapt the intent behind the VR-based
training software. Second, the trainee’s responses,
critics and recommendations can easily be integrated
into the system by the didactic professionals, without
the need to contact the VR system’s developers.
This saves energy and time, as it improves software
productivity and simplifies software maintenance.

This paper outlines an approach on how to
design and implement a prototype of a high-level
VR-based system supporting the time-efficient con-
struction of neonatal decision-making training. The
prototype enables simple programming and control
of the virtual newborn using natural, person-friendly
text-based descriptions. By introducing the need
for open-structured and scalable models of virtual
entities, the described solutions also provide a
coherent treatment of the requirements one must have
in mind when building general-purpose VR-based
simulators. Moreover, the presented prototype can
serve as a good example of how a cost-effective,
complex, real-time VE can be implemented by means
of platform independent software standards.

The paper is organized as follows. The section
VR-Based Systems in Neonatology outlines the state
of the art in VR-based medical training. The next
section describes a VR-based prototype for the
training of decision-making in neonatology, along
with its implementation concepts. In the section
Performance Evaluation basic performance parame-
ters are outlined, while discussion in last section
concludes the article.

VR-BASED SYSTEMS IN NEONATOLOGY

In medicine the VR systems addressing surgical
education are most evident. Virtual training simula-
tors are being used in the fields of arthroscopy [6],
orthopedic surgery [7], cardiac surgery [8] and open
surgery [9], to name just a few of them. Some
excellent general purpose training systems for mini-
mal invasive surgery with realistic user interfaces,
modelling of deformable objects (soft tissue deforma-
tions) and fluid simulation (animation of organ
bleeding) have been implemented by introducing
more complex VR models [10]. Exploiting the scope
of existing high-tech VR hardware and software, they
are all based on technical, highly demanding descrip-
tions of the phenomena under investigation.

One of the branches of medicine which demands
extensive and constant training is neonatology. Neo-
natologists face highly critical situations when strug-
gling for a newborn’s life: their patients are incapable
of communication, while their health condition can
change rapidly. Successful treatment depends on
immediate and valid intervention, which can only be
based on the infant’s observable and measurable vital
signs. The focus of the training in neonatology can be
directed to either manual skills (e.g. virtual endoscopy,
various intubation procedures, etc.) or decision-
making, that is, descriptive procedures, where their
proper order, type and timing are observed. Hand
skills are usually practized using special equipment:
either real instrumentation on animal subjects or ex-
pensive, computer-based haptic interfaces [10]. Con-
trary to the hands skills, decision-making is based on
personal capabilities of assessing the health condition
of a newborn. Its training is less equipment dependent,
but, nevertheless, highly demanding in regard to
compliance. Namely, in their training courses, all the
trainees should ideally face and go through any, even
though potentially seldom, critical situation with no
risk to the patient, and as many times as necessary. A
need for the constant upgrading of training scenarios
by medical experts becomes apparent when taking
into account the total number of possible postnatal
complications and their various combinations.

318 HOLOBAR ET AL.



Building a computer-based training system for
medical decision-making means that each training
scenario can be represented by a predefined sequence
of time events which change the patient’s health state.
While several aspects of the scenario’s events can be
distinguished, the ones altering the patient’s heart rate,
respiration conditions, skin color and behavior
(responses) are the most evident. In the past, different
control strategies have emerged for vital signs. A very
promising solution was applied by Chi et al. in
Reference [11], where parallel state-machines, called
Parallel Transitions Networks, were introduced to
control virtual patient behavior over time. Another
possible solution was presented by Stansfield et al.
[12], where injury models based on decision trees
were used to map the virtual patient’s most likely
outcome. Both solutions are based on technically
complex descriptions of training scenarios. Unfortu-
nately, the medical (non-technical) experts lack the
specific computer knowledge necessary to create
these training scenarios. Consequently, all possible
scenarios must be foreseen and prepared by software
developers in close cooperation with different medical
experts. Another, much more effective route is to
define all possible VR events in a simple, text-based
format enabling easy definition and modification of
training scenarios by medical experts.

There is yet another important aspect when
developing scalable scenario training. Namely, the
trainee under evaluation should recognise the simu-
lated conditions, assess the infant’s condition and
demonstrate the necessary procedures. As there are
many possible postnatal complications, there are
numerous feasible interventions. Consequently, all
the trainee’s actions in VE must also be defined by
the medical experts. Moreover, as each intervention
changes the course of training, the definitions of
scenario events and trainees’ interventions overlap.

In the sequel, a scalable prototype of VR-based
training environment for neonatal decision-making,
called virtual delivery room (VIDERO) is described.
Following the need for versatility in the training
process, the main focus is on simple control of the
virtual newborn, and definition of training scenarios
and possible interventions. However, in order to
understand the interpretation of the scenario’s events,
the prototype’s modular and scalable architecture is
first outlined.

VIRTUAL DELIVERY ROOM

VIDERO was implemented in VRML [13] and Java
programming language. The audio-visual interpreta-

tion of the virtual scene is performed by publicly
available VRML/X3D browsers, while the standard
VRML nodes are augmented with Java and JavaScript
program scripts [14]. The modules controlling the
training scenarios and trainee’s interventions are
implemented in a standalone Java application and
connected to the VE by means of external authoring
interface (EAI) [15]. From the trainee’s viewpoint the
prototype consists of two windows (Fig. 1): (a) a Java
pop-up menu from which the trainee can select a
proper intervention and sets up its parameters, (b) a
VRML/X3D browser window displaying a 3D virtual
environment (Fig. 1). The room is fully equipped and
contains a surgical table, where a virtual newborn lies,
radiant heater, a virtual monitor displaying the
newborn’s heartbeat and respiration rates and a cart
with several medical instruments, such as endoscope,
oxygen mask, laryngoscope, scalpel, tubes, etc. An
example of VIDERO supported training was already
described in Reference [16].

The Newborn and Its Vital Signs

Following the specifications of H-anim [17], a human
modelling standard, the newborn’s body consists of
separate segments (e.g. forearms, hands, feet, etc.)
which are connected to each other by joints (such as
the elbow, wrist and ankle, etc.). Each part of the body
is controlled by one or more corresponding vital sign
mechanisms. In the current prototype version, six of
the most crucial newborn’s vital signs (Table 1) are
simulated.

All vital signs are implemented at three layers: re-
presentation, regulation and control layer. The VRML
nodes [13], which capture geometrical interpretation
and simple response logic, form the first (representa-
tion) layer. The core of this layer consists of one or
more Timer nodes (subsection Enhancement of Time-
Driven Event Generation Mechanism) which drive
different Interpolator nodes [13] and, thus, animate
the geometrical parameters of the vital signs (i.e. skin
color, orientation of the arms, etc.).

The second (regulation) layer is generally
implemented in a single Script node [14] per vital
sign and controls all the Timer nodes in the
corresponding representation layer. Dictating the
Timers’ active and non-active period it, interpolates
the length of different stages in the vital signs’
animation cycles (e.g. the length of the heartbeat inter-
pulse interval). Its function is slightly different in the
case of skin color and facial movements, where the
Script node dynamically creates a suitable interpola-
tor (e.g. the interpolator of skin color) starting with the
current parameter state (e.g. current skin color) and

VR-BASED DECISION MAKING IN NEONATAL MEDICINE 319



finishing with a desired state (e.g. severe peripheral
cyanosis). The interpolator is automatically inserted
between the corresponding Timer and geometry node
(e.g. skin). As a result, the color of the skin changes
arbitrarily, starting and finishing with a desired color.
The newborn’s mouth and eyes open and close by
optional angle, likewise the skin color.

The third (control) layer is, in contrast to the
previous two, no longer embedded in the VRML/X3D
browser but runs independently as a Java application
(Fig. 3). We can imagine it as a mediator among the
training scenarios (subsection Training Scenarios
Creation and Enhancement) on the one hand, and
the VRML world on the other. Using the discrete-

event simulation technique, a Java class called
Scenario Scheduler parses loaded scenario files and
fills in the list of events. The event list is observed by a
dedicated dispatcher SchedulerThread, built using the
Java multithreading programming technique. Accord-
ing to their time stamps, the events pop up and are
forwarded through EAI interface [15] to the second
(regulation) layer (Fig. 2).

The implementation of the newborn’s respiration
mechanism is described in more detail, in order
to exemplify the coordination and effectiveness of
the three-tier concept. Basically, the respiration is
modelled as an autonomous vital function, how-
ever, various scenario- and user-induced events may

Table 1 Interpretation and Visualisation of Different Newborn’s Vital Sings

Vital sign Interpretation, visualisation

Breathing Chest movement, different audio clips, breathing curve and current rate displayed on virtual monitor
Heartbeat Different audio clips, ECG curve and current heart rate displayed on virtual monitor
Color of skin and lips Skin and lips turn from normal to blue and back; for example, central and peripheral cyanosis

can be simulated.
Motion Movement of the baby’s head, arms and legs with various intensity
Crying and sobbing Replaying of the real baby crying and sobbing audio clips
Facial movements Mouth and eyes open and close to various degree and forehead wrinkles (the newborn’s face varies

from calm to grimaced)

Figure 1 The VIDERO application user interface: the student’s control panel (in the middle) and
different views of VE with a virtual newborn, medical instrumentation, stopwatch, real-time clock
and ECG /respiratory cycle monitor.

320 HOLOBAR ET AL.



considerably change its predefined activity. Its
implementation layers consist of the following entities
(Fig. 3):

Control Layer. The SchedulerThread thread (Fig. 2)
dispatches the events in regard to their triggering time.
The events carrying the changes in respiration rate
are, by means of the EAI interface, forwarded to the
VRML/X3D browser, in particular to the Breath
Looper script node.

Regulation Layer. The BreathLooper node receives
commands from the scenario and interpolates the
breathing rate in time. Calculation of the new
breathing rate depends on its current value and on
the event value received from the control layer. An
arbitrary interpolation strategy can be applied. The
current prototype version uses linear interpolation
of the respiration cycle (inspiration, pause after
inspiration, expiration, and pause after expiration).
In each respiratory cycle, new lengths for all
respiration stages are calculated and forwarded to
the corresponding Timer nodes in the representation
layer (duration of inspiration to BreathIn node,
length of pause after inspiration to BreathInPause
node, etc.).

Representation Layer. The Breath(In/Out) and
Breath(In/Out)Pause nodes dictate the changes in
the geometrical nodes representing corresponding
respiration stages. The Breath(In/Out)ChestInterp and
Breath(In/Out)CurveInterp nodes move the newborn’s
chest and respiration curve on the virtual monitor,
respectively, while the Breath(In/Out)Audio nodes
replay audio clips of the real newborn breathing. This
way the length of audio clips, the movement of the
newborn’s chest and the curve on the monitor are
synchronized with the inspiration and expiration,
respectively.

Enhancement of Time-Driven Event
Generation Mechanism

Time-driven VRML animations are typically built by
using one or more TimeSensor nodes [13], which
generate continuous and discrete time events. To
achieve the best performance, most VRML/X3D
browsers generate time-related events as often as
possible [14], and, by saturating the computer’s
processor, decrease the responsiveness of the virtual
world. Another weakness of TimeSensor node is that
it does not support priority settings. All TimeSensor
nodes in the scene generate the events with the same
rate and there is no mechanism to slow some of them
down. Most applications, however, consist of a few
detailed animations and a number of less impor-
tant time-dependant actions.

In order to overcome the aforementioned prob-
lems, a prototype of a time-dependant node,
called Timer [18], was developed. It exhibits exactly
the same programming interface and behavior as the
standard TimeSensor node, but differs in an additional
field, called delay, which sets the minimum time
interval between two consecutive continuous time
events. Setting the frequency of each individual
instance of the Timer node reduces the CPU load
and ranks the Timer instances by their importance.
Comparison between the Timer and standard Time-
Sensor node is further illustrated in Figure 6.

Training Scenarios Creation and Enhancement

VIDERO training scenarios are defined in plain text
files. Each line of such files describes one event,
changing the state of the newborn’s vital signs. Most
of currently supported events are specified in the
following format:

Figure 2 Flow chart of the routines that control event
dispatching in the control layer. The events dispatched by
SchedulerThread carry the target value of the parameter
undergoing a change, and the duration (in seconds) of that
change.

Triggering
time [s]

Parameter
ID

New parameter
value (e.g. 180)
or the percentage of
change (e.g. 130%)

Time to reach
the new
value [s]

VR-BASED DECISION MAKING IN NEONATAL MEDICINE 321



where parameter ID defines system event (Table 2).
The change can be absolute or relative, depending
on the final parameter value. As in the real world,
changes cannot be executed instantly, but require
some transition time. This time is specified by the
fourth event parameter. For example, the line

25 RR 180 20

describes the change of the respiration rate from its
current setting to 180 respirations per minute. The
change starts in 25th s of the simulation and completes

in 20 s, with all intermediate values calculated by
linear interpolation. In the case of the CRY event,
the last parameter (time to reach the final value) is
skipped while the parameter value specifies the name
of the file containing the audio clip. For instance

120 AUD intense crying1:wav

starts to play the audio clip saved in the specified file.
The sound file name ‘‘null’’ is reserved for silence and
can be used to stop playing audio clips. A more
thorough scenario example is outlined in Figure 7.

Table 2 Events Changing the Newborn’s Vital Signs and Their Valid Range

Event ID Parameter name Valid range

HR Heart rate (beats per minute) 0!200
RR Respiration rate (respirations per minute) 0!80
MOV Degree of movement (activity) 0 (still) to 1 (high activity)
COL Skin color 0 (blue) to 1 (pink)
EYE Opening and closing of the eyes 0 (open eyes) to 1 (closed eyes)
MTH Opening and closing of the mouth 0 (closed mouth) to 1 (open mouth)
AUD The playback of one of the pre-recorded audio sound files Name of the sound file

Figure 3 Scheme of the newborn’s respiration mechanism, implemented in VRML and Java,
follows the principle of three layers: VRML nodes are depicted by circles with their names (italic)
and types (bold); their EventOut fields are white and the EventIn fields bright gray, while arrows
indicate routes among the nodes.

322 HOLOBAR ET AL.



Specification of Possible Interventions
and Their Parameters

An open and flexible structure of the scenarios enables
a medical expert to play freely with the newborn’s
parameters and to create all kinds of critical situations.
On the other hand, it is crucial that the user actions,
although predefined, are scalable and flexible. In
VIDERO, the set of available interventions and their
outcomes is simply defined by a special text file. Each
intervention is described by an ID, a text description, a
set of parameters and the name of the associated
scenario file (Table 3).

The intervention parameters are further described
in three lines each (Table 4). The parameter’s possible
values comprise the minimum, maximum and default
values. The number of values the trainee can select
(including the minimum and maximum values) is also
given. All interventions from the intervention list are
automatically integrated into the user interface at the
application start-up. A full descriptive example of an
intervention is given in Figure 4.

Scenario Conditional Branching

When the trainee’s action is applied, the so-far
executed scenario is interrupted and a new scenario
file containing a proper description of the newborn’s
response is loaded (Fig. 2). As there are many
different interventions, there are also many possible
transitions among the different scenarios. Usually
each postnatal complication is presented by several
scenario files containing descriptions of all possible
responses to the trainee’s interventions. The exact
course of the scenario transitions depends on the value
of the intervention’s parameters, and on the current
health state of the virtual newborn. In VIDERO the
newborn’s condition is precisely determined by the
executed scenario. Hence, conditional transition to a
new scenario can simply be determined by consider-
ing the time and parameters of trainee’s intervention.
Following the concept of text-based definitions, the
scenario’s conditional branching can be defined in a

simple text-based format presented in Table 5. Each
scenario file must have associated descriptions of all
possible transitions to the other scenarios. The latter
are added to the end of the corresponding scenario file,
after the definition of the last scenario event.

The number of conditional transitions per inter-
vention (NoCond) is optional. However, in order to
force the consistency of scenario branching, the values
of all parameters must be defined for each conditional
transition. The corresponding scenario file is loaded
only if all the intervention parameters fall into
predefined intervals. Correct definition of scenario
transitions is exemplified in Figure 5, where, depend-
ing on the intervention time and parameter values,
three different scenarios saved in files cpr1.scn,
cpr2.scn and cpr3.scn can be activated. For example,
the scenario cpr1.scn is loaded by selecting the CPR
in the first 50 s and setting the values of the rate
and depth parameters (Fig. 4) at between 40 and
100 comp/min, and 0 and 1 cm, respectively. The
cpr_default.scn scenario file is loaded whenever an
undefined combination of parameter values is chosen
(e.g. the rate of 50 comp/min and the depth of 3 cm).
Replacing the name of the scenario file with a reserved
word ‘‘null’’ indicates no new scenario should be
loaded.

PERFORMANCE EVALUATION

In order to evaluate the performance of the vital sign
mechanisms the VIDERO prototype was tested on a
Windows XP computer platform consisting of 2 GHz
Pentium IV CPU, 512 MB RAM and a Radeon 9000
(64 MB RAM) graphics card. All the performance
indices were monitored for 20 min and sampled with a
frequency of 1 Hz while 10 test runs were recorded for
each performance index.

Comparison of the TimeSensor
and Timer nodes

We first compare the performance of the Timer node
(see subsection Enhancement of Time-Driven Event
Generation Mechanism) to the standard TimeSensor
node [13]. A simple VRML scene consisting of a 3D
box, PositionInterpolator [13] and Timer node was

Table 3 Format of Interventions in the List of Possible
Interventions

Line number Content

1 Intervention ID
2 Intervention description
3 Number of parameters (NoP)
4: 4þ 3#NoP!1 Intervention parameters

All interventions follow the same format and are
sequentially defined in the same text file.

Table 4 Format of Intervention Parameters in the
Corresponding Intervention Description

Line Content

1 Parameter name
2 Units
3 Possible values (min, max, default, steps)

VR-BASED DECISION MAKING IN NEONATAL MEDICINE 323



constructed. Events from Timer node were routed via
PositionInterpolator to the box’s positional coordi-
nates, forcing the box to gradually move from its
original position (0,0,0) to new position (2,2,2) and
back. The scene was loaded into Cortona [19] VRML
browser running as a plug-in of an Internet Explorer.
The results are presented in Table 6. The CPU load
and the frequency of events generated by
the TimeSensor node are also depicted. As expected,
the TimeSensor node generates an overflow of events
and overloads the CPU.

The test was further extended to a case with 50
and 100 active Timer nodes, respectively. Several
instances of the scene from the previous test were
loaded into the same VE (assigning different positions
to different boxes). Additional interpolator nodes
controlling the orientation, color and size of each box
were added. Each interpolator was driven by its
own Timer node, which resulted in 4 active Timer
nodes per box. The CPU load of the VRML/X3D
browser and the frequency of the actually generated
events are depicted in Figure 6.

Finally, 11 instances of Timer node were included
in the VIDERO application and used for the
animations of different vital signs. Two different
values of the delay field were chosen for each
instance, limiting the frequencies of the generated
events to 33 Hz and 65 Hz, respectively. The results,
averaged over 20 different runs, are presented in
Table 7. The Timer node, with its event-generation
frequency set to 33 Hz, saved a half of the CPU time
when compared to the TimeSensor node, but gen-
erated a rather insufficient number of events to
provide smooth animation. The best performance/
cost ratio was noticed by the Timer node with the
generation frequency set to 65 Hz. It increased the
CPU load by about 10% but provided very smooth
animation, visually perfectly comparable to the per-
formance of the TimeSensor node. Comparing the
results of the Timer node from Tables 6 and 7 we
notice an unexpected increase in the CPU load. It is,
of course, due to more complex graphical entities
constructing the VIDERO (e.g. virtual baby consists
of several thousand polygons, whereas a simple box
is a VRML graphical primitive).

Simulation of Vital Signs

In the last experiment, the time consistency of
simulated vital signs, that is, the latency between the
demanded event triggering times (as specified in the
scenario files) and the actual responses in VRML/
X3D browser, was investigated. A simple scenario
file, changing the values of respiration and heart rate
was created (Fig. 7). The initial values of respiration
and heart rate were set to 20 inspirations per minute
and to 80 beats per minute (bpm), respectively. The

Figure 4 Specification of the trainee’s intervention (chest compression) with descriptions of two
parameters; the first parameter (rate) represents the number of compressions per minute (comp/min).
The trainee can select among 19 possible values that are equally positioned between 0 and 180 (0, 10,
20, . . . , 180). The parameter default value is 100. The second parameter (compression depth) can
take values from 0 to 4 centimetres in steps of 0.5 cm (9 possible choices in total). Its default value
is 2 cm.

Table 5 Format of Scenario Transitions Defined at the
End of Each Scenario File

Line Content

1 Intervention ID
2: NoCondþ 1 Intervention time interval (Time¼ [start

time, end time]), parameters’ conditional
values (parameter name¼ [lower limit,
upper limit]) and the associated
scenario file

NoCondþ 2 Default scenario file

NoCond denotes the number of conditional scenario
transitions.

324 HOLOBAR ET AL.



Figure 5 Specification of scenario transitions triggered by the chest compression (CPR) trainee’s
intervention defined in Figure 4.

Table 6 The CPU Load (the Mean% Standard Deviation) and the Number of Events per Seconds Generated by
the Timer Node Depending on the Selected Event Frequency Limit While Moving a Box Object

Timer
(65 Hz)

Timer
(100 Hz)

Timer
(250 Hz)

Timer
(500 Hz)

Timer
(750 Hz) Time-Sensor

Event frequency limit [Hz] 65 100 250 500 750 —
CPU load [%] 0.3% 0.1 3.1% 2.6 13.9% 2.2 27.2% 3.6 42.6% 4.0 99.2% 1,8
Measured event frequency [Hz] 65% 0 94% 1 229% 3 464% 6 711% 9 857% 4

The last column depicts the results of the original TimeSensor node. Note that the event frequency limit cannot be set for
the TimeSensor node.

Figure 6 The CPU load depending on actual event frequency and the number of active Timer and
TimeSensor nodes used in the experiments with a box object in Cortona VRML browser.

Table 7 The CPU Load (the Mean% Standard Deviation) and the Number of Events
Generated by the Timer and TimeSensor Nodes When Applied to VIDERO Training

Environment

Timer nodes Timer nodes TimeSensor nodes

Event frequency limit [Hz] 33 65 —
CPU load [%] 47.28% 3.34 58.73% 10.21 97.24% 0.99
Measured event frequency [Hz] 29.75% 2.77 59.5% 5.18 144.17% 3.6

VR-BASED DECISION MAKING IN NEONATAL MEDICINE 325



simulation implemented our Timer nodes with the
event generation frequency set equal to 65 Hz. Several
scenario runs were recorded, while sampling the exact
values of vital signs in time. Typical results are
depicted in Figure 8. The deviations in the simulated
values were found within the limits of 2 inspirations
per minute and 4 bpm.

CONCLUSION

A programmable VR-based environment introduces
many benefits in the medical training and can
considerably shorten its development cycle and
reduce its expenses. This is especially true when it
comes to the training of neonatal decision-making. A
computer-generated audio-visual representation of the
objects under investigation (virtual baby in the case of
neonatology) can provide the missing permanent view

of the patient’s health condition and forces the trainee
to extract important data merely by observing the
simulated conditions.

Although currently in a prototype stage, the
VIDERO application proved to be considerably
competent. Both training scenarios (the newborn’s
symptoms) and the trainees’ interventions are defined
in a plain text files providing the course instructors
with an option to freely characterize and experiment
with the newborn’s physiological and behavioral
responses. Although a bit cumbersome, the presented
text-based format closely resembles the descriptions
of resuscitation protocols in standard neonatal man-
uals and is, hence, relatively close to the medical way
of thinking. Once the consensus on the training
scenario for a particular critical situation is reached,
the aforementioned text-based files can be used to
unambiguously define technical specifications of
more compact behavior models, such as Parallel
Transitions Networks [11] or decision trees [12], for
example. The developed prototype has, hence, the
potential to be used for general decision-making
training, studies of arbitrary postnatal complications,
revisions of the virtual patient’s behavioral models,
and studies of different psychological factors influ-
encing the trainee’s proficiency.

Currently, a tool for semi-automatic GUI-based
creation of scenario files is being developed. Such a
tool would further simplify and considerably shorten
the development and revision of complex text-based
scenario files.

Figure 7 Scenario changing the values of respiration rate
(RR) and heart rate (HR).

Figure 8 Deviations of simulated values of the respiration rate and heart rate (black) from the
demanded values (gray).

326 HOLOBAR ET AL.



ACKNOWLEDGMENTS

The authors are grateful to Professor Zvonko Fazarinc
for his precious advice and vision of the future
medical training systems, and to Professor Louis
P. Halamek from Stanford University for his extensive
medical and didactical support. This work was also
supported by the Slovenian Ministry of Education,
Science, and Sport (contracts nos. 3411-98-71-0001,
S2-796-010/21301/2000, and Programme Funding
P2-0041).

REFERENCES

[1] S. A. Engum, P. Jeffries, and L. Fisher, Intravenous
catheter training system: computer-based education
versus traditional learning methods, The American
Journal of Surgery 186 (2003), 67!74.

[2] M. Bearman, Is virtual the same as real? Medical
students’ experiences of a virtual patient, Acad Med
78 (2003), 538!545.

[3] M. B. Bloom, C. L. Rawn, A. D. Salzberg, and T. M.
Krummel, Virtual reality applied to procedural testing:
the next era, Ann Surg 237 (2003), 442!448.

[4] P. H. Cosman, P. C. Cregan, C. J. Martin, and J. A.
Cartmill, Virtual reality simulators: current status in
acquisition and assessment of surgical skills, ANZ J
Surg 72 (2002), 30!34.

[5] P. Storm, A. Kjellin, L. Hedman, E. Johnson, T.
Wredmark, and L. Fellander-Tsai, Validation and
learning, in the Procedicus KSAvirtual reality surgical
simulator, Surg Endosc 17 (2003), 227!231.

[6] J. D. Mabrey, W. D. Cannon, S. D. Gillogly, J. R.
Kasser, H. J. Sweeney, B. Zarins, H. Mevis, W. E.
Garrett, and R. Poss, Development of a virtual reality
arthroscopic knee simulator, Stud Health Technol
Inform 70 (2000), 192!194.

[7] M. D. Tsai, M. S. Hsieh, and S. B. Jou, Virtual reality
orthopedic surgery simulator, Comp Biol Med 31
(2001), 333!351.

[8] R. Friedl, M. B. Preisack, M. Schefer, W. Klas, J.
Tremper, T. Rose, J. Bay, J. Albers, P. Engels, P.
Guilliard, C. F. Vahl, and A. Hannekum, CardioOp:
an integrated approach to teleteaching in cardiac
surgery, Stud Health Technol Inform 70 (2000), 76!
82.

[9] D. Bielser, and M. H. Gross, Open surgery simulation,
in Proceedings of Medicine Meets Mirtual Reality
(Amsterdam, 2002), 57!63.

[10] U. Kühnapfel, H. K. Çakmak, and H. Maass, Endo-
scopic surgery training using virtual reality and
deformable tissue simulation, Comp Graph 24
(2000), 671!682.

[11] D. M. Chi, J. R. Clarke, B. L. Webber, and N. I. Badler,
Casualty modeling for real-time medical training,
Presence: Teleoperat Virt Env 5 (1996), 359!366.

[12] S. Stansfield, D. Shawver, A. Sobel, M. Parasad, and L.
Tapia, Design and implementation of a virtual reality
system and its application to training medical first
responders, Presence: Teleoperat Virt Env 9 (2000),
524!556.

[13] The VRML Specifications, web site http://www.web3d.
org/VRML2.0/FINAL/Spec.

[14] R. Carey and G. Bell, The annotated VRML 2.0
reference manual, Addison!Wesley Developers Press,
Berkeley, 1997.

[15] The Virtual Reality Modeling Language (VRML)—
Part 2: external authoring interface, web site http://
www.vrml.org/WorkingGroups/vrml-eai/Specification/

[16] Z. Fazarinc, S. Divjak, D. Korošec, A. Holobar, M.
Divjak, and D. Zazula, Quest for effective use of
computer technology in education: from natural
sciences to medicine, Comp Appl Eng Educ 11
(2003), 116!132.

[17] Humanoid Animation Working, Group of the WEB3D
Consortium, 2003, web site http://h-anim.org/

[18] A. Holobar, and D. Zazula, Improved control of events
in the VRML 2.0 application, In Proceedings of
EUROMEDIA 2001 (Valencia, Spain, 2001), 67!71.

[19] Parallel Graphics, Cortona VRML Client, web site
http://www.parallelgraphics.com/products/cortona

BIOGRAPHIES

Aleš Holobar received his BS and PhD

degree in computer science from the Uni-

versity of Maribor, Slovenia, in 2000 and

2004, respectively. From 2000 to 2006 he
was a researcher with the Faculty of Elec-

trical Engineering and Computer Science,

University of Maribor, Slovenia. He is
currently a Marie Curie fellow at Politecnico

di Torino, Italy. His research interests include

virtual reality, conceptual learning and signal processing, with

current activities focused on blind source separation and biomedical
signal processing.

Matjaž Divjak received MSc and PhD

degrees in computer science from the

University of Maribor, Slovenia, in 2003

and 2005, respectively. He worked as a
teaching assistant with the Faculty of

Electrical Engineering and Computer Sci-

ence in Maribor from 2000 to 2005.
Currently he is a postdoc researcher at

INRIA in Nancy, France. His main research

interests include computer vision, image processing, and interactive

VR environments.

VR-BASED DECISION MAKING IN NEONATAL MEDICINE 327



Dean Korošec received his PhD from Ecole

Centrale de Nantes, France, and the Uni-
versity of Maribor, Slovenia, in 1999. After

spending 10 years on various research and

applied projects at University of Maribor, he

became project manager at Nova KBM in
2003. He is currently head of informatics at

Nova KBM, second largest Slovenian bank,

and director of M-Pay, joint company of

Nova KBM and Mobitel. His main research
interests include signal processing applications in medicine,

simulated medical training and mobile payment systems.

Damjan Zazula received Dipl Ing, master’s,

and doctorate degrees in electrical engineer-
ing from the University of Ljubljana,

Slovenia, in 1974, 1978 and 1990, respec-

tively. After being involved in industrial

R&D for 12 years, he joined the Faculty of
Electrical Engineering and Computer Sci-

ence, University of Maribor, Slovenia, in

1987. Currently he holds a full professor

position in computer science, while from
1998 to 2003 he was also appointed an associate dean of research.

Dr. Zazula has spent several months as a visiting professor at the

ETH in Zurich, Switzerland and Ecole Centrale de Nantes, France.
His main research interests are compound signal decomposition,

biomedical imaging and virtual training tools. He is a member of

IEEE Signal Processing Society, EURASIP, IAPR, Slovenian

Technical Society, Slovenian Society of Pattern Recognition and
Slovenian Society of Biomedical Engineering.

328 HOLOBAR ET AL.


