
Aperture Bioscience Laboratories

Progress Report 8 for NICView: A Virtual NICU Simulation

Due: 3/20/15

Professor Walker

Amy Young, Caitlin Li, Jennifer Duan, Pamela Wu, Lindsey Sumners

I. Background of the project

 Considering the new regulations that limit work hours for medical residents, these

residents do not have the same real case experience as in the past. Therefore, this reduces patient

safety, because the residents do not experience a large and varied amount of cases. In order to

solve this problem, our project will involve developing a simulation game that can be played at

the resident’s home. By playing this game, the residents will be able to gain better conceptual

knowledge by going through different scenarios, which addresses the issues of volume and

variety of cases and patient safety. By having this knowledge, the residents will be able to use

the time in the hospital in order to gain experience with the physical actions in medicine.

II. Achievements since the last report

Since the last project report, the team has made progress in two areas. The first area of

progress is that the team has received the pre and post questions for each scenario. There are six

questions for each scenario, and they are short answer. The questions will be asked before the

scenario, but the correct answers will not be given. The resident will proceed and be asked the

same questions after completion of the scenario. This will allow Dr. Krakauer and the team to

see if the residents are gaining knowledge from the game. Also, one of the questions asks the

resident to rate his/her comfort with the skill sets that the scenario is testing. Therefore, this

question will allow the team and Dr. Krakauer to determine if the residents feel that they are

learning concepts from the game. This perception is important to the value of the game, and this

feedback will allow for improvements to be made to the game.

The second area of progress is in programming. The first scenario has been completed; it

has the points system and sequential collision code integrated into the game. The code for these

steps are shown below.

//BEGINNING OF SEQUENTIAL COLLISIONS CODE

using UnityEngine;

using System.Collections;

public class BabyScene2 : MonoBehaviour {

 //Initialize variables

 private Rect buttonSizeV = new Rect(Screen.width/2 - 15,Screen.height -

600,100,30);

 private string buttonTextV = "Continue";

 private string boxTextV = "RR=30 with gasping; Heart Rate=120;

Saturation=80% in foot; Physical: Pale, limp, no murmur, lungs clear, slow respiratory rate.";

 private bool showBool = false;

 public bool isTiming = false;

 public static int stepOrder;

 public static int scoreVar;

 // Use this for initialization

 void Start () {

 }

 void Update () {

 }

 // OnGUI Function to Display Text and Button

 public void OnGUI () {

 GUIStyle labelStyleV = new GUIStyle (GUI.skin.label);

 labelStyleV.fontSize = 16;

 labelStyleV.normal.textColor = Color.black;

 //Tests whether the Vitals? button has been clicked

 if (showBool) {

 if (GUI.Button (buttonSizeV, buttonTextV)) {

 //If the button has been clicked, change the value of

showBool, isTiming, and stepOrder

 showBool = false;

 isTiming = true;

 UpdateStep ();

 UpdateScore (10);

 } else {

 GUI.Label (new Rect (Screen.width/2 - 200,

Screen.height/2 - 30, 400, 600), boxTextV, labelStyleV);

 }

 }

 }

 //Runs when Vitals? button has been clicked

 public void Clicked () {

 showBool = true;

 }

 //Called when a collision occurs

 public void OnTriggerEnter(Collider Baby) {

 //Test for collision with a gameObject that is tagged "CPAP"

 Debug.Log ("The dfsdsf value of stepOrder is " + stepOrder);

 Debug.Log ("Total dfdsf points is currently " + scoreVar);

 if (stepOrder == 1) {

 if (Baby.gameObject.tag == "CPAP") {

 //If collision is detected

 Debug.Log ("Collision between baby and CPAP mask

detected");

 Application.LoadLevel ("WinScenario");

 }

 } else {

 Application.LoadLevel ("DeadBaby");

 }

 }

 // Update is called once per frame

 void UpdateStep () {

 stepOrder++;

 Debug.Log ("The value of stepOrder is " + stepOrder);

 }

 void UpdateScore (int scoreVal) {

 scoreVar = scoreVar + scoreVal;

 Debug.Log ("Total points is currently " + scoreVar);

 }

}

The other area of progress in programming has been the medical inventory. The medical

inventory code has been completed and is functional. The code for the inventory is displayed

below.

//INVENTORY

using UnityEngine;

using System.Collections;

using System.Collections.Generic; //gives access to List type

//create variables

public class Inventory : MonoBehaviour {

 public List<Item> slots = new List<Item>(); //slots list

 public int slotsX, slotsY, xpos, ypos, xsize, ysize, offset; //number of slots and

position and size of slots

 public int bxpos, bypos, bxsize, bysize; //position and size of button

 private bool showInventory; //whether or not inventory appears

 private bool showTooltip; //whether or not to show pop up box when hovering

over item in inventory

 private string Tooltip; //text that shows up in said box

 public Item CPAP = new Item ("CPAP", "Continuous Positive Airway Pressure",

Item.ItemType.Airway); //CPAP mask

 public Texture tool = Resources.Load<Texture2D> ("tool"); //background image

for inventory

 string CreateTooltip(Item item) //create the text in the tooltip box

 {

 Tooltip = "<color=454545>" + item.itemName + "</color>\n\n" +

"<color=473344>" + item.itemDesc + "</color>";

 return Tooltip;

 }

 //Populate slots with empty items

 void Start ()

 {

 for (int i = 0; i < (slotsX * slotsY); i++) //looping through number of slots

 {

 slots.Add(new Item()); //creating a list of empty items as long as

number of slots

 }

 AddItem (CPAP); //Add CPAP to slots

 }

 void OnGUI()

 {

 if (GUI.Button (new Rect (bxpos,bypos,bxsize,bysize), "Crash Cart"))

 {

 showInventory = !showInventory;

 }

 Tooltip = ""; //set text to empty

 if (showInventory) { //if show inventory is true, draw the inventory

 DrawInventory ();

 }

 if (showTooltip)

 { //if showtooltip is true, draw a box containing the tooltip

 GUI.Box (new Rect (Event.current.mousePosition.x + 15f,

Event.current.mousePosition.y, 200, 200), Tooltip);

 }

 }

 void DrawInventory() //define draw inventory

 {

 int i = 0;

 for (int y = 0; y < slotsY; y++)

 {

 for (int x = 0; x < slotsX; x++) //loop through indices of grid

 {

 Rect slotRect = new Rect(xpos+x*xsize+offset,

ypos+y*ysize, xsize, ysize); //rectangle

 GUI.Box(new Rect(xpos+x*xsize+offset,

ypos+y*ysize,xsize,ysize),tool); //background image

 if(slots[i].itemName != null) //if the slot is not empty, draw

the item icon in the corresponding box

 {

 GUI.DrawTexture(slotRect,slots[i].itemIcon);

 if(slotRect.Contains (Event.current.mousePosition))

//additionally if the mouse is over it, show tooltip

 {

 CreateTooltip(slots[i]);

 Tooltip = CreateTooltip(slots[i]);

 showTooltip = true;

 }

 }

 if(Tooltip=="") //if the tooltip is empty, don't show the

tooltip box

 {

 showTooltip = false;

 }

 i++;

 }

 }

 }

 void AddItem(Item device) //create a method for adding items to the inventory

 {

 for (int i = 0; i < slotsX*slotsY; i++)

 {

 if(slots[i].itemName==null)

 {

 slots[i] = device;

 break;

 }

 }

 }

}

//Used AwfulMedia inventory tutorial, only slots, because inventory is not dynamic

//ITEM

using UnityEngine;

using System.Collections;

[System.Serializable] //makes it so that all attributes are listed under item

public class Item {

 public string itemName;

 public string itemDesc;

 public Texture2D itemIcon;

 public ItemType itemType;

 public enum ItemType {

 Airway,

 IV,

 Medication,

 Other

 }

 //two constructors for creating items: one with attributes and one empty

 public Item(string name, string desc, ItemType type)

 {

 itemName = name;

 itemDesc = desc;

 itemIcon = Resources.Load<Texture2D>("Icons/" + name);

 itemType = type;

 }

 public Item()

 {

 }

}

//AwfulMedia tutorial, only removed item ID designation and changed types

III. Deviation from the plan and corrective action

 Looking at the work plan, the team has made significant progress and is back on track to

complete the project on time. In order to maintain this progress and based on the

recommendation of Dr. Walker, the team has stopped work on graphic design and will focus

purely on programming until all of the scenarios are completed.

IV. Plan for Next Week

 Over the next week, the team plans to focus on completing the second scenario and

having it be fully functional, which requires the team to integrate the timer system and medical

inventory into the game. For the medical inventory, the images of the needed items will be added

to the game. Then, a universal sprite will be used and dragged to the baby in place of the image.

Finally, the code for the vitals monitor display will be completed and integrated into the game.

After completing the second scenario, the team will begin coding scenario three.

V. Assessment of Progress

 Considering the current progress, the team is back on track with the work schedule. As

long as the team continues this level of progress, the project will be able to be completed on

time.

