
Aperture Bioscience Laboratories

Progress Report 9 for NICView: A Virtual NICU Simulation

Due: 4/3/15

Professor Walker

Amy Young, Caitlin Li, Jennifer Duan, Pamela Wu, Lindsey Sumners

I. Background of the project

 Considering the new regulations that limit work hours for medical residents, these

residents do not have the same real case experience as in the past. Therefore, this reduces patient

safety, because the residents do not experience a large and varied amount of cases. In order to

solve this problem, our project will involve developing a simulation game that can be played at

the resident’s home. By playing this game, the residents will be able to gain better conceptual

knowledge by going through different scenarios, which addresses the issues of volume and

variety of cases and patient safety. By having this knowledge, the residents will be able to use

the time in the hospital in order to gain experience with the physical actions in medicine.

II. Achievements since the last report

The main area of progress has been in making the medical inventory and having it

become functional. The sprites that will be dragged to the baby have been made, which now

makes the inventory interactable. The code is shown below.

//INVENTORY

using UnityEngine;

using System.Collections;

using System.Collections.Generic; //gives access to List type

//create variables

public class Inventory : MonoBehaviour {

 public List<Item> slots = new List<Item>(); //list of items in slots

 public int slotsX, slotsY, xpos, ypos, xsize, ysize, offset; //number of slots and

position and size of slots

 public int bxpos, bypos, bxsize, bysize; //position and size of button

 private bool showInventory; //whether or not inventory appears

 private bool showTooltip; //whether or not to show pop up box when hovering

over item in inventory

 private string Tooltip; //text that shows up in said box

 public Item CPAP = new Item ("CPAP", "Continuous Positive Airway Pressure",

Item.ItemType.Airway); //CPAP mask

 public Texture tool = Resources.Load<Texture2D> ("tool"); //background image

for inventory

 public List<string> ItemNames = new List<string>(); //list of item names

 public List<GameObject> Devices = new List<GameObject>(); //list of item

game objects

 string CreateTooltip(Item item) //create the text in the tooltip box

 {

 Tooltip = "<color=454545>" + item.itemName + "</color>\n\n" +

"<color=473344>" + item.itemDesc + "</color>";

 return Tooltip;

 }

 //Populate slots with empty items

 void Start ()

 {

 ItemNames.Add ("CPAP"); //creating a list of item names

 for (int i = 0; i < (slotsX * slotsY); i++) //looping through number of slots

 {

 slots.Add(new Item()); //creating a list of empty items as long as

number of slots

 }

 AddItem (CPAP); //Add CPAP to slots

 }

 //Activate or deactivate item gameobjects depending on if show inventory is true

 void Update()

 {

 for (int i = 0; i < slotsX*slotsY; i++) //loop through number of items

 {

 Devices[i] = GameObject.Find(ItemNames[i]); //find the game

object with that name

 Devices[i].SetActive(showInventory); //set it to the same state as

the inventory

 }

 }

 void OnGUI()

 {

 if (GUI.Button (new Rect (bxpos,bypos,bxsize,bysize), "Crash Cart"))

 {

 showInventory = !showInventory;

 }

 Tooltip = ""; //set text to empty

 if (showInventory) { //if show inventory is true, draw the inventory

 DrawInventory ();

 }

 if (showTooltip)

 { //if showtooltip is true, draw a box containing the tooltip

 GUI.Box (new Rect (Event.current.mousePosition.x + 15f,

Event.current.mousePosition.y, 200, 200), Tooltip);

 }

 }

 void DrawInventory() //define draw inventory

 {

 int i = 0;

 for (int y = 0; y < slotsY; y++)

 {

 for (int x = 0; x < slotsX; x++) //loop through indices of grid

 {

 Rect slotRect = new Rect(xpos+x*xsize+offset,

ypos+y*ysize, xsize, ysize); //rectangle

 GUI.Box(new Rect(xpos+x*xsize+offset,

ypos+y*ysize,xsize,ysize),tool); //background image

 if(slots[i].itemName != null) //if the slot is not empty, draw

the item icon in the corresponding box

 {

 GUI.DrawTexture(slotRect,slots[i].itemIcon);

 if(slotRect.Contains (Event.current.mousePosition))

//additionally if the mouse is over it, show tooltip

 {

 CreateTooltip(slots[i]);

 Tooltip = CreateTooltip(slots[i]);

 showTooltip = true;

 }

 }

 if(Tooltip=="") //if the tooltip is empty, don't show the

tooltip box

 {

 showTooltip = false;

 }

 i++;

 }

 }

 }

 void AddItem(Item device) //create a method for adding items to the inventory

 {

 for (int i = 0; i < slotsX*slotsY; i++)

 {

 if(slots[i].itemName==null)

 {

 slots[i] = device;

 break;

 }

 }

 }

}

//AwfulMedia inventory tutorial, but inventory in game will never change

//so reduced everything to only slots

//ITEM

using UnityEngine;

using System.Collections;

[System.Serializable] //makes it so that all attributes are listed under item

public class Item {

 public string itemName;

 public string itemDesc;

 public Texture2D itemTexture;

 public Sprite itemIcon;

 public ItemType itemType;

 public int iconx,icony,iconw,iconh;

 public enum ItemType {

 Airway,

 IV,

 Medication,

 Other

 }

 //two constructors for creating items: one with attributes and one empty

 public Item(string name, string desc, ItemType type)

 {

 itemName = name;

 itemDesc = desc;

 itemIcon = Sprite.Create (Resources.Load<Texture2D>("Icons/" +

name),new Rect(iconx,icony,iconw,iconh),new Vector2(.5f,.5f));

 itemType = type;

 itemTexture = Resources.Load<Texture2D> ("Icons/" + name);

 }

 public Item()

 {

 }

}

//AwfulMedia tutorial, only removed item ID designation and changed types

III. Deviation from the plan and corrective action

 Looking at the work plan, the project is behind in one main area, which is the timer. The

team has been working on debugging the code that was shown in Progress Report 7. However,

since the other parts of the scenario have been completed, the team can focus on this aspect of

the project and finish programming the second scenario.

IV. Plan for Next Week

 Over the next week, the team plans to focus on debugging the timer code and integrating

it into scenario two. The third scenario will then be programmed using the medical inventory,

timer, and points code that has already been developed. Finally, the team will set up the online

forum and consult Dr. Krakauer on the testing protocol for the game. This will allow the team to

know when the game is tested and how many residents will play it.

V. Assessment of Progress

 Considering the current progress, the team is a little behind schedule. However, by

accomplishing the goals set out for next week, the team will be able to finish the project on time.

