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Mitochondrial Abnormalities in Bipolar Disorder

Hayley Boyd Clay

Abstract

Bipolar disorder (BPD) is a common and severe mental illness that affects 3% of the population®. Although its disease mechanisms are poorly
understood, several lines of evidence indicate that BPD involves genetic and functional mitochondrial disturbances. These studies include genetic
linkage and gene expression studies, biochemical studies, and in vivo neuroimaging. Animal models indicate that mitochondrial perturbation can
by itself produce mood disorder-like phenotypes. Additionally, the mood stabilizers used to treat BPD exert effects on mitochondria, enhancing
mitochondrial-related gene expression and the functionality of mitochondrial enzymes, protecting cells from mitochondria-mediated cell death.
This review discusses mitochondrial physiology and its links to BPD and the mechanisms of action of the mood stabilizers used in the treatment
of BPD.
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Introduction

Bipolar disorder (BPD) is a common, severe mental illness in which patients suffer episodes of mania and depression?. The clinical presenta-
tion of BPD can vary among patients, but a common finding in genetic, biochemical, and neuroimaging studies is evidence of mitochondrial dysfunc-
tion. As a high-energy tissue, the brain relies heavily on energy production through mitochondria-mediated oxidative phosphorylation (OXPHOS)?3.
The brain, then, is particularly vulnerable to alterations in mitochondrial function, and mitochondria-related mutations often result in brain pathology,
such as blindness or seizure®®. Slight or major alterations in mitochondrial function—whether through mutation, alterations in levels of the mitochon-
drial genome (mtDNA), or reduced enzyme function—may play an important part in the pathophysiology of BPD. Accordingly, the mechanisms of ac-
tion of the mood stabilizers® used to treat BPD may compensate for mitochondrial deficits by improving OXPHOS capacity or preventing mitochondria-
mediated apoptosis. This review discusses mitochondrial genetics and physiology, the evidence for mitochondrial involvement in bipolar disorder, and
the effects of mood stabilizers on mitochondrial function.

Mitochondria and mtDNA

Mitochondria are intracellular organelles with prominent roles in energy production through OXPHQOS, intracellular calcium (Ca?*) buffering,
and regulation of apoptosis. Mitochondria possess outer and inner membranes, which are separated by the intermembrane space. The innermost
space, the matrix, contains enzymes and metabolites needed for the Krebs cycle. The inner membrane is folded into cristae and houses the enzyme
complexes used in electron-transport chain (ETC)-mediated energy production. Each mitochondrion contains multiple copies of a 16.6-kB circular

genome (MtDNA) that encodes 37 genes: two rR-

NAs, 22 tRNAs, and 13 ETC genes*®. The remain-

der of the 1000-plus genes required for mitochon- i normal mitochondrion

drial function is encoded in the nuclear genome %@Q mutated mitochondrion
(NDNA)*s. )

Most cells contain hundreds of mito- @ cell with normal mitochondria
chondria, and therefore also contain hundreds @ cells with

O. mutated mitochondria
or thousands of mtDNAs, though cellular content

varies with tissue type?*”®. Typically, more mito-
chondria and mtDNA are found in high-energy tis-
sues such as muscle and brain*3. Because human
cells are polyploid for mtDNA, different mtDNA
genotypes can exist within the same cell, a state
termed heteroplasmy. When mutant and wild-

type mtDNAs exist within the same cell, the cell ) . . . . . -

v b . f mi hondrial d Figure 1. Heteroplasmy and mosaicism: Mitochondria containing both mutant and wild-type mtDNAs can divide
only becomes symptomatic of mitochondrial dys- such that some mitochondria become enriched for mutant mtDNAs. This is the basis for tissue-specific mito-
function when the proportion of mutant mtDNAs chondrial dysfunction.

passes a threshold, typically 80-90% of the cell’s
mtDNA>7. During cell division, mitochondria distribute randomly to daughter cells; in the event of heteroplasmy, some daughter cells may receive a
higher proportion of mutant mtDNAs, resulting in tissue-specific variations in mitochondrial genotype, or mosaicism (Figure 1)>’.

MtDNA copy number regulation is important for the maintenance of mitochondrial function'®*. MtDNA depletion produces respiratory
deficiencies inversely proportional to mtDNA levels'®*3, MtDNA is packaged into protein-DNA complexes termed nucleoids, which house an average
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A Mania and Depression. Affective states that define BPD. Mania involves elevated or irritable mood and hyperactivity, while
depression is marked by sad mood and loss of pleasure, among other symptoms.
B Mood Stabilizers. Medications used to prevent episodes of mania and depression in BPD.
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of eight mtDNA molecules®®, mitochondrial transcription factor A (TFAM), mitochondrial DNA polymerase y (POLG), the helicase Twinkle, and mito-
chondrial single-strand binding protein (mtSSBP)%*. Each nucleoid protein is nDNA-encoded. These proteins work together in mtDNA replication,
and mutation or knockdown of POLG or TFAM can result in mtDNA depletion and subsequent respiratory deficiency®*, In fact, mice with neuronal
TFAM knockout exhibited neurodegeneration and increased apoptosis concomitant with reductions in mtDNA14. Loss of mtDNA also correlated with
decreased functioning of the ETC complexes that contain mtDNA-encoded subunits'*. Overexpression of TFAM in mice increased expression of some
mitochondrial genes, but did not increase respiratory capacity beyond that of control*’.

Mitochondrial physiology

Mitochondria are important for producing energy in the form of ATP. This process begins in the cytosol with glycolysis, which breaks down
glucose into pyruvate. In the mitochondrial matrix, the Krebs cycle further metabolizes pyruvate to produce electron donors NADH+H+ and FADH.
NADH+H+ donates electrons to complex | of the ETC (NADH dehydrogenase). FADH donates electrons to complex Il (succinate dehydrogenase)®. Elec-
trons move from complexes | and Il to coenzyme Q, then to complex Il (ubiquinol:cytochrome c oxidoreductase), cytochrome c, then complex IV (cy-
tochrome c oxidase), where the electrons combine with O, to form H,0*’. As electrons move along the ETC, they release energy, which is coupled to
the pumping of protons from the matrix to the intermembrane space. The protons create an electrochemical gradient across the inner membrane*>’.
The energy stored in this gradient is released as protons pass through complex V (ATP synthase), back into the matrix. Complex V uses energy released
from protons to condense ADP and inorganic phosphate (Pi) into ATP (Figure 2)>7.

ETC inhibition or dysfunction can lead to production of reactive oxygen species (ROS), which damage proteins, lipids, and nucleic acids. ROS
form when electrons prematurely release from the ETC and combine with O, to produce the superoxide anion (O, e-)*. Because mtDNA lies close to
ROS production sites, mtDNA has a higher mutation rate than nDNA, acquiring both single nucleotide polymorphisms (SNPs) and large-scale dele-
tions*”. The most prevalent mtDNA deletion, the common deletion, is nearly 5 kB long®. Cells containing a very high percentage of deletion-type
mtDNAs exhibit higher ROS production rates and increased susceptibility to apoptosis*®*.

Mitochondria provide Ca* buffering for the cell. Stimulation of receptors such as those for N-methyl-D-aspartate (NMDA) or inositol triphos-
phate (IP,) elevates cytosolic Ca** levels®. Mitochondria take up Ca** but release it slowly, preventing Ca** overload and excitotoxicity®.

Mitochondria also participate in the regulation of apoptosis. Exposure to cytotoxic stimuli such as high Ca?* levels, excess ROS, or loss of
the mitochondrial membrane potential triggers the opening of the mitochondrial permeability transition pore (mPTP). While not yet fully character-
ized, the mPTP is thought to contain several mitochondrial proteins, including cyclophilin D, the voltage-dependent anion channel (VDAC), and the
adenine nucleotide translocase (ANT)?.. Opening of the mPTP results in loss of the mitochondrial membrane potential and release of pro-apoptosis
proteins such as cytochrome c and procaspases?!. Cytochrome c, apoptotic protease activating factor 1 (Apafl), and ATP work together to activate
procaspase-9. Caspase-9 activates procaspase-3, which, in turn, promotes disassembly of the cytoskeleton, degradation of the nuclear genome, and
apoptotic cell death??.

In addition to cytochrome c and procaspases, mitochondrial outer membranes house members of the Bcl-2 protein family, which are
important in apoptosis regulation??®, Pro-apoptosis Bcl-2 proteins such as Bax and Bid promote the opening of the mPTP, while anti-apoptosis pro-
teins such as Bcl-2 and Bcl-xL
bind and inhibit pro-apoptosis

Bcl-2 proteins”?. The balance L

of pro- and anti-apoptosis Bcl- §§§ﬁ§§§§8§§§§§

2 family proteins determines T

cell survival. As such, o N INTERMEMBRANE HT H+H+ Figure 2. The electron transport chain (ETC): Elec-
H* trons donated from NADH*H* and FADH are passed

expression of Bcl-2 enharTer- SPACE H*
mitochondrial respiration and
resilience against Ca®*-mediat- §§§ﬁ§f
ed stress, but Bcl-2 knockout 8&8@8&3

results in premature death?*?,

Mitochondrial disease MATRIX FAD
Mutations in mtDNA- NADHm E O’qenﬁ\

or nDNA-encoded mitochondri- NA* " sorn ATP
al genes can result in mitochon-
drial disease. Because oocytes
contain vastly more mitochondria than sperm, diseases stemming from mtDNA mutations or deletions exhibit a maternal inheritance pattern®”.,
Alteration of OXPHOS genes impairs ETC function, and mutations in mitochondrial tRNAs inhibit mitochondrial protein synthesis. Also, POLG or TFAM
mutations can prevent mtDNA replication, resulting in mitochondrial depletion syndrome®>®. Any of these alterations results in mitochondrial dys-
function and impaired energy production. Mitochondrial diseases commonly affect OXPHOS-reliant tissues such as muscle, brain, and pancreas, and
involve symptoms like muscle weakness, blindness, seizure, and diabetes*®.

In addition to somatic symptoms, mitochondrial diseases are often comorbid with affective disorders and psychosis>*=°. Inversely, BPD pa-
tients have increased rates of diabetes and mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS)?**?. As in BPD,
mitochondrial diseases commonly do not appear until adulthood, and symptoms tend to worsen with time?’.

Mitochondrial abnormalities in BPD

Family studies have found a genetic contribution to BPD with an excess of maternal transmission, suggesting mitochondrial inheritance3*>.
BPD-associated SNPs have been found across the mitochondrial genome3¢*, as well as in the nDNA-encoded complex | gene NDUFV24%44, In addition
to mitochondria-related SNPs, the common deletion may be more prevalent in the brains of BPD patients*, though some have failed to replicate this
finding®.

along the five ETC complexes, releasing energy with
each step. This energy is used to pump protons from
the matrix to the intermembrane space. Complex V
uses the energy stored in the electrochemical gra-
dient across the inner mitochondrial membrane to
produce ATP from ADP and P.
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Expression of mitochondria-related genes is altered in BPD. Lymphoblastoid cell lines (BLCLs) derived from BPD patients had reduced mRNA
expression of complex | and Ill subunits*>47-*8, Glycolysis and OXPHOS genes were downregulated in the prefrontal cortex (PFC) of BPD patients*.,
Mitochondria-related gene expression was also reduced in the hippocampus®2, nucleus accumbens, and cerebellum in BPD>3. In hippocampus, 43% of
all downregulated genes in BPD were mitochondria-related>?.

Alterations in gene expression could stem from abnormal mitochondrial gene regulation. Lymphocytes from BPD patients were unable to
respond normally to mitochondrial stress, failing to upregulate mitochondrial genes in response to low-glucose stress®. Altered mitochondrial mRNA
levels were associated with reduced protein expression and mitochondrial enzyme activity, as well as increased oxidative damage in the PFC*.

Mitochondrial Ca? buffering is also abnormal in BPD. Baseline Ca?* levels were elevated in lymphocytes, platelets, and BLCLs of BPD pa-
tients®®>’. Both platelets and BLCLs exhibited increased Ca?* responses to stimulation®®®, indicating increased mitochondrial Ca?* content, possibly
placing cells at a greater risk for apoptosis.

In addition to biochemical data, neuroimaging studies have provided in vivo evidence for abnormalities in the brains of BPD patients. In
magnetic resonance spectroscopy (MRS) studies, patients exhibited reduced pH, ATP, and phosphocreatine (PCr) levels in the frontal cortex, indicating
impairments in OXPHOS and a subsequent reduction in high-energy phosphate levels?-%61%2 These changes may be state-dependent, as white mat-
ter PCr levels were found to inversely relate to depressive symptoms®, and pH levels increased during mania compared to euthymia within individual
patients®?,

Animal models have likewise provided links between mitochondrial abnormalities and psychiatric symptoms. Bcl-2 knockdown mice dis-
played increased anxiety-related behaviors?. Mice expressing neuron-specific POLG mutations exhibited increased startle amplitude and freezing, as
well as altered circadian rhythms®. Treatment with the mood stabilizer lithium (Li) or electroconvulsive shock normalized the behaviors of POLG mu-
tant mice®°, The phenotypes seen in these animal models indicate that mitochondria-related mutations are sufficient to produce behaviors similar
to those of BPD.

Mood stabilizers affect mitochondrial physiology and apoptosis

Valproic acid (VPA) and Li are two of the most common mood stabilizers used to treat BPD. The exact mechanisms of action of these drugs
have not yet been fully elucidated, but both VPA and Li exert several different mitochondria-related effects.

Treatment with VPA or Li increased expression of mRNAs for nDNA- and mtDNA-encoded OXPHOS genes®, and Li treatment prevented
methamphetamine-induced reductions of complex IV expression®”. Additionally, VPA and Li treatment increased expression of the transcription fac-
tors that regulate expression of mitochondria-related genes in both nDNA and mtDNA®®, opening the potential for VPA- or Li-mediated changes in
mtDNA copy number.

VPA and Li treatment enhanced O, consumption and mitochondrial membrane potential in the SH-SY5Y neuroblastoma cell line®. In rats,
VPA and Li exerted at least partial protection against amphetamine-mediated reductions in OXPHOS enzyme activities in the PFC, striatum, and hip-
pocampus®’®8, Additionally, Li treatment in postmortem human PFC enhanced the activities of OXPHOS complexes I-1V, indicating that mood stabiliz-
ers could directly promote mitochondrial function in human brain areas affected by BPD®.

BPD patients often have elevated cytosolic Ca?*, both at baseline and after stimulation. VPA and Li exert opposite effects on baseline Ca?*
levels®®7°, but both caused reduced Ca?* spikes after stimulation with histamine or lysophosphatidic acid®. In mice, Li treatment reduced ROS levels
and increased Ca?* uptake capacity after Ca?* exposure’. In addition, these mice contained mitochondria that were less swollen than those of non-Li
controls.

VPA and Li reduced apoptosis rates after stressors such as serum deprivation and glutamate exposure’>”3, Additionally, VPA and Li pre-
vented cytochrome c release, caspase-3 activation, poly (ADP-ribose) polymerase cleavage, and excitotoxicity in ROS-exposed SH-SY5Ys’47%, VPA and
Li not only prevented apoptosis, but also actively promoted survival through upregulation of the antioxidant enzyme glutathione-S-transferase, and
increased protein and phosphorylation levels of Bcl-25773747677 \VPA and Li also downregulated the pro-apoptosis genes Bax and p537274, Enhancing
cellular resilience could translate to the reversal of gray matter loss that has been found in BPD®%7%, Magnetic resonance imaging (MRI) studies of
BPD patients on and off Li treatment showed that those taking Li had elevated gray matter levels in areas related to mood regulation, such as the hip-
pocampus, anterior cingulate gyrus, and amygdala’®. These data indicate that both VPA and Li improve mitochondrial health, and so may be a common
mechanism of action toward mood stabilization.

Conclusion

Energy availability and mitochondrial health are crucial for proper brain function. In a tissue as OXPHOS-reliant as the brain, even a small
perturbation in mitochondrial function could have detrimental effects. BPD is not a classical mitochondrial disease, as most BPD patients do not
experience the symptoms of primary mitochondrial dysfunction. However, the pathophysiology of some or all BPD cases may receive significant
contribution from mitochondrial abnormalities. The heterogeneity of mitochondria-related genetic susceptibility loci indicates that a number of
abnormalities could result in similar symptoms, such as those seen in biochemical and spectroscopic studies. Animal models strengthen the link
between mitochondrial dysfunction and psychiatric phenotype. VPA and Li at least partially reverse mitochondrial deficits, enhancing mitochondrial
function and resilience by increasing OXPHOS-related gene expression and enzyme activity. The full scope of mitochondrial involvement in BPD is not
yet known. Characterizing the exact contributions of mitochondrial dysfunction in BPD pathophysiology, however, will enhance overall understanding
of the disorder and could help direct the development of more targeted and effective therapeutics.

¢Mitochondrial Depletion Syndrome. A mitochondrial disease in which symptoms stem from a loss of mtDNA.
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