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Catecholamine Transporters: Differential Regulation by Insulin
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Abstract

Accumulating evidence supports growing appreciation for the prevalence of comorbidity of metabolic disorders and
mental illness. Historically, pancreatic hormone insulin is considered to be one of the most important metabolic regulators in the
body. Recently, it has also been shown that insulin signaling pathway is implicated in brain catecholamine homeostasis, perturba-
tions of which manifest in many psychiatric disorders. Synaptic control of catecholamine neurotransmission is accomplished by
an intricately regulated system of catecholamine reuptake, facilitated by dopamine (DA) and norepinephrine (NE) transporters
(DAT and NET, respectively). Despite structural homology and functional similarity of DAT and NET, their dynamic regula-
tion is transporter specific and cell context dependent. Thus, metabolic insulin signaling has been demonstrated to differentially
regulate DAT and NET trafhcking to control brain catecholamine neurotransmission.

Introduction

A sophisticated system of chemical neurotransmis-
sion between neurons enables the brain to control our phys-
iology and behavior. Complex dynamics of the fast neuronal
communication is modulated by slow-acting monoaminer-
gic system'. Of particular interest here is catecholamine neu-
rotransmission, which is essential for many brain functions
such as learning, memory, attention, reward, mood, and
stress®. Catecholamine signaling fidelity is maintained by
transporter proteins, DAT and NET, which govern duration
and magnitude of dopamine and norepinephrine neuro-
transmission by actively translocating catecholamines from
the extracellular space into presynaptic neurons*®. The es-
sential role of DAT and NET is demonstrated by the adverse
health consequences resulting from the polymorphisms in
the human DAT and NET genes”®. Also, transgenic mouse
models lacking DAT or NET reveal phenotypes of aberrant
brain physiology and severe behavioral alterations”'.

DAT and NET are expressed in their respective
catecholaminergic neurons, which project throughout the
brain from a few midbrain nuclei. The four major DA pro-
jections include the nigrostriatal, mesocortical, mesolimbic,
and tuberoinfundibular pathways, while the locus coeruleus
(LC) NE neurons innervate all brain regions''. DAT and
NET belong to the solute carrier 6 (SLC6) gene family,
which constitutes Na*/Cl" -dependent neurotransmitter-
sodium symporters. These transporters utilize secondary
active transport by coupling neurotransmitter reuptake
with sodium gradient across the cellular plasma mem-
brane. Cloning of NET* and DAT®"? revealed a high level

of amino acid sequence homology between transmembrane

domains and intracellular loops of the two transporter pro-
teins. The predicted topological model of catecholamine
transporters was later confirmed by high-resolution X-ray
crystallographic structure of the bacterial leucine trans-
porter (LeuT), a prokaryotic homolog of the SLC6 family
that is structurally and functionally related to monoamine
transporters'’. Structural similarity between DAT and NET
proteins may explain why the transporters are “promiscu-
ous” for each other’s neurotransmitters**. However, despite
the fact that DAT and NET may substitute for each other
in fulfilling their function', regulation of the two proteins
is transporter-specific and depends on regional and cellular
contexts. While highlighting general principles that control
transporters’ function, this review will specifically focus on
how insulin signaling pathway exerts differential regulation

of DAT and NET.

Potential mechanisms of transporter regulation

Transporter activity can be regulated by two dis-
tinct mechanisms: modulation of the intrinsic molecular
properties and control of protein expression on the plasma
membrane®. We will briefly discuss both potential mecha-
nisms.

1) Transcription, translation, and anterograde trathcking
to the plasma membrane are the fundamental processes
that modulate transporter function”. However, regulatory
checkpoints guiding these processes for transporters are not
well understood. Only two NET and DAT transcription
factors have been discovered: Phox2 and Nurrl. Overex-
pression of Phox2 and Nurrl have been shown to elevate
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mRNA and protein levels of NET'® and DATY, respectively.
Nonetheless, neither the mechanism, nor the upstream mo-
lecular regulators of Phox2 and Nurrl have been identified.

Moreover, translation and anterograde trafficking
of the transporters are also not fully understood. During
protein synthesis, transporters are co-translationally translo-
cated through the endoplasmic reticulum (ER) membrane'.
Upon formation of oligomers in the ER, they are transport-
ed to the cis-Golgi network by COP (coatomer) I vesicles".
Oligomer formation was found to be essential for the ability
of the transporters to exit the ER*. In order to move from
the Golgi to the cell surface, both DAT and NET require N-
glycosylation in the second extracellular loop™. Therefore,
the mechanisms guiding transporters oligomerization and
glycosylation indirectly regulate DAT and NET cell surface
expression.

Thus, de novo protein synthesis, its half-life, as well
as the rate of initial insertion of the transporters into the
plasma membrane are essential processes controlling trans-
porter function. Unfortunately, molecular machinery re-
sponsible for quality control of NET and DAT production
as well as the mechanisms that guide sorting of the trans-
porter proteins at the ER/Golgi interface and that govern
anterograde transporter trafficking are not completely un-
derstood yet.

2) Immediate control over transporter function is main-
tained within the neuronal bouton viz intraterminal traf-
ficking and intrinsic protein modifications of NET and
DAT. Initially, the transporters were thought to be the stag-
nant monitors of synaptic neurotransmitter concentration.
Transporter conformation was thought to be the only deter-
minant of the transient reuptake rate’. Understanding of the
transporter regulation mechanism was propelled to a new
level when cortical NET membrane expression was shown
to be dependent on the extracellular norepinephrine concen-
tration. This result suggested that neurons could control the
rate of neurotransmitter reuptake by regulating the concen-
tration of transporter proteins on the plasma membrane?.
This regulatory method is slower than the rapid “on-site”
modification of the intrinsic protein structure. However,
transporters exhibit the slow kinetics of substrate transloca-
tion (approximately one substrate molecule per second per
transporter)’. Thus, speedy intraterminal transporter traf-
ficking to and from the plasma membrane in response to
immediate external stimuli (such as changes in extracellular
neurotransmitter concentration) is a plausible method to
control the rate of catecholamine reuptake.
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Endocytosis as a means of transporter function regula-
tion

The transporter membrane availability is supported
by local protein trafficking to and from the plasma mem-
brane via exocytic and endocytic processes’*?*24. The pro-
cess of endocytic recycling is guided by a number of different
molecular mediators that maintain specificity of endosomal
compartments and control the process of endosomal matu-
ration. Endosomal regulators define the fate of the cargo
— whether the endocytosed proteins recycle back to the
membrane or undergo lysosomal degradation. Endosomal
differentiation, mediated in large by Rab GTPases, allows
for temporal and spatial segregation of the recycled cargo®.
Rab GTPases provide organelle identity markers and serve
as multifaceted organizers of nearly all membrane trafficking
processes in eukaryotic cells. The array of proteins associated
with Rab GTPases (such as guanine-nucleotide exchange
factors (GEFs), GTPase-activating proteins (GAPs), GDP
dissociation inhibitors (GDIs), and GDI displacement fac-
tors (GDFs)) help to maintain the multi-level regulation
system that allows precise control over the movement and
longevity of endocytosed proteins®.

Recent efforts have identified a few Rab GTPases
involved in NET and DAT trafficking?*#¥ 2%, As excellent
endosomal identity markers, Rab GTPases can reveal which
endosomal pathway is utilized during transporters intrater-
minal redistribution. Various Rab GTPases are differentially
involved in early and late recycling endosomes, in mature
endosomes, and in lysosomal compartments®?. Unraveling
the sequence in which Rab proteins co-localize with trans-
locating transporters will help understanding the timeline
of trafficking events, as well as the fate of the transporter
proteins during those events. Thus, analysis of NET antero-
grade transport allowed to exclude the possibility of NET
segregation to either small or large dense core vesicles®. This
suggested that endosomes could be involved in NET traf-
ficking. Indeed, studies conducted in the superior cervical
ganglion (SCG) nerve terminals showed co-localization of
NET with Rab4 and Rabl1 (recycling endosome mark-
ers)*. Based on the special case of amphetamine (AMPH)*
induced NET trafhicking, this seminal research provides
grounds for further investigations aiming to understand the
mechanisms behind intraterminal transporter trafhicking.

SCG neurons elaborate profuse noradrenergic fi-
bers in culture and present large terminals extending lateral-
ly from axonal membranes®. This makes SCG a convenient
endogenous experimental model to study NET function.

a. Amphetamine (AMPH) - sympathomimetic drug inducing mono-
amine release from the nerve terminals into the extracellular milieu.
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Figure1: Insulinsignaling pathway in the brain

Absence of similar experiment-friendly natural dopaminer-
gic model system forces researchers to study DAT trafficking
in heterologous expression systems. Studying constitutive
and PKC-induced DAT internalization revealed co-localiza-
tion of DAT with Rab11 and Rab5, respectively®. Interest-
ingly, Rab5 may be substituted for Rab7 during the course
of endosome maturation. This switch is a well-known trig-
ger for endosome fusion with a lysosome, signifying a de-
grading pathway®. However, it has not been determined
whether DAT trafficking undertakes this molecular route.

In vitro evidence: insulin enhances DAT function and
reduces NET function

Metabolic hormone insulin was shown to influence
a broad spectrum of cellular function in the nervous system
via PI3K (phosphatidylinositol 3-kinase) / Akt signaling
pathway® (Figure 1). Importantly, catecholamine transport-
ers function was also found to be dependent on the integ-
rity of the PI3K-Akt pathway, the main molecular players of
which are briefly described here. Upon ligand binding, in-
sulin receptor (IR) is autophosphorylated on its intracellular
tyrosine residues, an essential step in the activation cascade.
Activated IR is a tyrosine kinase (RTK), which binds and
phosphorylates scaffold protein insulin receptor substrate
(IRS). The downstream cascade is generated through signal-
ing complexes that are assembled around the tyrosine-phos-
phorylated IRS*. PI3K is a lipid kinase that gets recruited
to the activated IRS and converts phosphatidyl-inositol
into phosphoinositide phosphates PIP, and PIP,. PIP, and
PIP, are “docking” lipids that trigger activation of serine/
threonine kinases including 3-phosphoinoitide-dependent
protein kinase-1 (PDK1) and Akt (also known as protein
kinase B (PKB)) by recruiting them to the plasma mem-
brane. Membrane-localized Akt is subsequently activated by
phosphorylation at two key residues — Thr308 (by PDK1)%,

and Ser473 (by mammalian target of rapamycin complex 2
(mTORC2))?". Phosphorylated Akt is involved in multiple
cellular functions, including metabolism, cell stress, cell-cy-
cle, apoptosis, as well as regulation of protein synthesis and
trafficking’.

In vitro studies demonstrate that PI3K-Akt signal-
ing differentially influences trafhicking of catecholamine
transporters. In case of the DAT, inhibition of the insulin
signaling pathway was shown to rapidly decrease DAT func-
tion. Particularly, broad-spectrum tyrosine kinase inhibitors
reduced DAT transport-associated currents, decreased DAT
surface expression, and diminished DA uptake into DAT
expressing Xenopus oocytes®. Brief application of PI3K in-
hibitors resulted in clathrin-mediated dynamin-dependent
DAT endocytosis*. The effect was reversed with acute in-
sulin treatment. Utilizing DAT-mediated DA releasing
properties of AMPH?>%, researchers were able to show that
insulin signaling is required to maintain DAT cell surface
expression, since application of PI3K inhibitors resulted in
dramatic reduction of AMPH-induced DAT-mediated DA
efflux in heterologous cells and dopaminergic neurons”.
Later, in vivo studies confirmed these results®.

Continuing to unravel the mechanism, researchers
turned their attention to Akt, a serine/threonine protein ki-
nase at the center of metabolic insulin signaling®®. Expres-
sion of the dominant-negative Akt mutant or application
of pharmacological Akt inhibitors induced a decrease in
cell-surface expression of DAT, whereas a constitutively ac-
tive form of Akt inhibited AMPH-induced DAT internal-
ization®. Importantly, DAT trathcking effect was observed
within minutes after stimulus application®¥%°. These data
do not eliminate the possibility of intrinsic transporter
modifications, which could occur prior to trafhcking events.
Further research is needed to understand whether insulin
signaling has a direct role in the mechanism of maintain-
ing DAT on the plasma membrane. Another important
question is whether cytosol-redistributed DAT is capable of
returning to the surface, i.e., which endosomal pathway —
recycling or degrading - is employed during inhibition of
insulin signaling.

In contrast with the DAT phenotype, decrease
of the NET function was caused by activation of the in-
sulin signaling pathway. Insulin application inhibited triti-
ated NE uptake in dissociated NET-expressing brain cells,
whole brain synaptosomes, and in acute brain slices***. The
mechanism behind such NET downregulation remains un-
known. Interestingly, a later study conducted in the SK-N-
SH cells (a human neuroblastoma cell line) demonstrated a
contradicting result of elevated NET function upon insulin
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Figure2: Multiple ways lead to disrupted insulin signaling and aberrant Akt activity

treatment™. Perhaps, a detailed analysis of the differences
within the molecular machineries of the systems used will
help deducing the occurrence of opposing results described
above. This may bring us closer to understanding how in-
sulin causes the opposite dynamics of two structurally and
functionally similar transporters: DAT and NET.

Insulin signaling regulates the transporter function in
vivo

a) Insulin in the brain: direct dependence on the peripheral
insulin tone. The notion of insulin presence in the brain was
controversial until 1967, when the use of sensitive radioim-
munoassay techniques demonstrated not only that insulin is
present in the cerebro-spinal fluid (CSF), but also that CSF
levels are increased with peripheral insulin infusion®. Fur-
thermore, IR is abundantly expressed in the brain, includ-
ing dopaminergic and noradrenergic neurons®. Despite the
ongoing debate on the source of brain insulin, the majority
of evidence demonstrates that CNS insulin concentration
depends on the fidelity of the active saturable transport of
pancreatic insulin past the blood brain barrier” . Indeed,
alterations in the plasma insulin concentration are mirrored
by the changes in the CSF insulin level®. Human positron
emission tomography (PET) studies showed attenuated
neuronal activity evoked by a peripheral insulin injection
in non-diabetic subjects with insulin resistance’'. Such tight
correlation between peripheral and central insulin tone
supports the fact that alteration in plasma insulin level is
capable of disrupting insulin signaling in the brain, which
will consequently cause disturbance in catecholamine trans-
porter function.

b) Pathophysiological alterations in the insulin signaling path-
way and the animal models mimicking these alterations. Dis-
ruption in insulin signaling is commonly caused by per-
sistent pathological alterations in the plasma insulin level
known as hypo- or hyperinsulinemia. Both conditions result
in inhibition of Akt phosphorylation®> (Figure 2). In case
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of hypoinsulinemia, the lack of IR ligand shuts down the
PI3K-Akt signaling cascade. In response to chronic hyperin-
sulinemia, cells develop insulin resistance by increasing deg-
radation of IRS proteins®®>* (Figure 1). Consequently, both
hypo- and hyperinsulinemia disrupt Akt activity, leading
to alteration of multiple intracellular functions, including
transcription, protein synthesis and trafficking.

How can we induce alterations in peripheral insulin
level in order to study its influence on the brain? In humans,
hypoinsulinemia — a feature of type I diabetes mellitus — re-
sults from disrupted production of insulin by the pancreatic
B cells*®. To mimic this disease in an animal model, rodents
are injected with streptozotocin (STZ) or alloxan — drugs
that selectively destroy the pancreatic B cells. Hyperinsu-
linemia is a hallmark of an array of metabolic disturbances
in humans, such as metabolic syndrome, obesity, and type
II diabetes mellitus, all of which feature various levels of in-
sulin resistance. An animal model of hyperinsulinemia may
be created by feeding rodents with high fat diet. Both hypo-
and hyperinsulinemic animal models are used to study how
the disturbance in the insulin signaling pathway influences
cellular physiology. Molecularly, both models converge on
the downregulation of the Akt phosphorylation and activ-
ity (Figure 2). As discussed above, peripheral and central
insulin tone are tightly interconnected, making hypo- and
hyperinsulinemic animal models a good platform to study
how disrupted insulin signaling is implicated in neurophysi-
ology.

Perturbed insulin signaling 7z vivo causes aberrant DAT
and NET cell surface expression

a) Disrupted insulin signaling causes DAT function downregu-
lation. The evidence that insulin signaling may regulate cate-
cholamine homeostasis was initially obtained from the STZ
or alloxan-treated hypoinsulinemic rodents. AMPH exerts
its psychostimulant action via DAT-mediated DA efflux;
thus, the effect of AMPH is highly dependent on the DAT
plasma membrane availability. Alloxan-treated rats dem-
onstrated diminished locomotor activity and stereotyped
behavior following AMPH administration. Importantly,
the attenuated behavior was reversed by subsequent insulin
treatment”. Such reduced response to AMPH in hypoinsu-
linemic animals suggested that basal insulin signaling is crit-
ical for appropriate DAT cell surface expression. Subsequent
research demonstrated the ability of insulin to specifically
regulate DAT plasma membrane availability. The direct as-
sessment of striatal DAT plasma membrane expression in
STZ-pretreated hypoinsulinemic rats showed reduced sur-
face DAT?®. In vivo chronoamperometric recordings in hy-
poinsulinemic animals demonstrated decreased striatal DA
clearance, which signified of the reduced DAT cell surface
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expression®®”’. Importantly, acute insulin application res-
cued this phenotype. Moreover, high fat-fed insulin resis-
tant rats were found to exhibit downregulation of the striatal
DAT function that was rescued via restoration of the nigros-
triatal Akt phosphorylation by the recombinant viral vector
expression technology”®. These findings demonstrated the
plasticity of the system and showed that insulin acts rap-
idly via the PI3K/Akt pathway to regulate DAT function.
However, it was also demonstrated that DAT mRNA in the
ventral tegmental area (VTA) and substantia nigra (SN) re-
gions was reduced in STZ-treated rats compared to control
animals®. Such multifaceted evidence underlines the level
of complexity, as well as the diversity of the mechanisms
involved in insulin regulation of DAT. Further studies will
allow deducing what external factors lead to the divergence
in regulation: whether it occurs at the level of transcription
or at the level of transient intraterminal protein trafficking.

b) Disrupted insulin signaling causes NET function upregu-
lation. As mentioned before, alterations in the insulin sig-
naling pathway cause opposing dynamics for NET and
DAT function. Using in vive microdialysis, Shimizu et al
showed reduced hypothalamic extracellular NE content
in freely moving hypoinsulinemic rats®. In line with this
finding, an increase in NE tissue content (an assessment of
the intracellular neurotransmitter concentration) in the hy-
pothalamus was also found in hypoinsulinemic animals®'.
With no significant changes in NE metabolites, these data
supports the fact that altered NE reuptake could be the
driving force of such an imbalance between intra- and in-
tercellular concentration of the neurotransmitter. Recently
published evidence demonstrated that the hypoinsulinemic
condition induced NET trafficking viz the Akt signaling
pathway. In particular, STZ-treated mice showed enhanced
NE brain tissue content levels, increased NE clearance, and
elevated NET cell surface expression, a phenotype that was
recapitulated by pharmacological Akt inhibition™. An excel-
lent illustration of the insulin signaling influence on NET
function via the PI3K/Akt pathway was provided in a study
which analyzed cortical NE homeostasis in a genetic mouse
model with attenuated ability to phosphorylate Akt in neu-
rons. Mice with aberrant neuronal Akt function exhibited
increase in total and cell surface NET expression'. Earlier
investigations demonstrated an increase in NET mRNA in
the LC of STZ-treated rats®. Similarly to the DAT story,
NET regulation by insulin may depend on other factors
and, thus, occurs at different stages of the protein life time.
Further research is needed in order to pinpoint influencing
factors and understand the mechanism.

Concluding remarks

Catecholamine neurotransmission is essential for
normal brain physiology. Given the importance of transport-
ers in maintaining brain catecholamine homeostasis, sub-
stantial effort must be invested to enhance our knowledge of
NET and DAT regulation. The studies described above pro-
vide strong evidence that metabolic dysfunction, induced
by impaired insulin signaling, impacts brain catecholamine
neurotransmission by altering transporter function. Insulin
was shown to influence brain NE and DA homeostasis by
dynamic regulation of DAT and NET wia PI3K/Ake sig-
naling. Importantly, activation of insulin signaling causes
downregulation of NET and upregulation of DAT func-
tion. Thus, two structurally and functionally homologous
transporters with affinity for each other’s neurotransmitters
are regulated differently by the insulin signaling pathway.
This could be the consequence of the divergent amino acid
sequence within transporters intracellular domains. Another
plausible explanation for such difference in transporter reg-
ulation may be the unique regional and cellular contexts of
DAT and NET. Initial studies show that Akt, a kinase in the
center of metabolic insulin signaling pathway, plays the key
role in transporter function regulation. Further studies are
warranted in order for us to understand the mechanisms un-
derlying the comorbidity of metabolic disorders and mental
illness. Identification of the molecular players will lead to
new therapeutic approaches and, hopefully, to prevention of
mental illnesses manifested by aberrant catecholamine ho-
meostasis.
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