CANDIDATE
REVIEWS

Is a Picture Worth 1000 Calories: The Neuroimaging of Obesity

Kristen Eckstrand

Abstract

In healthy weight individuals, complex brain circuits interact with peripheral feeding signals
to control feeding behavior, and it is thought that the dysregulation of these circuits can lead to exces-
sive food intake and obesity. Human neuroimaging studies have shown BMI-dependent deficits in
dopamine neurotransmission encoding reward, suggesting a “hypodopaminergic reward deficiency”
whereby obese individuals overeat to compensate for a hypofunctioning reward circuitry. However,
other imaging studies demonstrate hyperactivation of dopamine networks that positively correlate with
BMI in obese individuals. Animal studies link these seemingly opposing theories, revealing that insulin
promotes the intracellular trafficking and surface expression of the dopamine transporter (DAT) while
inhibiting that of the norepinephrine transporter (NET). Together these transporters control dopamine
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levels in the striatum and cortex respectively, areas critically involved in reward, habits, and cognitive
control. The purpose of this review is to integrate the molecular aspects of food overconsumption and
obesity with human neuroimaging data, focusing on the role and dysregulation of dopamine in the

neural circuits subserving food intake.

An Introduction to the Obesity Epidemic

The fundamental neurocircuitry of the homeostatic
feeding system and its interactions with peripheral feeding
signals to modulate appetitive behavior and energy expen-
diture around a physiologic set point has maintained a rela-
tively stable human body composition until only recently,
when the prevalence of obesity has increased dramatically’.
The rapid elevation in obesity over the past generation,
with nearly seventy percent of the United States population
meeting criteria for being overweight’, suggests environ-
mental factors play a key role. Current research indicates
the presence and dysfunction of expanded neural circuits
controlling reward, habits, and decision-making may me-
diate feeding behavior and subsequent overconsumption,
contributing to the obesity epidemic®”.

Animal research has been critical for elucidating
molecular aspects of obesity, with studies showing that food
overconsumption is both driven and paralleled by broad
changes in dopaminergic circuitry. Indeed, an overarching
question in the field is how the physiologic response to food
consumption augments brain dopaminergic circuits that en-
able the progression and maintenance of obesity. Neuro-
imaging is an important and novel tool for non-invasively
examining the structural, molecular, and functional corre-
lates of obesity®. The purpose of this review is to integrate
the molecular aspects of food overconsumption and obesity

with human neuroimaging data, focusing on the role and
dysregulation of dopamine in the neural circuits subserving
food intake.

Molecular Aspects of Dopamine in Obesity
Homeostatic Feeding, Dopamine, Reward

The hypothalamus regulates homeostatic feed-
ing (i.e. food consumption for the purpose of maintaining
energy balance; for review, see”* %), by responding to pe-
ripheral hormonal signals relaying information about the
body’s energy state'>'2. The anorexigenic gut peptides leptin
and insulin, negative feedback adiposity signals circulating
in proportion to body fat mass, indicate a positive energy
balance while the orexigenic gut peptide ghrelin, whose
levels inversely correlate with adiposity, signals a negative
energy balance. In addition to their homeostatic action in
the hypothalamus to regulate future feeding behavior, these
peripheral hormonal signals also act on the mesolimbic do-
pamine system. Activity in mesolimbic reward circuitry (for
review, see '), an area that is acutely activated with all drugs
of abuse', implies that feeding signals operate outside of
brain circuits subserving homeostatic feeding and that feed-
ing itself may have rewarding properties.

Current evidence suggests that gut peptides signal-
ing a positive energy balance function to negatively modu-
late midbrain dopamine (DA) neurotransmission and food
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reward while those signaling a negative energy balance
are positive DA modulators. For example, as determined
by both electrophysiology and receptor knockout stud-
ies, leptin acts directly on the DA neurons of the ventral
tegmental area (VTA) to inhibit action potential firing'> ¢
and reduce food intake" and reward-seeking behaviors'” '%.
In contrast, ghrelin activates VTA DA neurons, triggering
feeding'”. New research points to a critical role for insulin
in the regulation of reward circuitry. Insulin promotes the
intracellular trafficking and surface expression of the dopa-
mine transporter (DAT) via the PI3K/Akt signaling path-
way, regulating the high-afhnity uptake of dopamine from
the mesolimbic synapse”* while reducing food-intake'’.
Further, dopamine receptor (D2R) expression® is impaired
in insulin-depleted states, suggesting a hypofunctioning of
the dopamine reward system with insulin resistance. These
findings together demonstrate the role of peripheral feed-
ing signals, particularly insulin, in fine-tuning extracellular
synaptic dopamine in the reward circuitry and subsequently
influencing feeding behavior.

An understanding of mesolimbic dopamine’s func-
tion and behavioral correlates is critical for discerning the
role of dopamine dysregulation in obesity. In the mesolim-
bic circuitry, dopamine encodes the expectation of, motiva-
tion for, and approach behaviors seeking reward'® 2> 2, all
processes which are “hijacked” in the early stages of addic-
1427 Consistent with dopamine’s role in reward, dopa-
mine levels are elevated during food seeking?®?, exposure to
and consumption of novel food stimuli®”*', and daily inter-
mittent consumption of both sugar’*?** and fat®> . Further,
it is the phasic firing of these dopamine neurons that en-
codes this food reward”®%%. In contrast, evoked dopamine
release, basal dopamine levels® 4!, and D2R availability**
2 are blunted in chronic obesity. One study links these two
states, demonstrating increased basal DA and DA efflux in
obesity-prone young, insulin-sensitive rats in the mesolim-
bic reward system but decreased basal DA and DA efflux in
obesity-prone, adult, insulin-resistant rats®. These results,
combined with evidence that short-term elevations in insu-
lin or glucose increase basal DA* while decreasing D2R*
. provides evidence for the progressive nature of dopamine
dysregulation in obesity.

According to the dopamine reward hypothesis, do-
pamine signaling in the mesolimbic system encodes reward
and promotes reward-seeking behavior; consequently, im-
paired dopamine signaling will focus and drive behaviors
aimed at restoring dopamine tone®“. It is hypothesized that
the blunted dopamine signaling in obesity may attenuate
the rewarding aspects of food, a hypodopaminergic reward

tion

deficiency syndrome (HRDS), leading obese individuals to
consume increasing quantities of palatable food to achieve
the same level of reward"%. A problem with this “reward
deficiency” hypothesis, however, is that decreased perceived
reward might be expected to suppress rather than promote
excessive feeding. An alternative view is that reduced dopa-
mine receptor availability may be a consequence, rather than
a cause, of obesity due to elevated dopamine levels from ex-
cessive food intake and/or abnormal food seeking® > 28317,
Several studies have, in fact, demonstrated a hyperrespon-
siveness to reward in the mesolimbic circuitry in obesity> %
¥ corroborating this hypothesis. Indeed, dysregulation of
dopamine circuitry is a clear component of obesity, but the
exact nature of the dysregulation remains undefined.

Food-Seeking, Habits, and Addiction

Despite mesolimbic dopamine having a clear role
in reward and feeding behavior, studies in dopamine defi-
cient mice (a severely hypoactive phenotype which will die
of starvation without supplemented dopamine) show that
viral restoration of dopamine to the nucleus accumbens
does not restore feeding behavior® *°. However, restoration
of dopamine to the dorsal striatum, specifically the dorso-
lateral striatum, rescues the dopamine-deficient phenotype
and induces feeding’'”’. These results suggest a role for
dopamine action outside the mesolimbic reward system in
feeding behavior. In fact, it is the dorsal striatum that medi-
ates goal-directed behaviors and habit formation such as the
repeated seeking of reward-conditioned, highly salient, food
stimuli®*°,

Habits are “sequential, repetitive, motor, or cogni-
tive behaviors elicited by external or internal triggers that,
once released, can go to completion without conscious
oversight”>. Habits begin as goal-directed behaviors, where
7 stimulus is achieved through a specific action
sequence, but progress to cue-mediated behaviors with re-
peated reward training that persist even with reward devalu-
ation®® ». This progression involves an underlying ventral-
to-dorsal striatal shift'* >> ® as dopamine-directed reward
behaviors of the ventral striatum are replaced by dorsal
striatal cue-initiated action sequences *"** mediated by mul-
tiple neurotransmitters that do not appear to be under the
regulatory influence of insulin. Indeed, this shift is well de-
fined with food reward, indicating that salient foods and
their cues are sufficient to initiate reward-seeking and the

subsequent habitual behaviors characteristic of addiction'
63

a salien

Decision-Making and Disinhibition

VOLUME 4 | 2012 | 44

VANDERBILT REVIEWS



The progression from reward learning to habit for-
mation relies on active oversight by the prefrontal cortex
(PFC)*, a region responsible for ‘top-down’ regulation of
subcortical function to promote situation-appropriate and
task-relevant behaviors®. While the complexities of PFC
function are beyond the scope of this article (for review,
e %6%), there is strong evidence for the specific role of
dopamine in regulating PFC activity® 7 through volume
transmission maintaining extrasynaptic dopamine tone’.
Dopamine appears to improve prefrontal cortical cognitive
function””? by enhancing glutamatergic signaling through
D1 receptor binding’® 7>, however this effect is non-linear
where either too much’® or too little’””® dopamine actually
impairs proper PFC function. This non-linear impairment
is readily seen in measures of response inhibition, where
both deficits”® and elevations® in central dopamine pro-
duce a faster cue-driven response and/or a decreased ability
to rapidly inhibit unwanted responses.

Dopamine tone is maintained in the prefrontal cor-
tex by the norepinephrine transporter (NET)®* # whose in-
tracellular trafficking and surface expression, in contrast to
the striatal dopamine transporter, is inhibited by insulin®.
Insulin further inhibits dopamine release in the PFCY,
thus providing multiple mechanisms that would both serve
to diminish cortical dopamine levels. As dopamine acts
through an inverted-U response®, even minor deviations
from optimal tone can alter PFC function”. In the set-
ting of impaired insulin signaling, such dysregulation may
set the stage for the emergence of the habitual, cue-driven
behaviors. Indeed, given that the increased availability of
highly palatable food provided by the modern environment
requires the continuous inhibition of cue-mediated feeding
behaviors, it is easy to see how dopamine-mediated prefron-
tal disinhibition could unmask the established subcortical
salience attributions and response patterns leading to obe-

sity®.

NS

The Progression to Obesity

Here we propose a plausible molecular mechanism
by which the physiologic response to food consumption
promotes progressive neuroadaptations in brain dopaminer-
gic circuits subserving reward, habits, and decision-making
that further bias towards the maintenance of obesity. In-
sulin maintains dopamine homeostasis in reward circuitry,
supporting a synaptic environment ideal for the percep-
tion of food reward. The onset of mild insulin resistance
with repeated consumption of highly palatable food drives
a striatal synaptic hyperdopaminergia from increased dopa-
mine release, decreased dopamine clearance, and allostatic
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Figure 1. Model for Dopamine Neurotransmission in the
context of impaired insulin signaling in A) prefrontal cortex
and B) dorsal striatum

downregulation of dopamine receptor function, effectively
blunting the impact of dopamine reward signaling and facil-
itating the emergence of cue-driven food seeking behavior.
Further, concomitant insulin-mediated cortical neuroadap-
tations promote a prefrontal hypodopamineric tone serv-
ing to unmask response patterns directed at palatable food
acquisition and consumption (see Figure 1). In the next
section, we review how available neuroimaging evidence
supports this model and identify important next steps for
neuroimaging in unraveling obesity pathogenesis and impli-
cations for treatment.

Translating Molecules to Systems
Neuroimaging in Obesity

Exploring feeding behavior with molecular (PET)
and functional (MR) neuroimaging facilitates the systems-
level study of feeding behavior and translation of molecular
obesity research to humans. Such methods have in fact con-
vincingly uncovered strong evidence for widespread neural
dysregulation in obesity. The multisensory elements of food
are reflected as its unified flavor®® which, combined with
individual and environmental factors, contributes to the
pleasure derived from food consumption and its hedonic
value’. In healthy individuals, flavor perception robustly
activates the gustatory network, including the thalamus, in-
sula, frontal operculum, inferior frontal gyrus, and orbito-
frontal cortex”*°. Hunger elicits heightened activity in these
areas and further activation in the striatum, midbrain, and
prefrontal cortex’ . This activation correlates with per-
ceived stimulus pleasantness’?” and reward value”, provid-
ing evidence for the representation of hedonic “liking” in
these regions.
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Yet feeding behavior extends beyond the mere lik-
ing of food, and whether food is sought for consumption
depends on how much it is “wanted™. This incentive value
is influenced by the sight and smell of food; these sensory
experiences reflect food availability and the anticipation
of food, which can then be contrasted with the effort to
achieve them’'. Indeed, the presentation of a salient food
cue elicits reward associated with food anticipation and sub-
sequent food seeking” *® . Visual food stimuli increase
activity in areas including the midbrain, amygdala, dorsal
striatum, cingulate, insula, and orbitofrontal cortex”* %
100101 "where activity is amplified by hunger® 1% 192103 The
fasting state also elicits activation of hedonic brain areas in-
cluding the ventral striatum!* 1% 1% which implies that fast-
ing enhances the rewarding properties of food'®, consistent
with behavioral studies.

Overweight and obese individuals in the fasting
state also demonstrate activation in circuits subserving food
reward'”''%. In contrast to healthy individuals, obese indi-
viduals exhibit BMI-dependent potentiation of activation by
salient food cues in gustatory areas such as the orbitofrontal
cortex and insula, and in brain regions receiving dopami-
nergic inputs, including dorsal and ventral striatum'?” 1% 110
"1, Hyperactivity in these areas could represent enhanced
expected food reward promoting dopamine release, driv-
ing the motivation and behaviors aimed at food consump-
2. Evidince for greater reward sensitivity in obesity>'"?
is consistent with this hypothesis. Alternatively, if the obese
state is characterized by prefrontal dysregulation of inhihibi-
tory circuits under dopaminergic modulation, the observed
hyperactivity results from the unmasking of habitual circuits
normally under cortical regulation. One fMRI study exam-
ining response inhibition in adolescent girls demonstrated
a BMI-dependent loss of activity in the prefrontal areas
subserving inhibitory control'', however the relationship
of this attenuation to subcortical activity was not assessed.
An important next step will be to determine how prefrontal
functional brain activity changes with subcortical activity in
light of differential dopamine clearance in these regions.

While fMRI studies indicate neural dysfunction
in obesity, they do not assess the mechanism by which it
occurs. Molecular imaging evidence directly demonstrat-
ing dopamine dysregulation comes from a small number
of PET studies finding BMI-dependent decreases in stria-
tal dopamine D2 receptor availability”” ', This reduction
depends on the magnitude and duration of overfeeding®,
supporting the hypothesis of an allostatic downregulation
of D2 receptors with chronic overeating. However, these
PET studies assessed D2 receptor availability using the ra-

tion

dioligand ["'C]-raclopride which competes with synaptic
dopamine for receptor binding, and therefore the decreased
binding explained as a reduction in D2 receptor availability
could also reflect increases in synaptic dopamine. This in-
terpretation would suggest an elevated basal dopamine tone
in obesity. Among adults viewing food cues who received
an acute methamphetamine dose (stimulating presynaptic
dopamine release), normal-weight individuals demonstrat-
ed increases in dopamine''® while the dopamine levels of
obese individuals remained constant'", providing evidence
for blunted dopamine signaling in obesity.

Implications for Treatment

While the precise etiologic nature of dopamine
dysregulation in obesity remains unclear, several imaging
studies support plasticity in the brain circuits underlying
obesity and thus opportunities for treatment. Initial clini-
cal observations of mild weight loss in patients receiving
treatment with dopamine agonists'® have been replicated
in animal studies'”?, however the cognitive/psychiatric side
effects render these drugs problematic. Further, dopamine
administration  will be ineffective if post-synaptic dopa-
mine signaling is impaired in obesity. Promising observa-
tions come from studies demonstrating that bariatric sur-
gery'? and weight loss* increase D2 receptor levels and
decrease functional activity in dopamine reward circuitry'*!
while increasing activity in the prefrontal cortex'?. One
explanation for these effects on dopamine circuits is the
drastic changes in insulin levels following bariatric surgery;
however, there have been no longitudinal controlled clinical
trials to examine the direct effect of insulin on normalizing
dopamine neurotransmission in obesity. Such research will
be critical in understanding the pathogenesis of obesity, po-
tential therapeutic targets in insulin signaling pathways, and
future opportunities for treatment.

Conclusion

Recent scientific evidence demonstrating that cen-
tral nervous system dopamine is under the regulatory influ-
ence of insulin offers a plausible mechanism for understand-
ing obesity as a dysregulation of neural systems controlling
reward, habits, and decision-making. Here we have re-
viewed the molecular processes underlying insulin’s effect
on dopamine circuitry and feeding behavior, and how these
findings link the opposing theories of a hypodopaminergic
reward deficiency versus a hyperresponsiveness to reward in
the obese state. We further extend the interpretations of
this research by proposing a novel model for obesity as a
progressive disruption of subcortical and prefrontal brain
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circuitry initiated and perpetuated by insulin resistance and
subsequent dysregulation of extracellular dopamine. While
future research is necessary, the hypothesis of insulin’s abil-
ity to reset central dopamine tone and subsequently reshape
feeding behavior offers exciting new opportunities for the
clinical management of obesity.
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