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The vast majority of inhibitory neurotransmission in 
the brain is mediated by γ-aminobutyric acid 
(GABA).  It has been detected in approximately 30% 
of all synapses1 and acts via ionotropic GABAA 
receptors, which mediate fast inhibitory 
neurotransmission2, and metabotropic GABAB 
receptors, which mediate slower inhibitory effects3.  
GABAA receptors (GABAARs) are chloride channels 
belonging to the Cys-loop receptor superfamily of 
ligand-gated ion channels (LGIC), which also 
includes nicotinic acetylcholine receptors (nAChR), 
5-hydroxytryptamine type 3 receptors (5-HT3), and 
glycine receptors (GlyR)4.  Like most members of this 
superfamily, GABAARs are pentamers that are 
assembled from an array of homologous subunits.  All 
subunits share a common structure: each contains a 
large, extracellular N-terminal domain, which 
contains the ligand-binding site and the eponymous 
Cys-loop; four α-helical transmembrane domains 
(M1-4); a large intracellular loop between the third 
and fourth transmembrane helices (M3-M4 loop); and 
a very short, extracellular C-terminal domain5 (Figure 
1a).  

Nineteen subunits, grouped by sequence 
homology into eight subunit families, have been 
identified for the GABAA receptor: α1-6, β1-3, γ1-3, 
δ, ε, π, and ρ1-36.  Several of these subunit subtypes 
also undergo alternative splicing and/or RNA editing, 
further increasing the potential diversity of GABAA 
receptor isoforms.  Each subunit exhibits a 
characteristic expression pattern in the brain; 
however, these patterns overlap extensively.  Indeed, 
a single neuron can express many subunits 
simultaneously.  Consequently, many but not all of 
the mathematically-possible GABAAR isoforms could 
exist somewhere in the brain.  The most common 

isoforms, however, are thought to comprise two α 
subunits, two β subunits, and one γ or δ subunit7-9 
(Figure 1b), though this remains a subject of 
vigorous debate. 

The large variety of GABAAR isoforms exhibit a 
concomitant variety of physiological properties2.  For 
instance, most receptors containing a γ subunit are 
located in the synapse, where they mediate phasic 
inhibition in response to presynaptically-released 
GABA10.  These receptors have a relatively low 
affinity for GABA, activate quickly, desensitize 
extensively, and deactivate slowly.  Conversely, 
receptors containing a δ subunit are located outside 
the synapse, where they mediate tonic inhibition in 
response to low concentrations of ambient GABA.  
Unsurprisingly, δ-subunit-containing receptors also 
differ physiologically; they have a relatively high 
affinity for GABA, activate slowly, desensitize 
minimally, and deactivate rapidly11. 

Additionally, GABAARs have been linked to 
many diseases and disorders, including epilepsy12-14, 
insomnia15, anxiety16, depression16, schizophrenia17, 
alcoholism18, and autism19.  Predictably, then, 
GABAARs are targeted by numerous drugs, 
particularly sedatives, anxiolytics, and 
anticonvulsants; examples include benzodiazepines, 
zolpidem, etomidate, and propofol20, 21.  Both the 
pathology and the pharmacology of GABAARs 
depend highly upon receptor subunit composition – 
for instance, epilepsy-associated mutations have been 
identified only in the α1, β3, γ2, and δ subunits, and 
benzodiazepines act only at receptor isoforms 
containing both a γ subunit and certain α subunits. 

Given the prevalence of GABAAR expression, the 
pathology resulting from receptor malfunction, and 
the pharmacological dependence upon isoform 
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Phasic inhibition 
Inhibition resulting from 
transient activation of 
synaptic GABAA 
receptors by 
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persistent activation of 
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GABAA receptors by 
ambient GABA. 
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Compounds that 
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of certain GABAA 
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clinically for their 
anticonvulsant, 
anxiolytic, sedative, and 
amnestic effects. 
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identity, it is clearly important to understand the 
process of receptor assembly.  Therefore, in this 
review, we will examine the generation of GABAAR 
diversity.  First, we will review the general processes 
of receptor biogenesis, after which we will discuss the 
selective oligomerization of GABAAR subunits.  
Finally, we will examine the ultimate product of these 
processes: native GABAA receptor isoforms. 
 
BIOGENESIS OF GABAA RECEPTORS 

As with other LGICs, GABAA receptor subunits 
are inserted co-translationally into the membrane of 
the endoplasmic reticulum (ER).  There, they fold and 
oligomerize in a process that depends heavily upon 
ER-resident chaperones.  The process of receptor 
oligomerization is slow and inefficient; studies 
suggest that approximately 70% of subunits are 
degraded without being incorporated into a 
pentameric receptor, and receptors do not appear on 
the cell surface for several hours following 
transfection22.  While in the ER, GABAA receptor 
subunits also undergo typical protein modifications, 
including the early stages of N-linked glycosylation.  
Interestingly, however, N-linked glycosylation is not 
required for subsequent forward trafficking, although 
multiple glycosylation sites have been identified on 
all subunits23 and glycosylation is necessary for 
proper assembly and trafficking of other Cys-loop 
receptors24, 25.  Properly folded and assembled 
subunits proceed to the Golgi apparatus, where they 
undergo further modification such as palmitoylation 
and glycan trimming26.  With the assistance of 
multiple GABAAR-associated proteins, receptors are 
then trafficked to the neuronal surface.  They may be 
inserted directly into their final subcellular location 
(i.e. post-, peri-, or extrasynaptic), or they may diffuse 
into that location after membrane insertion27.  Finally, 
GABAARs undergo constitutive and activity-
dependent endocytosis (both clathrin-dependent and 
clathrin-independent)28, after which they are recycled 

to the cell surface or targeted for lysosomal 
degradation.  Every step of GABAA receptor 
assembly and trafficking is regulated by signals 
within the subunits29 as well as by various associated 
proteins30. 
 
SELECTIVE OLIGOMERIZATION OF GABAA 
RECEPTOR SUBUNITS 

After temporal and spatial regulation of subunit 
expression, the first (and, arguably, the most 
important) opportunity for a neuron to control what 
GABAA receptor isoforms it will produce is the 
process of selective subunit oligomerization.  
Presumably, a neuron expressing many GABAAR 
subunit subtypes would have a hierarchical yet 
flexible assembly mechanism that favors association 
between certain subunits and, ultimately, directs the 
incorporation of assembly intermediates (e.g. dimers, 
trimers) into full receptors.  Indeed, several studies 
have indicated that, though all subunit combinations 
can form oligomers, only a subset can form 
pentamers23.  This is a key distinction because 
pentamers are trafficked to the cell surface, but 
oligomers of lower molecular weight are retained in 
the ER and subsequently degraded23, 31.  Importantly, 
some disease-causing mutations appeared to reduce 
surface expression and function by disrupting the 
process of oligomerization14. 

Expression of recombinant subunits in 
heterologous cells has provided insight into the 
“rules” governing assembly of the most prevalent 
subunit subtypes.  When expressed individually, α1, 
β2, and γ2 subunits formed primarily monomers and 
dimers, as did combinations of γ2 with either α1 or 
β2/3.  Conversely, co-expression of α1 and β2/3 
subunits, with or without γ2 subunits, predominantly 
yielded pentamers, indicating that the combination of 
α and β subunits is necessary and sufficient for 
complete receptor assembly31, 32.  Interestingly, 
however, receptors including a third (non-α/β) subunit 
appear to assemble more efficiently.  When α, β, and 
a third subunit (either γ, δ, ε, or π) were co-expressed 
in heterologous systems, the kinetic signature of αβ 
receptors could not be detected33-35; furthermore, that 
signature has been detected in very few neurons36, 37.  
Clearly, both neurons and heterologous cells are 
capable of selective oligomerization, suggesting the 
existence of assembly signals within the subunits 
themselves.   

Several studies have, in fact, isolated amino acid 
sequences and individual residues that are important 
for specific subunit interactions29, 38.   These 
sequences have been identified in the α139-43, α639, 
β342-45, γ242, 46, and γ347 subunits, primarily in the 
large N-terminal domain, though there were some 
reports of assembly sequences in the M3-M4 loop48, 

49.  Although homology modeling based on the 

Figure 1 | GABAA receptor morphology.  a | Structure of a GABAAR subunit.  
Cys-loop cysteines marked in orange; transmembrane domains enclosed in 
cylinders and numbered 1-4.  b | Schematic view of most common GABAAR 
isoform  (putative) from the synaptic cleft .  G = GABA binding site; BZ = 
benzodiazepine binding site. 
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nAChR50 and AChBP51 has provided some insight 
into the structural basis of these interactions, it is 
important to note that these sequences might not 
directly contact adjacent subunits; rather, they might 
simply facilitate oligomerization by encouraging 
proper protein folding.    
 
HETEROGENEITY IN VIVO: NATIVE GABAA 
RECEPTOR ISOFORMS 

Most studies mentioned thus far have been 
conducted in heterologous expression systems or in 
cultured neurons.  Because of the great potential for 
GABAAR heterogeneity, it is necessary to use such 
systems to investigate properties of specific subunits 
(i.e. assembly sequences) and isoforms (i.e. kinetic 
and pharmacological properties).  Unfortunately, 
these studies cannot answer a crucial question: what 
GABAA receptor isoforms actually exist in the brain?  
In an attempt to construct a standardized response to 
that question, the International Union of 
Pharmacology recently established a list of potential 
native GABAAR oligomers6.  These receptor isoforms 
were divided into three categories (“identified”, 
“existence with high probability”, and “tentative”) 
based on multiple types of evidence.  The authors also 
specified a logical strategy, summarized below, for 
determining whether or not a receptor isoform exists 
in vivo.  First, the long list of potential isoforms can 
be narrowed based on subunit co-expression patterns, 
which can be ascertained by in situ hybridization and 
immunoreactivity.  If subunits are indeed co-
expressed in a specific cell type, evidence for 
association of those subunits should then be sought, 
primarily through co-immunoprecipitation.  Subunits 
that associate should be co-expressed in heterologous 
systems, where electrophysiology can be performed 
and characteristic kinetics and pharmacology can be 
assessed.  These characteristic properties can then be 
sought in neurons.  Finally, knockout animals can be 
created and studied for the absence of characteristic 
physiology and pharmacology associated with 
isoforms containing the deleted subunit.  The list of 
“identified” and “high probability” isoforms, along 
with their localization (regional and subcellular) and 
basic forms of inhibition (phasic or tonic), is 
presented in Table 1.   
 
Isoforms that have been unequivocally identified 

Given the widespread distribution of the α1β2γ2 
GABAAR isoform, it is perhaps unsurprising that this 
isoform is thought to account for up to 60% of all 
GABAA receptors in the brain20.   Mice lacking either 
the α1 or β2 subunit have been generated; in both 
lines, total GABAAR expression in the brain was 
reduced by more than 50%52.  A γ2 knockout mouse 
was found to lack 94% of all benzodiazepine binding 
sites53 (recall that the BZ binding site is located at the 

interface of an α and a γ subunit; consequently, this 
result indicates that receptors including the γ1 or γ3 
subunit might make up only 6% of all αβγ receptors).  
As indicated in Table 1, the other five α subunits can 
likewise co-assemble with β and γ2 subunits.  Strong 
evidence for the existence of these αxβxγ2 receptors 
is provided by isoform-specific pharmacology from 
benzodiazepine (BZ) site ligands.  Such ligands 
include classic benzodiazepines (i.e. diazepam); 
imidazobenzodiazepines (i.e. flumazenil and Ro15-
4513); and the so-called “Z-drugs” (i.e. zolpidem and 
zaleplon). 

Classic benzodiazepines cannot bind receptors 
containing α4 or α6 subunits, and they have much 
lower affinity for receptors containing γ1 or γ3 
subunits than for receptors containing γ2 subunits.  
Furthermore, through the use of transgenic mice, the 
various actions of benzodiazepines have been 
attributed to specific α subunit subtypes.  Point 
mutations conferring diazepam insensitivity were 
introduced into the genes of individual α subunits and 
the resulting mice were subjected to behavioral tests 
with and without administration of diazepam54, 74, 75.  
Results indicated that the α1 subunit mediated the 
sedative, anterograde amnestic, and some of the 
anticonvulsant effects of diazepam74, 76; the α2 and α3 
subunits mediated the anxiolytic and muscle-relaxant 
effects54, 75 and the α5 subunit was involved in 
amnestic effects as well as other aspects of learning 
and memory.  Imidazobenzodiazepines, however, 
bind without regard to α subunit subtype.  Therefore, 
receptors that are benzodiazepine-insensitive but 
imidazobenzodiazepine-sensitive can be identified as 
α4βγ2 or α6βγ2 isoforms.  Conversely, Z-drugs act 
with differing potency at BZ-sensitive isoforms 
containing α1,2,3, or 5; specifically, they display high 
potency at α1βγ2 isoforms, lower potency at α2βγ2 
and α3βγ2 isoforms, and no action at α5βγ277.  Taken 
together, these pharmacological properties allow 
positive identification of α1βγ2 and α5βγ2 receptors, 
as well as tentative identification of α(2,3)βγ2 and 
α(4,6)βγ2 receptors; however, expression patterns can 
differentiate these latter two pairs of isoforms.  
Consequently, all αβγ2 isoforms are considered to 
have been identified in vivo.   

The aforementioned evidence accounts for six of 
the 11 identified native isoforms.  Four of the 
remaining five isoforms contain the δ subunit, which 
possesses many unusual properties that help to 
identify δ-subunit-containing isoforms in vivo.  First, 
the δ subunit has been found exclusively in 
extrasynaptic membranes, where it is incorporated 
into receptors that have a high affinity for GABA and 
mediate a constant, “tonic” current with low 
amplitude and little desensitization11, 78.  The 
pharmacology of δ-subunit-containing receptors is 
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Table 1 | GABAAR isoforms likely to exist in vivo. 

List of isoforms from reference 6, which also identifies “tentative” isoforms that assembled in heterologous systems 
(ρ1-3, αβγ1, αβγ3, αβε, αβθ, αβπ, and αxαyβγ2).  Also see the following general references: in situ hybridization70; 
immunohistochemistry71, 72; reviews20, 73 . 
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also very different from that of γ-subunit-containing 
receptors.  Though GABA binds to δ-containing 
isoforms with high affinity, its efficacy is relatively 
low.  Conversely, ethanol79 and neuroactive steroids80 
act strongly at δ-subunit-containing receptors.  
Demonstration of these properties in vivo56, combined 
with co-localization, co-immunoprecipitation, and 
gene deletion studies81, have allowed identification of 
the δ-subunit-containing receptors listed in Table 155.   

The last isoform that has been identified 
unequivocally in vivo comprises ρ subunits alone.  
These receptors, previously classified as GABAC 
receptors due to their unique pharmacology, are 
expressed predominantly in retinal bipolar cells63; 
however, low levels of ρ subunit transcripts have also 
been detected in hippocampus82, cerebellum83, 
amygdala84, and certain brain areas important for 
visual signal processing (superior colliculus, lateral 
geniculate nucleus, and visual cortex)62, 83 .  Evidence 
for both homomeric and heteromeric ρ isoforms has 
been reported85, 86; consequently, the subunit subtypes 
present in these receptors remain undefined. 
 
Isoforms that exist with high probability 

Finally, we will briefly discuss the evidence 
supporting the “existence with high probability” of 
certain key GABAAR isoforms listed in Table 1.  
Each of these isoforms assembles efficiently and has 
been studied extensively in heterologous systems11, 31, 

33, 35, 80, 87-89; moreover, the subunits are co-expressed 
in vivo70-72.  Indeed, most were not classified as 
“identified” simply because few animal studies have 
been conducted.  First, although α1 and γ2 subunits 
seem to partner most frequently with the β2 subunit, 
expression patterns indicate that this cannot always be 
the case, because certain areas expressing the α1 and 
γ2 subunits do not express the β2 subunit71.  In these 
areas, it is quite likely that α1β3γ2 receptors are 
formed, as indicated by various pharmacological 
properties64.  The evidence supporting the existence 
of α5β3γ2 is also extensive; the only reason that it is 
not considered to be unequivocally identified is that, 
to date, α5 and β3 have not been co-
immunoprecipitated6.  However, these three subunits 
have been co-localized71, α5 and β3 subunits were co-
depleted in knockout mice6, α5-selective etomidate 
effects have been identified90, and electrophysiology 
indicates that this isoform mediates tonic inhibition in 
the hippocampus66.  Another widely-accepted 
isoform, α1βδ, clearly assembled in heterologous 
systems and responded to known modulators of δ-
subunit-containing receptors.  Furthermore, one recent 
report identified this isoform in molecular layer 
interneurons of the hippocampus65.   Finally, as 
previously mentioned, two different αβ isoforms have 
been identified in rat brain via sequential co-
immunoprecipitation37 and electrophysiology36. 

CONCLUDING REMARKS 
GABAA receptors in the brain are ubiquitous, 

implicated in many diseases, and highly 
heterogeneous.  Each receptor isoform exhibits unique 
physiological and pharmacological properties and a 
characteristic expression pattern.  Consequently, a 
thorough understanding of GABAAR assembly, 
trafficking, and function could yield significant 
therapeutic advantages, such as isoform-specific 
drugs that minimize unwanted side effects.  Currently, 
only 11 GABAAR isoforms have been conclusively 
identified in vivo, and the existence of another six is 
considered to be highly probable.  Further study of the 
assembly, trafficking, and function of these receptors 
may improve clinical practice, as will attempts to 
identify other GABAAR isoforms that occur in the 
brain. 
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