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THE NEUROETHOLOGICAL PERSPECTIVE 
Insights into the organization and function of the 

nervous system have arisen through assimilation of a 
variety of experimental approaches ranging from 
molecular and cellular techniques to behavioral 
analyses. Similarly, neuroethology represents a field 
at the crossroads, fostering interdisciplinary research 
with methods familiar to zoology, physiology, 
evolutionary biology, and neurobiology1. These 
efforts are unified in their foundations in 
understanding animal behavior and its underlying 
neural processes. However, given the complexity of 
nervous systems within highly developed animals, 
broader questions of the neural basis of behavior are 
explored through a comparative approach. 
Fundamental to these ideas is an appreciation for the 
“ethology” – that is, the behaviors observable both in 
animals’ natural habitats – balanced with the rigorous 
control of stimuli to elicit these patterns2.  Pioneering 
work from animal behaviorists Lorenz3, von Frisch4, 
and Tinbergen5 in the past century have provided a 
framework for investigation, as outlined in 
Tinbergen’s classification of four explanations for 
behavior6, which are equally relevant in approaching 
neuroethology.  Rather than broadly grouping 
proximate and ultimate explanations for behavior, 
Tinbergen argued that physiological and mechanistic 
bases, development or ontogeny, functional 
contributions to survival and reproduction, and 
evolutionary history or phylogeny provide a structure 
for addressing questions of ethology6,7.  

Within the realm of sensory biology, comparative 
neuroethological approaches have proven effective. 
For example, the circuits underlying electroreception 
and the “jam avoidance response” in afferents from 
gymnotiform fish Eigenmannia have been identified 
in detail8-10. This weakly electric fish discharges its 

electric organ in order to “electrolocate” or sense 
perturbations in the electric field of the surrounding 
environment. In order to accommodate the presence 
of other actively electrolocating fish which could 
potentially mask the reception of subtle electric field 
variations from prey, Eigenmannia and other species 
of gymnotiforms can alter the frequency of the 
discharge of the electric generating organ, thereby 
increasing the frequency difference relative to the 
neighboring fish.  As electroreception is widespread 
among vertebrates with examples in all classes of fish, 
some amphibians11,12, and potentially mammals13,14, 
this “exotic” sensory modality has evolved multiple 
times through non-homologous receptor and neural 
circuits over the course of vertebrate evolution15. 

Neuroethology and comparative studies of 
nervous systems integrate information from two 
different levels. Even distantly related organisms can 
show similarities in motor patterns and sensory 
processing (indeed these functional and structural 
homologies contribute to the utility of commonly 
used animal models in studying human 
neurobiology). Comparative analysis using organisms 
of varying phylogenetic relationships provides a 
framework for understanding nervous system 
organization that takes historical forces and 
evolutionary pressures into account in the shaping of 
the final architecture of neural circuits. Through a 
comparative approach, information on the uniqueness 
of a particular behavior or sensory processing 
mechanism is revealed. One example of the benefit of 
this combined perspective can be seen in studies of 
somatosensory processing among members of the 
mammalian order Insectivora16-18. Included in this 
group are shrews and moles - animals that have been 
used in examinations of mammalian nervous system 
evolution as they have retained morphological traits
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similar to those found in fossils of small-bodied 
eutherian ancestors. Through comparisons of nervous 
system organization among these related animals, as 
well as their behaviors, the uniqueness of certain 
species becomes apparent. The star-nosed mole 
(Condylura cristata) has a specialized symmetrical 
star array of 22 appendages, covered in more than 
25,000 highly-innervated Eimer’s organ 
mechanoreceptors19,20 and a somatosensory cortical 
organization dominated by the star’s representation 
with the most densely-innervated appendages 
occupying the most cortical space21.  Using its star 
appendages to minimize prey searching and handling 
latencies, the star-nosed mole is the fastest 
mammalian forager22.  The unusual anatomical and 
neural circuits underlying distinct sensory processing 
abilities is revealed through integration of behavioral 
and comparative perspectives. 

This review discusses unique mechanosensory 
structures found among some of the most 
phylogenetically ancient tetrapods: extant members of 
the order Crocodilia.  Respecting Tinbergen’s 
ethological considerations, as well as integrating a 
comparative neuroanatomical perspective, we 
describe the evolution and ecological pressures faced 
by these species. Lastly, we present the current 
understanding of receptor physiology and 
corresponding neural circuitry. 

 
THE EVOLUTION OF TETRAPODS AND 
CROCODILIANS 

About 370 million years ago, a large lobe-finned 
fish emerged from the water, having evolved into a 
giant-salamander-like “labyrinthodont” amphibian23. 
The evolution of this amphibian in the Upper 
Devonian period of the Paleozoic era marked a 
transition among vertebrates from an aquatic fish-like 
lifestyle to terrestrial life, and consequently, heralded 
unique physiological and morphological changes24. 
Among these adaptations was the development of four 
paired limbs, replacing four paired fins, giving rise to 
a new group of vertebrate organisms: the tetrapods, a 
group with modern amphibian, reptile, bird, and 
mammal representatives. Approximately 320 million 
years ago, with the advent of fluid-filled amniotic 
membranes and yolk sacs to prevent dehydration of 
eggs and embryos among the synapsids (mammals 
and “proto-mammals”) and sauropsids (dinosaurs, 
reptiles, and birds), the transition to terrestrial life was 
complete25,26. Some tetrapods became amphibious and 
continued to occupy the transitional water-to-land 
habitats. Living in these environments at the water-to-
land matrix, these organisms evolved distinct sensory 
systems that allowed them to face the series of 
challenges presented in aquatic and terrestrial 
environments27. This semi-aquatic tetrapod lifestyle is 
seen today in some species of modern mammals, 

birds, reptiles, and amphibians, including members of 
the order Crocodilia.  

Extant members of the order Crocodilia (referred 
to collectively as “crocodilians”) are represented in 
twenty-three species, occupying semi-aquatic habitats 
throughout North and South America, Africa, Asia, 
and Australia. Furthermore, crocodilians are generally 
regarded as a sister group and the closest modern 
relatives to birds, based on morphological and 
genomic comparisons28. The order is divided into 
three families – Crocodylidae, Alligatoridae, and 
Gavialidae. All modern crocodilians are descendants 
of archosaurian ancestors29,30.  Furthermore, modern 
crocodilians occupy a range of aquatic environments 
and vary in the amount of time spent in the water. The 
most aquatic species include the gharials (Gavialis) 
which have large, narrow snouts adapted to their 
primarily piscivorous diets31. Many species, including 
the saltwater crocodile (Crocodylus porosus), Nile 
crocodile (C. niloticus), and the American crocodile 
(C. acutus), can accommodate both freshwater and 
marine environments to differing degrees as they 
swim from coastal areas into the ocean32. Evidence 
from phylogenetic and physiological studies suggests 
transoceanic migrations might have occurred among 
crocodilian lineages. 

Modern crocodilian tolerance to a variety of 
external chemical33 and environmental conditions, 
even among areas developed by humans34, are 
reflected in their archosaurian ancestors’ survival 
through both the Triassic-Jurassic and Cretaceous-
Tertiary mass extinction events35. Crocodilian fossils 
have retained the general skeletal and morphological 
features of extant crocodilians since the late 
Triassic/early Jurassic period, 180-200 MYA36, 
underscoring the great degree of conservation in the 
evolution of their body plans.  Under periods of 
prolonged development and a growth rate similar to 
juvenile extant crocodilians, extinct species such as 
the so-called Deinosuchus “terror-crocodile” of the 
Late Cretaceous period attained dinosaur-like lengths 
of 8 to 10 meters and masses between 2,500 and 
5,000 kg, growing into broad-snouted crocodilians 
similar in appearance to modern alligators37. 

Although crocodilian populations have become 
vulnerable to declines in population even within the 
recent past38, crocodilians have shown a remarkable 
degree of resilience when sufficient habitats are 
recovered39. In fact, no crocodilian species have been 
driven to extinction during recorded human history 
despite considerable economic incentives to hunt and 
kill them40,41. These reptiles inspire both fear and 
fascination as successful large-bodied, long-lived 
ectotherms thriving among a world of endotherms, 
having survived extinction events to remain the 
closest living reptilian relatives to the Dinosauria, 
comprising one branch of its extant phylogenetic 
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bracket42,43.  Beyond their armored osteoderm-plated 
bodies and their abilities to tolerate and adapt to a 
variety of environmental conditions, crocodilians 
have distinct sensory specializations, enabling them to 
rapidly process stimuli to determine the presence of 
potential prey, making them apex44 predators and 
survivors. 

 
MECHANORECEPTION IN CROCODILIANS 

In the evolution of a sensitive mechanosensory 
system balanced with the development of a protected 
body surface, all orders of reptiles developed arrays of 
touch papillae that vary in morphology, function, and 
distribution among taxa.   Initial studies using the 
American alligator (Alligator mississippiensis) 
identified myelinated afferents for rapidly adapting 
fibers responsive to transient “on” and “off” stimuli 
and afferents for slowly adapting fibers45,46.  
Considering their semi-aquatic habitats which include 
murky bodies of water with poor illumination, it is 
likely that mechanoreception plays a significant role 
in prey localization over other sensory modalities47.  
This is not to say that their visual48,49, 
chemosensory50, and auditory51-53 systems are poorly 
represented, and in fact, several anatomical54 and 
functional51,55-57 studies, primarily in A. 
mississippiensis and the caiman (C. crocodilus), have 
examined these modalities. However, comprehensive 
discussion of these sensory systems is beyond the 
scope of this review. 

As first characterized by von Düring, arrays of 
sensory organs in the form of spot-like touch papillae 
cover crocodilians58,59.  These dense arrangements of 
darkly pigmented pits, also called “follicle pits,” 
“follicle glands,” or “integumentary sense organs,” 
have been used in the identification of crocodilian 
skin60.  Among species in the alligatorid family 
(including alligators and caimans), these touch 
papillae are found on cranial scales surrounding the 

face of the animal (Figure 1a), whereas they are 
distributed post-cranially on ventral integumentary 
scales in members of the crocodylid family. Despite 
speculation on their possible function as secretory 
pores61 or their osmoreceptive properties62-64, these 
touch papillae are dome-like structures (Figure 1b), 
lacking pore or hair follicles, and externally resemble 
specialized mechanoreceptors such as the push rod 
organs on the hairless bills of monotremes13 and the 
Eimer’s organs on the rhinarium of moles19,65,66. 
Noting the pronounced thinning of the keratin and 
stratum corneum epidermal layers, the complex 
organization of discoid receptors through the stratum 
spinosum, the Merkel cell neurite columns and 
complexes in the dermis and epidermis, and the 
presence of encapsulated and unencapsulated 
lamellated receptors, von Düring proposed that these 
papillae were “particularly complex” sensory 
structures, especially when compared to tactile 
structures identified in other reptiles59. 

Using A. mississippiensis, which have these 
specialized touch papillae on only the cranial scales, 
Soares demonstrated that partially submerged 
alligators could orient themselves to water surface 
disturbances created by a single drop of water in 
complete darkness67.  This behavior was abolished 
when the animals were completely submerged, had 
their heads completely out of the water, or had their 
touch papillae covered by a thin plastic elastomer.  In 
recording from the trigeminal ganglion, neurons 
produced single spikes phase-locked to water surface 
wave stimuli, with increasing wave amplitude 
producing increased spike firing probability.  Based 
on these examinations, Soares coined a new term for 
these sensory organs, calling them “dome pressure 
receptors;” however, this nomenclature has led to 
some confusion by grouping together post-cranial 
receptors and von Düring’s “touch papillae,” a 
categorization that has yet to be confirmed 
functionally or physiologically62.  
 
NEURAL TARGETS FOR UNIQUE SENSORY 
ORGANS 

One aspect of touch papillae-mediated orientation 
not yet understood is the neuroanatomical 
representation of water surface movements. Forming 
the majority of the reptilian midbrain roof is the optic 
tectum (the homolog to the mammalian superior 
colliculus), the single largest visual center in reptiles. 
Examined in great detail for patterns in 
cytoarchitecture and afferent and efferent 
connections68,69, the optic tectum (or tecta 
mesencephali) is notable for its concentric laminated 
structure, consisting of 14 layers, divided into 
periventricular, central, and superficial zones70 
(Alternatively, different nomenclatures have been 
proposed which group together some laminae71). Of 

Figure 1 | Mechanoreception in A. mississippiensis.  a | Pseudo-colored 
scanning electron micrograph of head of juvenile A. mississippiensis. Epidermal 
touch papillae appear over upper and lower jaw  regions (paler scales). The head 
is 4.5 cm in length.  b | Scanning electron micrograph of single epidermal touch 
papilla from the upper jaw.  These dome-like structures are innervated by many 
mechanoreceptors. The scale bar is 100 μM. 
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the tectal organization patterns observed in reptiles, 
the so-called lacertid pattern shows relatively poorly 
developed superficial layers and more prominent 
periventricular layers, as noted in crocodilians, turtles, 
and several families of lizards72. As the layers of the 
superficial zone, characterized by horizontal cells and 
vertically-arranged fusiform cells, are the primary 
target for retinal ganglion axons, this atrophy of 
lamination in the lacertid pattern suggests a lessened 
degree of dependence on visual processing, especially 
compared to the clearly defined laminae of highly 
visual Iguanidae and Chamaeloeonidae lizards. 

The contralateral retina provides the single largest 
source of afferents to the optic tectum in most 
reptiles, and precise retinotopic projections on the 
tectum have been established for a variety of 
reptiles73-76. With the exception of the Iguana iguana, 
in all examined reptiles the nasotemporal visual axis 
is oriented along the tectum’s rostrocaudal axis, and 
the dorsoventral visual axis is oriented along the 
tectum’s mediolateral axis.  Despite having receptive 
fields significantly smaller in size, the central 10º of 
the visual field is expanded in representation and 
occupies approximately 20% of the tectal surface, 
thus allowing a degree of magnified foveal 
representation, similar to that noted in other 
tetrapods76,77.   

Similar to other vertebrates, the reptilian optic 
tectum receives non-visual afferents, particularly in 
deeper layers where overlap of visual, auditory, and 
tactile modalities occurs, via unimodal and 
multimodal neurons. Based on HRP and fast blue 
retrograde experiments, a number of non-visual 
diencephalic structures were found to project to the 
optic tectum in reptiles78,79. Hartline and colleagues 
demonstrated that specialized infrared receptors 
known as “pit organs,” found in Boidae and Viperidae 
snakes, project to the central layers of the 
contralateral optic tectum via the lateral descending 
trigeminal tract, thereby providing the snake with 
cues in guiding orientation towards warm-blood 
prey75,80,81.  As observed in rattlesnakes, the upper and 
lower regions of the infrared fields are mapped onto 
the medial and lateral tectal areas, with infrared and 
visual units responding to stimuli in roughly the same 
spatial region of the tectum. Through tectobulbar 
projections, the optic tectum has indirect control of 
spinal cord activity via the brainstem reticular 
formation82,83.  In Iguana, somatotopic receptive 
fields responsive to tactile stimulation of the 
contralateral body surface have been detected in 
deeper layers of the tectum76.  These studies found 
somatosensory receptive fields for the face to be 
roughly in register with the iguana’s visual fields, 
with the smallest fields corresponding to stimulation 
of face regions. For somatosensation, the horizontal 
body axis (head to tail) is oriented along the tectum’s 

lateromedial axis, and the vertical body axis (dorsal to 
ventral skin surface) is oriented along the tectum’s 
rostrocaudal axis. In light of Stein and Gaither’s 
somatotopic organization found within the 
contralateral optic tectum, it is evident that the tectum 
is receiving input via both spinotectal and dorsal 
column projections, and the crossing of these 
pathways has been seen in a variety of reptiles84-86.  

As opportunistic, ambush predators, crocodilians 
are successful in localizing stimuli and rapidly 
orienting towards prey both in aquatic and terrestrial 
environments.  With specialized epidermal receptors 
covering either the facial regions or the entire 
integument as in alligators and crocodiles 
respectively, it is likely that mechanoreception of 
water movements contributes to unique sensory 
processing and thus, their formidable predatory 
behaviors. However, it remains to be seen how 
activity from these receptors is represented and how 
this might vary between different species of 
crocodiles.  Is there a “computational” map, 
integrating combinations of action potentials from 
specific receptors thereby guiding orientation87-90? Is 
distance from the stimuli encoded through 
mechanoreception? Is this map in spatial registration 
with receptive fields for other sensory modalities?  
Although impressive bodies of literature exist 
delineating tectal laminar patterns, cell morphology, 
and general patterns of tectal efferents and afferents 
among vertebrates, the behavioral output of these 
neural circuits are open question amenable to 
neuroethological strategies. 
 
SUMMARY 

Research in neuroethology seeks to determine the 
neural mechanisms underlying patterns of animal 
behavior.  In adopting a comparative approach, 
distinct behavioral and physiological mechanisms that 
have evolved in response to ecological constraints can 
be identified.  As relatives to early tetrapods and 
having retained similar morphological traits for more 
than 180 million years, modern crocodilians present a 
unique opportunity in the study of nervous system 
organization and evolution. With body surfaces 
covered by arrays of specialized touch papillae, 
crocodilians can detect minute movements on the 
water surface. Investigations into the neural circuitry 
of these sensations and their influence on crocodilian 
behavior can yield insight into the evolution and 
organization of vertebrate nervous systems. 
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