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Abstract

Stress has been associated with a number of adverse effects, including anxiety disorders and
addiction. Glucocorticoids are released during stress and bind to glucocorticoid receptors (GRs) pres-
ent in every cell of the body. Limbic areas, such as the hippocampus, express high levels of GR, and the
receptors have been extensively examined within these regions for their ability to alter synaptic plasticity.
GRs within one limbic region, the extended amygdala - consisting of the shell of the nucleus accum-
bens (NAc-Sh), the central nucleus of the amygdala (CeA), and the bed nucleus of the stria terminalis
(BNST), have received relatively less attention. Given the prominent role of the extended amygdala in
the integration of stress and reward circuitry, and the demonstrated capability of GRs to alter synaptic
plasticity, it is somewhat surprising that GRs within the region have not been studied to a greater extent.
This review will examine current literature of GR-mediated effects within the extended amygdala. In
short, GR activation seems to increase excitability in the extended amygdala. GRs facilitate dopamine
release in response to drugs of abuse and stress within the NAc-Sh, facilitate fear conditioning and anxi-
ety within the CeA, and decrease anxiety and maintain excitability within the BNST. Activation of GRs
within the extended amygdala plays a pivotal role in response to stress and reward, and disregulation of
GRs within the region could lead to maladaptive responses that typify anxiety disorders and addiction.
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Introduction

Stress is prevalent in everyday life, and can be de-
fined as “a condition or feeling experienced when a person
perceives that demands exceed the personal and social re-
sources the individual is able to mobilize”!. While surmount-
ing stress experienced is crucial to survival, maladaptive re-
sponses to stress or prolonged stress can prove detrimental.
Stress has been associated with anxiety disorders such as
generalized anxiety disorder, post-traumatic stress disorder
(PTSD), and panic disorder, as well as addiction. Indeed,
stress is a commonly cited reason for relapse to drug use in
addicts, and diagnosis of an anxiety disorder is significantly
associated with drug use’. A deeper understanding of the
effects of stress on anxiety and reward circuitry will prove
invaluable for treating and preventing anxiety and addictive
behaviors such as stress-induced reinstatement of drug seek-
ing.

The HPA Axis and Glucocorticoid Release

Upon exposure to a stressful stimulus, the hypo-
thalamic-pituitary-adrenal (HPA) axis is activated. Cor-
ticotropin releasing factor (CRF) is first released from the
parvocellular neurons of the hypothalamus to the pituitary
through the portal system, triggering the release of adreno-

corticotropin (ACTH)?. ACTH then acts upon the adre-
nal cortex, leading to the release of glucocorticoids (cortisol
in humans and corticosterone in rodents; CORT) into the
blood stream. CORT binds to two receptor types, the min-
eralocorticoid receptor (MR) and the GR, which has about
10-fold lower affinity for CORT than MR*. While MRs are
almost entirely occupied under basal conditions, the lower
affinity GR is only activated when high circulating concen-
trations of CORT are present — such as during the circa-
dian peak of CORT release and during stress — and acts as
negative feedback to inhibit the HPA axis®. Interestingly, it
has also been demonstrated that administration of drugs of
abuse and drug withdrawal leads to an increase in plasma
CORT levels in rodents™ and humans’” and subsequent
activation of GRs. Thus, GRs may play a role in drug ad-
diction and withdrawal, in addition to its role in the stress
response.

Complete knockout of GR is lethal in mice, indicat-
ing that this receptor is necessary for survival'’. Site-specific
genetic or pharmacological alterations in GR function have
proved more useful in assessing the receptors’ roles. GRs are
expressed ubiquitously within the brain*!!, and show high-
est expression within a number of limbic regions, including

the hippocampus, CeA, BNST.

VOLUME 4 | 2012 | 90

VANDERBILT REVIEWS



Effects of Glucocorticoid Receptor Activation

The effects of GR activation are extensive, and in-
volve two distinct mechanisms: the genomic pathway and
the non-genomic pathway'?. In the genomic pathway, GRs
within the cytosol bind CORT that diffuses freely through
the plasma membrane. Unbound GR is maintained in a
protein heterocomplex in the cytoplasm''%. The binding
of ligand leads to the increased phosphorylation of GR".
This phosphorylation allows GR to form a dimer with other
transcription factors (TFs) or another GR'*" and translo-
cate to the nucleus’. GRs can function as a homodimer or
with other TFs in order to trans-activate or trans-repress
genes. Within the nucleus, the ligand-bound GR homodi-
mer is able to bind glucocorticoid response elements (GREs)
that are present upstream of the promoter of a number of
genes'®"? or the homodimer can bind another TF in order
to enhance or inhibit its transcription effect®. In fact, tran-
scription can be altered by GRs in an estimated 1-2% of all
genes?'.

It has been demonstrated that CORT is also able
to induce rapid effects within minutes, a time frame not
compatible with transcriptional effects of GR, via a putative
membrane-bound GR (mGR). For instance, injection of
the specific GR agonist dexamethasone to the paraventricu-
lar nucleus of the hypothalamus (PVN) is able to inhibit
ACTH release in response to restraint stress within min-
utes”. Dexamethasone conjugated to BSA, which is mem-
brane impermeable, is able to recapitulate this effect, giving
further evidence for a mGR. Some debate does exist over
the involvement of the classical GR in these rapid effects
of CORT and dexamethasone. A possible yet-undetermined
G-protein coupled receptor (GPCR) has been implicated as
pituitary cell lines were able bind CORT and dexametha-
sone at the membrane with no apparent afhinity for the GR
antagonist RU486%. The binding of ligand in this study
was blocked by pertussis toxin, which uncouples G-proteins
from their GPCR*». However, GR antagonism has been
shown to inhibit some rapid effects of CORT or dexametha-
sone?’. In addition, possible mechanisms have been identi-
fied that could localize the classical GR to the membrane
— such as the presence of a conserved palmitoylation site
that has been shown to link the estrogen receptor to the
membrane”? and direct binding of GRs to caveolin?.
GR-mediated Alterations in Synaptic Plasticity

A predominant effect of mGR activation is the re-
cruitment of the endocannabinoid (eCB) system. Through
the activation of PLC, GRs induce the production and ret-
rograde release of the eCB 2-arachidonoylglycerol (2-AG)
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from the postsynaptic bouton®®. 2-AG binds to the canna-
binoid receptor (CB1), leading to a decrease in presynaptic
neurotransmitter release”. In this way, mGRs can inhibit
excitatory transmission’? or inhibit GABAergic projec-
tions to glutamatergic neurons, thus disinhibiting excitatory
transmission®*?'.

GRs have been implicated in alterations to synaptic
plasticity and excitability. The hippocampus, in particular,
has been studied extensively due to long-established elec-
trophysiological recording techniques and high expression
of both GRs and MRs. GRs are generally thought to re-
duce neuronal excitability within the hippocampus. For
instance, in the CAl region, activation of GRs mediates
impairments in NMDA-dependent long-term potentiation
(LTP) through a slow genomic mechanism®’, as well as
facilitates metabotropic glutamate receptor-dependent long
term depression (LTD) by lowering the threshold for LTD

induction.

The Extended Amygdala

Although the involvement of GRs in many limbic
areas has been examined®"®, one region that has received
relatively less attention is the extended amygdala. The ex-
tended amygdala consists of the shell of the nucleus accum-
bens (NAc-Sh), the central nucleus of the amygdala (CeA),
and the bed nucleus of the stria terminalis (BNST)338,
This region is situated at the crossroads of stress and reward
circuitry and has thus been heavily implicated in the nega-
tive affect associated with stress disorders and withdrawal
from drugs of abuse®*'. While the involvement of norad-
renergic”? and CRF signaling® within the extended amyg-
dala in anxiety and addiction behaviors has been studied
extensively, the role of GRs within this region is less clear.
GRs within the extended amygdala are poised to alter syn-
aptic plasticity and behavioral responses to stress and drugs
of abuse. Given the prominent role of this region in stress
response and HPA axis modulation, the high expression of
GRs, and the proven ability of GR to alter synaptic trans-
mission, the paucity of literature examining GRs within the
extended amygdala is somewhat surprising. This review will
explore current literature of GR-mediated effects within the
extended amygdala, particularly in the context of anxiety
and addiction behavior.

Nucleus Accumbens
GR-mediated Effects on Excitability

Within the NAc-Sh, GR activation has been associ-
ated with an increase in neuronal excitability and extracel-
lular dopamine (DA) levels. It has long been known that the
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NAc-Sh is more responsive to glucocorticoids than the NAc
core region®. Recently, Campioni, et al.” demonstrated that
the activation of GR leads to increased neuronal excitability
in the NAc-Sh. The AMPA/NMDA ratio was increased in
the shell following a cold water forced swim stress, and this
effect was postulated to be GR-mediated, as it was mirrored
with CORT application and abolished by RU486. Increased
AMPAR miniature excitatory postsynaptic current (mEP-
SC) amplitude and reduced rectification of AMPA currents
suggested that the increase in excitability was primarily due
to an increase in the number of functional GluR2-contain-
ing AMPA receptors (AMPARSs) present at the postsynaptic
membrane®. In accordance, it has been demonstrated using
cell culture models that long-term corticosterone applica-
tion facilitates the lateral diffusion of AMPARs though a
GR-mediated mechanism that can be blocked with a GR
antagonist®. Because GR-facilitated integration of AM-
PARs to the post synaptic membrane is delayed and can be
blocked by the protein synthesis inhibitor cycloheximide, it
has been suggested that this effect is mediated through the
genomic pathway?. The observation of increased AMPAR
mEPSC amplitude in the NAc is mirrored by earlier work
in the CA1 region of the hippocampus in which CORT or
a selective GR agonist was able to enhance amplitude — but
not frequency — of AMPAR mEPSCs®. The enhanced excit-
ability within the NAc in response to GR activation could
play a role in the increased drive to obtain a drug of abuse
or in the ability of stress to evoke compulsive behaviors in

addicted individuals.

GR Involvement in NAc Dopaminergic Signaling
Dopaminergic projections from the ventral teg-
mental area (VTA) to the NAc are crucial in the reward
system®, and it has been demonstrated that stressors are ca-
pable of initiating relapse to drug seeking in humans®>' and
rodents’*. Thus, the effect of stress on dopamine release
within the NAc is an active area of research. Indeed, foot-
shock stress is capable of increasing extracellular DA levels
within the NAc shell in the rat, with no change in the NAc
core’®. This effect appears to be mediated through stress-
induced CORT release, as adrenalectomy selectively lowers
extracellular DA in the shell but not the core®. The DA
spike observed in the NAc-Sh following stress or the admin-
istration of various drugs of abuse may be due in part to the
activation of GRs. The hyperlocomotion and increase in ex-
tracellular NAc DA following systemic morphine adminis-
tration can be attenuated by i.c.v. treatment with RU486°.
In fact, direct infusion of RU486 to the NAc is capable of

preventing conditioned place preference to morphine in ro-

dents®®. It has also been found that mice lacking GRs in D1
dopamine receptor-containing (dopaminoceptive) neurons
showed decreased DA release in the NAc following cocaine
administration®’. These studies suggest that GRs have a cen-
tral role in the release of DA within the NAc following drug
administration.

The rise in extracellular DA within the NAc fol-
lowing stress or administration of drugs of abuse could
be partially due to GRs in the VTA. Acute stress has been
demonstrated to increase the AMPA/NMDA ratio in DA
neurons within the VTA to a greater extent than acute ad-
ministration of drugs of abuse®®, and this effect is blocked
completely by RU486. Morphine, cocaine, nicotine, and
forced swim stress impair the ability of GABAergic synapses
to induce LTP onto VTA DA neurons. This leads to a disin-
hibition of these projections to the NAc, and increased DA
release within the NAc”. The stress-induced impairment of
GABAergic LTP is believed to be GR-mediated as it was
attenuated by RU486. Further, direct infusion of CORT to
the VTA is sufficient to induce NAc DA release, and this is
effectively blocked by coapplication of RU486%. Because ex-
posure to a stressor is capable of initiating DA release within
the NAc through a GR-dependent mechanism, and because
drugs of abuse have been demonstrated to induce a similar
DA spike within the NAc, GRs within the NAc and regions
projecting to the NAc are crucial for drug-seeking behaviors
such as stress-induced reinstatement. Elevation in NAc DA
following exposure to drugs of abuse is a key component in
the early rewarding stages of drug addiction®”, thus xposure
to a stressor after a long period of drug abstinence would
cause a GR-mediated DA spike within the NAc that may
be reminiscent of the rewarding effects of such early drug
use. This could lead a previously addicted individual to re-
turn to their drug of choice in order to mediate the reward-
ing effects while simultaneously blocking the negative affect
caused by the stressor.

Central Nucleus of the Amygdala

Regulation of the HPA Axis and GR Pharmacology The CeA
is well situated to contribute to the HPA axis response to a
stressor. Electrical stimulation of the CeA leads to an HPA
response with increased serum CORT®'. Stimulation of
GABAergic projections from the CeA to the BNST quiets
BNST GABAergic projections to the PVN, thus leading to
a disinhibition of the HPA response®”. The CeA in particu-
lar has been implicated in the response to an acute stressor,
and has been argued to mediate stimulus-specific fear-like
behavior associated with such a stressor®>*4. Indeed, ablation
of the CeA completely eliminates cue-induced potentiation
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of startle response to a footshock®.
The CeA contains the densest expression of GR within the
amygdala'', potentially implicating GRs in the fear response
mediated by the CeA. This has led some to examine the
effects of GRs within the CeA on fear- and anxiety-like re-
sponses in rodents. Selective pharmacologic activation of
GRs within the CeA elevates GR expression levels, increas-
es anxiety-like behavior in the elevated plus maze (EPM),
and increases the plasma CORT in response to the stress of
exposure to the EPM®. Conversely, increased anxiety-like
behavior on the EPM following implantation of a CORT
pellet into the CeA can be blocked with co-administration
of the GR antagonist RU486 into the CeA®.
Genetic Deletion of GRs within the CeA

The development of a transgenic “floxed” mouse
harboring loxP sites around exons 1 and 2 of the GR gene,
NR3CI1, has been an invaluable resource for determining
region-specific involvement of GRs within the brain as the
mouse exhibits a loss of GR expression in regions exposed
68, Lentivirally-mediated delivery of
Cre-recombinase has allowed precise site-specific deletion
of GR in this mouse line, and was recently utilized in or-
der to examine the effect of GR deletion within the CeA
(CeAGRKO) on anxiety- and fear-related behaviors®7°.
The resulting 65% deletion of GRs within CeA neurons did
not lead to alterations in locomotor activity or circulating
plasma levels of CORT, and the apparent incongruity with
the pharmacological HPA data described above may be at-
tributable to the incomplete GR deletion observed in the
present study. In accordance with the CeA’s role in fear-like
behavior, C;eAGRKO mice exhibited impairment in both
cue and contextual fear conditioning when compared to
mice injected with lentiviral GFP®. Interestingly, the effect
of GRs specifically within the CeA on fear-conditioning
was further confirmed by mice with forebrain GR knockout
(FBGRKO). These animals lack GRs in the cortex, hippo-
campus, BLA, and striatum but do not show GR disrup-
tion in the CeA or PVN’!. FBGRKO mice do not demon-
strate impairments in fear conditioning, indicating that the
fear-like CeAGRKO phenotype is region-specific. Further,
it was demonstrated that adrenalectomized mice show im-
pairments in contextual fear conditioning, but have intact
cue fear conditioning’?. Thus, there may be mechanisms in
place within other brain areas to account for global brain
reductions in CORT signaling, as specific impairment of
CeA GRs leads to a more robust fear conditioning pheno-
type than adrenalectomy. Thus, GRs within the CeA are
capable of inducing HPA axis activation in response to an
acutely stressful stimulus, which defies the classical role of

to Cre-recombinase
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GRs in the negative feedback of the HPA axis upon activa-
tion. Thus, elevated GR activation within this region could
be postulated to cause chronically elevated CORT levels and
future anxiety related disorders.

Bed Nucleus of the Stria Terminalis

Despite direct projections to the PVN and heavy
GR expression, the roles of GRs within the BNST are very
poorly understood. Dunn” demonstrated that electrical
stimulation of the lateral aspect of the BNST decreased
plasma CORT levels, presumably through activation of
GABAergic projections to the PVN. Adrenalectomy de-
creases expression of CRF mRNA within the dorsolateral
aspect of the BNST (dIBNST) and the CeA while increas-
ing extracellular norepinephrine and DA in the dIBNST7%
Our group has recently shown that chronic stress or sys-
temic CORT administration increases anxiety-like behavior
in mice and blunts LTP within the dIBNST?. It has long
been known that chronic treatment with CORT downregu-
lates GR function within the brain’, leading to impaired
negative feedback of the HPA axis. Thus, the inhibitory
effect of CORT treatment on BNST plasticity may repre-
sent decreased GR function and reflect a role of GRs in the
maintenance of excitability within the region. In support
of this hypothesis, specific deletion of BNST GRs using
the floxed GR mice described above exacerbated anxiety-
like behavior in response to chronic stress as well decreasing
locomotion in a stressful situation (EPM), mimicking the
effects of chronic CORT administration described above
(unpublished data). An important future study will examine
alterations in excitability within the BNST of these mice, as
well as the consequence of pharmacological manipulation of
GRs on BNST excitability. We hypothesize that one role of
GRs within the BNST is to maintain excitability in order to
inhibit the HPA axis in response to a stressor. Thus, chronic
stress exposure could downregulate GRs within the region
and lead to hyperactivity of the HPA axis and associated
conditions, such as anxiety-related disorders and addiction.

Conclusions

While GRs have been postulated to reduce excit-
ability in other limbic regions such as the hippocampus®*%,
emerging literature seems to indicate that GRs in the ex-
tended amygdala strengthen excitability. GRs in this re-
gion likely mediate appropriate response to stressful events
in healthy individuals, but dysregulation of GRs, through
drug addiction or chronic stress for example, may trigger the
development of maladaptive behaviors. . For instance, GR-
mediated enhancement of glutamate response and extracel-
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lular dopamine in the NAc might contribute to the salience
of natural rewards under normal circumstances, but may
lead to stress-induced relapse to addiction in individuals
with altered extended amygdala circuitry as a result of previ-
ous drug use. Activation of CeA GRs causes anxiety-like re-
sponses and CORT release®®’, whereas selective deletion of
CeA GRs appears to alleviate fear-like behavior®. Thus, CeA
GRes likely initiate an HPA response to a frightening stimu-
lus by strengthening GABAergic projections to the BNST
and disinbibiting the PVN. However, an individual with
unusually high GR tone within the CeA would likely have a
lowered threshold for fear-like responses and may be suscep-
tible to anxiety disorders and addiction. Finally, GRs within
the BNST may maintain excitability in order to inhibit the
HPA axis following exposure to a stressor. However, in an
individual that has undergone chronic stress, BNST GRs
could be downregulated, and the ability of the BNST to
inhibit the HPA axis would be impaired. This could result in
anxiety disorders or stress-induced relapse to drug seeking,
a behavior that is dependent upon the BNST*'. GRs within
the extended amygdala are important in mediating anxiety-
or addiction-like responses to stress. Extensive further study
of the effects of GRs within the region on plasticity and
anxiety- and addiction-like behaviors will prove crucial to
complete understanding of such maladaptive responses to
stress.
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