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PHYSICAL ACTIVITY BENEFICIALLY 
AFFECTS THE BRAIN 

A growing body of evidence suggests that mild1, 
moderate, and vigorous physical activity2 are 
neuroprotective, decreasing the risk of many brain 
disorders including ischemic stroke3,4, Alzheimer’s 
disease1,5, and Parkinson’s disease (PD)2. Many 
clinicians routinely recommend physical activity for 
those suffering from the effects of these diseases. In 
PD patients physical activity has been shown to 
improve gait, tremor, grip strength, balance, and 
motor coordination6,7. Regardless of disease presence 
physical activity can improve sleep8, cognition9,10, 
and decrease depression11-13. Supporting animal data 
show that exercise and environmental enrichment 

enhance learning and memory, increase neuronal 
survival, increase resistance to brain insults, trigger 
synaptogenesis, promote brain angiogenesis, and 
promote neurogenesis14,15. We believe physical 
activity affects the entire brain and have previously 
studied the effects of physical activity on the brain 
alone (unpublished) and in an Alzheimer’s disease 
model14. 

Exercise gene expression changes have been 
studied largely in the hippocampus, a site of 
neurogenesis crucial in spatial learning and memory16-

18. Initial examinations showed increases in nerve 
growth factor (NGF) and brain derived neurotrophic 
factor (BDNF) throughout the brain with the most 
dramatic increases in the hippocampus and posterior 
cortex16. In the hippocampus voluntary wheel running 
also increases the expression of phosphoinositide 
kinase 3 (PI3K), protein kinase B (PKB/AKT), 
BDNF, cAMP response element binding (CREB), and 
tyrosine kinase B (TrkB, the BDNF receptor)19. It is 
now understood that physical activity modulates the 
BDNF system through intracellular signaling systems 
such as AKT and extracellular signal-regulated 
kinases 1 and 2 (ERK1/2) with endpoint effects on the 
production, phosphorylation, and function of CREB20 

(Figure 1). AKT also phosphorylates forkhead box 
O3 (FOXO3), a transcription factor, causing its 
retention in the cytoplasm. When in the nucleus, 
FOXO3 likely triggers apoptosis by inducing the 
expression of genes critical for cell death21. Keeping 
FOXO3 in the cytoplasm, therefore, may promote cell 
survival.  

Two DNA microarray studies comparing 
voluntary running rats to their sedentary counterparts 
revealed the upregulation of genes involved in 
neuronal activity, synaptic structure, and neuronal 
plasticity in the hippocampus22, 23. These genes 
included: neurotrophins, immediate early genes 
(IEGs), immune genes, and trafficking proteins22. The 
second study also revealed the upregulation of 
neurotrophic factors (NGF, BDNF, and basic 
fibroblast growth factor, FGF-2) as well genes 
involved in synaptic trafficking (syntaxin, synapsin I, 
and synaptotagmin), neutrotransmitter systems 
(ionotropic glutamate receptor subunits NR2A and 
NR2B, excitatory amino-acid carrier 1 (EAAC1), γ-
aminobutyric-acid receptor β3 (GABAA β3), and 
glutaminic acid decarboxylase (GAD65)), and signal 
transduction pathways (ERK1/2, and protein kinase C 
(PKC))23. They furthered showed that CaMKIIδ was 
more highly expressed during acute exercise (3 days) 
and that ERK1/2 was more highly expressed during 
chronic exercise (28 days)23. CaMKII is activated by 
increases in Ca2+ (Figure 1) and phosphorylates many 
substrates including components of the ERK1/2 signal 
transduction pathway. Figure 1 shows the BDNF – 
TrkB interaction, but most growth factors, including 
glial derived neurotrophic factor (GDNF), NGF, and 
FGF-2, activate the same signaling cascades24-26.   

Immediately following both voluntary wheel 
running and treadmill running in rodents there is an 
increase of corticosterone (indicative of the stress 
response) along with a decrease in phosphorylated 
CREB (pCREB) with treadmill running animals 
displaying a higher elevation of corticosterone and
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decrease in pCREB27. Though of small effect, 
corticosterone is known to decrease the expression of 
BDNF in the dentate gyrus (DG) of the 
hippocampus28. If corticosterone is administered 
subcutaneously to adrenalectomized animals, there is 
a transient decrease in BDNF at 4 and 6 hours and an 
increase in its TrkB receptor at 6 and 12 hours29. This 
immediate stress response, however, is likely specific 
to acute exercise and may diminish with repeated 
exercise exposures27. Studies have shown that the 
increases in corticosterone do fall off over time30,31. 
After five weeks of wheel running, there is no 
difference in corticosteroid response in a 20 minute 
restraint stress test between exercised and sedentary 
animals31. Lastly, in a study that standardized the 
distance ran between rats, it was shown that voluntary 
exercisers ran more rapidly for a shorter time than 
forced exercisers and had less bromodeoxyuridine 
(BrdU) incorporation into the DNA of hippocampal 
slices (an indication of neurogenesis)32. These studies 
show that although forced exercise may transiently 
activate the stress response, long term forced exercise 
may be more beneficial. 
 
PARKINSON’S DISEASE MODELS 

After extensive investigation of the hippocampus 
our attention has turned to brain areas related to PD. 
PD is characterized by tremor at rest, muscle rigidity, 
postural instability, and a slowing of physical 
movement (bradykinesia) that can progress to a 
complete loss of movement (akinesia)33. As disabling 
motor symptoms are managed with medications (such 
as L-3, 4-dihydroxyphenylalanine, L-DOPA), other 
symptoms become more apparent. These include 

depression, high level cognitive dysfunction, and 
subtle language problems34,35. It is thought that 
symptoms emerge from the progressive loss of 
dopaminergic neurons in the substantia nigra pars 
compacta (SNpc). At the onset of motor symptoms 
dopaminergic neuron loss is already 60-80%. These 
neurons normally project to the striatum forming the 
nigrostriatal dopaminergic pathway33. Insufficient 
action of dopamine (DA) on the striatum is believed 
to lead to decreased stimulation of the motor cortex 
and PD symptoms34-38.  

PD is also often characterized by the presence of 
Lewy bodies. These proteinaceous cytoplasmic 
inclusions composed of α-synuclein, are present in the 
locus ceruleus, nucleus basalis of Meynert, dorsal 
motor nucleus of the vagus, hypothalamus, and other 
sites of some PD patients, but 20-40% patients with 
neuronal loss in the SNpc have no Lewy bodies 
raising the question of whether Lewy bodies are 
markers of presymptomatic PD or a feature of normal 
aging39. Common treatments aim to replace and 
stabilize dopamine. The most common is L-DOPA, 
which crosses the blood brain barrier and is converted 
to DA. Neuroprotective strategies, such as physical 
activity, however, aim to slow dopaminergic neuron 
loss and lead to improved functioning of the 
remaining neurons33. 

It is difficult to model the progressive nature of 
PD in animals, but two models, 6-hydroxydopamine 
(6-OHDA) and 1-methyl-4-phenyl-1, 2, 3, 6-
tetrahydropyridine (MPTP), are able to model some 
of the pathology and symptoms. 6-OHDA causes the 
degeneration of catecholaminergic neurons (DA, 
norepinephrine, and epinephrine) when applied to the 

Figure 1 | BDNF Signaling Pathways. BDNF activates the AKT and ERK1/2 pathways. PI3K indirectly causes the 
phosphorylation of AKT, which phosphorylates and inhibits death proteins (FOXO3 and BAD). ERK1/2 is 
phosphorylated by a kinase cascade (RAF to MEK to ERK1/2) that is activated by RAS, which is activated by RAS-
GEF binding to Grb2 bound to phosphorylated TrkB dimers. This pathway also can be phosphorylated by CaMKII19, 21-

23. 
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brain. For localized dopaminergic degeneration it is 
stereotactically injected into the SNpc, the 
nigrostriatal tract (medial forebrain bundle), or the 
striatum of one brain hemisphere33. Dopaminergic 
neurons start degenerating within 24 hours and striatal 
DA is depleted 80-90% 2-3 days later corresponding 
with bradykinesia, impairment of movement 
initiation, and skilled motor functions on the 
contralateral side of the body33,39. SNpc degeneration 
also causes the upregulation of post synaptic DA 
receptors in the striatum. In a unilateral model this 
upregulation causes contralateral rotations with 
administration of a DA receptor agonist, 
apomorphine36.  

MPTP crosses the blood brain barrier and is 
metabolized by monoamine oxidase B (MAO-B) to 1-
methyl-4-phenyl-2, 3-dihydropyridinium ion (MPP+). 
MPP+ is selectively taken up by the DA transporter 
(DAT) where it inhibits complex I of the 
mitochondrial electron transport chain, which mirrors 
the 30-40% decrease in mitochondrial electron chain 
complex I activity in the SNpc of PD patients33. 
Increased reactive oxygen species (hydrogen 
peroxide, superoxide, peroxyl radicals, nitric oxide, 
and hydroxyl radicals) caused by a dysfunctional 
complex I react with nucleic acids, proteins, lipids, 
and other molecules altering their structure, causing 
damage, and eventually leading to axon degeneration 
and neuron loss40.  

Acute bilateral MPTP exposure leads to 50-93% 
loss of cells in the SNpc and more than 99% loss of 
DA in the striatum leading to akinesia, rigidity, and in 
some species tremor33. A stable early stage unilateral 
model of PD (MPTP) was developed in middle-aged 
monkeys41. The most pronounced difference from 
acute bilateral models is the preservation of 
dopaminergic fiber projections to the caudate nucleus 
and putamen. Other studies support the concept that 
cell bodies of DA neurons can be maintained in the 
substantia nigra for long periods following axonal 
loss in the striatum42. The early stage model with 
greater preservation of nigrostriatal projections could 
be useful for testing neuroprotective strategies, such 
as exercise, to preserve and restore dopaminergic 
innervation to the striatum.  

 
PHYSICAL ACTIVITY PROMOTES 
BEHAVIORAL AND BIOCHEMICAL SPARING 

Increases in dendritic arborization and synapse 
number in the cortex have been associated with motor 
training43-45. Hence, Tillerson et al hypothesized that 
motor training might retard the loss of dopaminergic 
neuron projections from the SNpc to the striatum in a 
unilateral 6-OHDA rat model. After infusing 6-
OHDA into the medial forebrain bundle (MFB), they 
forced the use of the impaired limb by casting the 
unimpaired limb on days 1-7, 3-9, or 7-13 after 

lesioning. Apomorphine-induced contralateral 
rotations and DA levels were used as a measure of 
SNpc dopaminergic neuron loss. Animals receiving a 
cast on days 1-7 and 3-9 did not show step or 
forelimb asymmetry, rotated significantly different 
from sham animals in response to apomorphine, and 
had significantly different levels of DA, DOPAC, or 
HVA from sham animals. Timing of exercise matters; 
early forced use (days 1-7 and 3-9), but not late forced 
use (days 7-13), of the impaired limb attenuated 
movement asymmetry and dopamine loss45.  

Tillerson switched to a forced treadmill running 
paradigm, as unilateral forced use is an exercise 
modality not commonly practiced in humans. They 
believed that treadmill running, like forced use, would 
attenuate DA loss and behavior. Rats were given 
either 6-OHDA and mice were given MPTP and 
forced to run until day 12 or 30 for behavioral tests 
and sacrificed for biochemical analysis. Moderate 
forced treadmill running reversed 6-OHDA 
movement impairments in rats after one day with 450 
m/day of treadmill running, reversed MPTP 
movement impairments in mice after three days with 
50 m/day, and attenuated striatal DA loss and DA 
terminal marker loss (DAT, VMAT, tyrosine 
hydroxylase (TH)) in both models46. Treadmill 
running, like forced use, attenuated both movement 
impairments and dopamine loss.   

It is believed that mild stress can cancel the effect 
of neuroprotection. Both voluntary and forced 
exercise have been associated with mild stress. 
Howell et al addressed this issue by looking at the 
effect of stress on voluntary exercise. Animals were 
placed into three groups: runners allowed access to a 
running wheel, stressed runners allowed access to a 
running wheel (stressed with one hour of wheel 
immobilization a day, food deprivation, and a shift in 
the light dark cycle), and nonrunners. Both stressed 
runners and nonrunners had significantly more 
apomorphine rotations than runners alone with no 
difference in TH staining suggesting that mild stress 
can cancel the affect of exercise47. Earlier studies 
indicate that corticosterone, produced immediately 
following exercise, may diminish neuroprotection; 
these effects, however, wear off after five weeks30-31. 
Numerous other studies demonstrate that voluntary 
and forced exercise can ameliorate the behavioral and 
biochemical consequences of 6-OHDA and MPTP PD 
models47-52 though the time, amount, method of 
exercise, and type of lesion do affect the behavioral 
and biochemical outcome. 

In all of the studies the number of SNpc cells did 
not change with exercise47-52; rather, we believe 
behavioral and biochemical sparing comes from 
sparing of SNpc axons and terminals projecting to the 
striatum51. It has been hypothesized that forced use 
ameliorates the behavioral and biochemical effects of 
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6-OHDA and MPTP through a cascade of events that 
involves GDNF53, a potent survival factor for DA 
neurons54. There is a significant increase of striatal 
GDNF 24 and 72 hours after using a non-impaired 
limb55. In the striatum ERK1/2 activation by GDNF 
remains elevated up to 1 month afterwards55,56. The 
medium spiny neurons of the striatum receive BDNF 
from cortical input. They receive and produce GDNF. 
GDNF homodimers bind two GFRα1 receptors, 
which then bind two RET (Rearranged during 
Transfection) receptors, which cross phosphorylate 
each other in the striatum and SNpc. BDNF increases 
the survival of striatal spines, while GDNF increases 
the survival of both SNpc terminals and striatal spines 
(Figure 2). Exercise affects the entire brain with the 
upregulation of growth factors16, and it seems most 
probable that the effects of exercise in PD would 
emerge at the intersection of the SNpc and motor 
cortex in the striatum.  
 
CONCLUSIONS 

Physical activity in PD has been investigated over 
the past decades. The 6-OHDA rat and MPTP mouse 
Parkinson’s disease models show behavioral and 
biochemical sparing in the striatum after voluntary 
wheel running, forced limb use, and forced treadmill 
running though the most beneficial time (before or 
after lesioning), amount,  and method (voluntary 
versus forced) of exercise for neuroprotection are still 

under investigation. Evidence suggests that reduced 
nigrostriatal degeneration is due in part to the 
upregulation of neurotrophic factors, one of the many 
affects of exercise, acting at the striatum.  
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