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ADHD PRIMER 
Attention deficit hyperactivity disorder is a 

relatively common condition characterized by 
impulsive behavior, hyperactivity, distractibility, and 
impairments in sustained attention.  There are 
currently no biological markers for ADHD so there is 
no test for the disorder; diagnosis is based solely on 
clinical observations and interviews with parents and 
teachers1.  The DSM-IV outlines three subtypes of 
ADHD: predominantly inattentive, predominantly 
hyperactive and impulsive, and a combined subtype 
that possesses aspects of both of the other 
classifications.  A positive diagnosis is made when a 
subject has 6 of 9 inattentive symptoms and/or 6 of 9 
hyperactive/impulsive symptoms (Table 1)2.  The 
DSM-IV-TR diagnostic criteria also require that 
symptoms are present before age 7, but some would 
argue that this requirement is too restrictive2,3. 

ADHD is estimated to affect 3-7% of school age 
children1 in the general population, a measure in line 
with the findings of a broad review of more than 100 
ADHD surveys that reported a worldwide prevalence 
rate of 5.29%4.  However, some researchers contend 
that ADHD is drastically over- or underestimated on a 
population level.  A recent review of ADHD surveys 
performed between 1997 and 2007 found ADHD 
prevalence rates as low as 0.2% and as high as 27%5.  
It is also notable that ADHD exhibits a distinct male-
to-female bias, with estimates ranging from 2:1 to as 
high as 9:1 depending on the subtype1.  The reasons 
for this bias are unclear but might include differences 
in cultural reinforcement of certain gender roles or 
merely sex differences in biological factors 
contributing to the disorder itself2. 

Although studies have shown that ADHD 
symptoms tend to decline as subjects grow older, 
research suggests that 4% of adults (age 18-44) retain 
ADHD symptoms6-9 though some recent studies 

contend that adult ADHD rates may be as high as 
15% for full ADHD diagnosis and as high as 60% for 
ADHD in partial remission3,5.  Adults with ADHD 
have an increased risk for substance abuse6 and 
comorbid psychiatric disorders, especially anxiety 
disorders, eating disorders, anti-social personality 
disorders, depressive syndromes, tics, and learning 
(usually reading and spelling) disabilities10. 

Treatment for ADHD typically involves 
administration of psychostimulants such as 
methylphenidate (MPH; Ritalin; Novartis 
Pharmaceuitcals, Basel, Switzerland) or amphetamine 
(AMPH; Adderall; Shire Pharmaceuticals, 
Basingstoke, England).  Both of these 
pharmacological agents primarily target the dopamine 
transporter, but also have limited action on the 
norepinephrine transporter (NET) and serotonin 
transporter (SERT)2. It has been shown in human 
studies that MPH blocks DAT in the striatum and 
effectively elevates extracellular dopamine (DA) 
concentrations11.  AMPH functions with a different 
mechanism—AMPH does block uptake through DAT 
to a limited degree, but it primarily acts as a DAT 
substrate, competing with DA and getting transported 
into the neuron where it reverses the vesicular 
monoamine transporter (VMAT2), causing DA to 
leak from vesicles into the cytosol12.  AMPH also 
inhibits monoamine oxidase A (MAO-A) to prevent 
DA from being degraded.  In reaction to the AMPH-
induced elevation in intracellular DA, DAT reverses 
its direction of transport and moves DA out of the 
neuron, thus increasing synaptic DA concentrations 
and increasing dopaminergic signaling12.  The 
efficacy of pharmacological treatments that target the 
dopamine system immediately implicate 
dopaminergic signaling as a major player in ADHD 
symptoms and suggest that dopaminergic dysfunction 
may underlie ADHD pathology.
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Table 1 | DSM-IV symptom criteria for ADHD. 

Taken from Mazei-Robison and Blakely, 20062.  Used with permission. 

DOPAMINE CIRCUITRY 
Neurotransmitters are typically categorized as 

excitatory or inhibitory depending on how the 
transmitter affects its target neuron.  Dopamine, 
however, can be excitatory or inhibitory depending on 
the type of DA receptor it binds—excitatory D1-like 
receptors (D1 and D5) or inhibitory D2-like receptors 
(D2, D3, and D4)13.  When D1-like receptors are 
activated, adenylate cyclase (the enzyme that 
generates cyclic AMP (cAMP)) is stimulated, but D2-
like receptor activation results in inhibition of 
adenylate cyclase.  The activation or inhibition of 
adenylate cyclase and resulting changes in cAMP 
levels lead to depolarization (D1-like) or 
hyperpolarization (D2-like) of the cell membrane.  
Clearly, the dual excitatory and inhibitory roles of DA 
make the system quite complicated, especially when 
trying to understand how dopaminergic signaling fits 
into ADHD pathology14. 

There are four major dopaminergic circuits in the 
brain (reviewed in 14)—nigrostriatal, hypothalamic-
tubero infundibular (HTI), mesocortical, and 
mesolimbic—and the latter two are most closely 
linked to ADHD.  The nigrostriatal system begins in 
the substantia nigra pars compacta and projects to the 
striatum.  This circuit primarily regulates motor 
function and it is the loss of these dopaminergic 
neurons that leads to the development of Parkinson’s 
disease15-17.  The HTI pathway starts in the arcuate 
nucleus of the hypothalamus and projects mostly to 
the pituitary gland.  In this case, dopamine operates 
under the alias “prolactin inhibiting factor (PIF)” and 
regulates the secretion of prolactin and luteinising 
hormone18. 

ADHD, however, is linked to dopaminergic 
dysfunction in fronto-limbic brain areas19, specifically 
the prefrontal cortex20, nucleus accumbens, and 
striatum21 (brain areas involved in ADHD reviewed in 
14,22).  These areas are parts of the mesocortical and 
mesolimbic circuits. Both pathways originate in the 
ventral tegmental area (VTA), a nucleus medial to the 

substantia nigra and ventral to the red nucleus in the 
midbrain23.  Mesocortical projections go to prefrontal 
and frontal cortical areas where it regulates 
information processing, attention, working memory, 
language, and planning21. Mesolimbic projections are 
directed primarily to the nucleus accumbens (NAc) 
where they are involved in reward processing and 
addiction24, psychosis25, and major depression26.  The 
mesolimbic pathway also makes connections with 
several other brain regions including the 
hypothalamus, ventral pallidum, and amygdala23. 

In all of the dopamine circuits, dopamine 
signaling is terminated by the actions of the dopamine 
transporter.  This plasma membrane protein is located 
in perisynaptic regions27,28 and works to recover DA 
from the synaptic cleft then transport it back into the 
presynaptic neuron where it is re-packaged into 
synaptic vesicles for re-release29,30.  Reuptake of 
neurotransmitter is one of the main mechanisms 
utilized in the brain to limit signaling and is seen in 
several neurotransmitter systems including the other 
biogenic amines, norepinephrine and serotonin.  With 
such an important role in regulating 
neurotransmission, is it is easy to speculate how 
transporter dysfunction could contribute to a disease 
phenotype. 
 
DAT GENE AND PROTEIN BASICS 

The human DAT gene was originally cloned in 
1992 by screening a cDNA library derived from the 
substantia nigra31. Further work used phage library 
screening and restriction site mapping to determine 
that the fifteen exons and fourteen introns33 of the 
DAT gene span over 64 kb of chromosome 53.  This 
work also confirmed that the gene codes for a 620-
amino acid protein.  To date, there are no reports of 
alternative splicing in the DAT gene.  In addition to 
the protein-coding sequence, the DAT gene contains a 
40-base pair repeat (commonly referred to as a 
variable number tandem repeat (VNTR)) in the 3’-
untranslated region of the gene, with individuals 
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carrying anywhere from three to eleven copies of the 
repeat sequence32.  The precise function of the VNTR 
is unclear, but it has been shown that the 10-repeat 
VNTR allele is associated with ADHD34. 

The DAT protein was originally predicted to have 
twelve transmembrane (TM) domains and 
intracellularly oriented amino and carboxy termini35, a 
structure that was ultimately confirmed when a 
homologous bacterial leucine transporter (LeuT) was 
crystallized35.  Early work on DAT focused on uptake 
kinetics, inhibitor sensitivity, and ion dependence36-40, 
finding that one Cl- and two Na+ ions are co-
transported with each DA molecule.    Work using 
chimeric DAT-NET fusion proteins later uncovered 
the structural determinants for the observed Na+ and 
Cl- ion dependence of DAT-mediated transport40, 
specifically involving the C- and N-terminal regions 
(DAT and other related transporters reviewed in ref. 
41). 
 
DAT REGULATION AND INTERACTING 
PROTEINS 

At the most basic level, DAT function seems 
relatively simple—it merely recovers dopamine as it 
diffuses out of the synapse.  However, DAT is a 
highly regulated protein; its function is finely tuned 
by phosphorylation, ubiquitination, and several 
interacting proteins.  The most frequently studied 
DAT-regulator is protein kinase C (PKC).  Direct 
activation of PKC by phorbol esters42-47 or indirect 
PKC activation via Gαq-coupled G-protein coupled 
receptor stimulation45 leads to decreases in DAT 
activity, primarily by internalization of DAT to 
intracellular compartments via a clathrin- and 
dynamin-dependent process44,45,47-49.  There is 
evidence, however, that DAT phosphorylation is not 
required for internalization45,47; it seems that 
phosphorylation regulates reverse transport through 
DAT.  Collaborative work from the Galli, Javitch, and 
Gnegy labs showed that alanine substitution for five 
serines in the DAT N-terminal abolished 
phosphorylation, but did not affect PKC-induced 
endocytosis50.  Rather, the loss of phosphorylation 
inhibited AMPH-induced DA efflux.  Conversely, 
substitution of aspartates for the N-terminal serines 
(mimicking phosphorylation) rescued AMPH-induced 
efflux.  It has been suggested that PKC primarily 
regulates DAT via internalization, but that DAT 
phosphorylaton by PKC or other kinases stabilizes at 
least some DAT in an “efflux-willing” 
conformation2,50. 

DAT regulation by kinases, however, is not as 
simple as PKC-induced down-regulation.  In fact, 
DAT is a substrate for several other kinases.  Carvelli 
and coworkers (2002) found that insulin stimulates 
DAT activity in a phosphatidylinositol 3-kinase 
(PI3K) dependent manner that causes a redistribution 

of DAT to the cell surface51.  Members of the mitogen 
activated protein kinase (MAPK) family have also 
been shown to regulate DAT46,52; p42 and p44 MAPK 
inhibitors lead to decreased DAT activity and plasma 
membrane expression.  Last of all, 
calcium/calmodulin-dependent protein kinase II 
(CaMKII) has also been shown to facilitate DAT 
reversal in response to amphetamine53.  The precise 
details of how all of these kinase pathways interact 
and converge on DAT remain unclear and are being 
actively researched. 

Since it was shown the DAT internalization 
occurred independent of phosphorylation, researchers 
began looking for other mechanisms to explain DAT 
trafficking.  Work in yeast54-57 has shown that plasma 
membrane trafficking of various transport proteins is 
regulated by ubiquitination, specifically mono-
ubiquitination58.  Since DAT is trafficked independent 
of phosphorylation and lacks protein sequence motifs 
that often serve as sorting signals, researchers in the 
Sorkin lab examined DAT’s ubiquitination state using 
mass spectrometry59,60.  These studies showed that 
upon PKC activation with the phorbol ester PMA, 
DAT is ubiquitinated in both the N- and C-terminal 
domains, specifically on lysines 19, 27, 35, and 599.  
There is some redundancy in the ubiquitination signal, 
as DATs harboring mutations at single lysines 
(ubiquitin conjugation sites) have normal trafficking, 
but endocytosis is disrupted when more than one 
lysine is eliminated.  Sorkin’s group went on to utilize 
RNAi methods to identify Nedd4-2 (neural precursor 
cell expressed, developmentally downregulated 4-2) 
as DAT’s ubiquitin E3 ligase61.  This raises an 
obvious question—if DAT endocytosis occurs 
independent of PKC-mediated phosphorylation, then 
why does PKC activation still result in DAT 
endocytosis?  It is known that Nedd4-2 is regulated 
by phosphorylation62-64, and, although it has not been 
demonstrated directly, it is reasonable to hypothesize 
that Nedd4-2 activity is regulated by PKC61. Thus, 
PKC may be increasing Nedd4-2 activity or somehow 
allowing Nedd4-2 access to ubiquitination sites on the 
DAT molecule, and it is the ubiquitination that 
ultimately causes endocytosis. 

The structure of DAT lends itself to many 
protein-protein interactions, as both termini are 
oriented towards the intracellular compartment. It 
comes as no surprise, then, that proteins interacting 
with DAT are responsible for regulating transport 
function.  For example, several of the kinases that 
regulate DAT have direct protein-protein interactions 
with the transporter.  It has been shown that both 
PKCβ-II and CaMKII interact with DAT (PKC on the 
N-terminal65 and CaMKII on the C-terminal53) and 
facilitate AMPH-induced DA efflux.  DAT 
phosphorylation is also regulated via DAT’s direct 
interaction with protein phosphatase 2A (PP2A); in a 
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Table 2 | DAT-interacting proteins. 

role opposing the kinases, PP2A de-phosphorylates 
DAT and promotes surface expression66. 

Besides the kinases and phosphatase, several 
other proteins interact with DAT.  It is beyond the 
scope of this review, however, to address the function 
of them all in detail (interacting proteins are reviewed 
in ref. 67).  The identity of interacting proteins and a 
brief description of the proposed role of each 
interaction can be found in Table 2.  In nearly all 
cases, the impact of the protein-protein interaction is 
not fully understood and is still being actively 
investigated. 
 
STUDYING DAT IN ADHD 

Several studies have been able to make significant 
links of the dopamine transporter to ADHD.  Twin 
studies have suggested that ADHD is highly 
heritable—approximately 80% of cases have some 
significant and identifiable genetic component22,75 
(twin, family, and adoption studies in ADHD 

reviewed in 76).  A plethora of genome-wide linkage 
studies have been conducted using various cohorts of 
ADHD subjects that resulted in linkage at several 
chromosomal locations including 5p12, 10q26, 
12q23, 16p1377,78; 17p1179; 15q and 7p (although 
failure to replicate linkage at 16p13 and 17p11)80; and 
6q12 and 5p1381.  As the resolution of linkage 
mapping methods improved, studies identified smaller 
regions linked to ADHD including 4q13.2, 5q33.3, 
11q22, and 17p1182, as well as 2q21.1 and 13q12.1183 
and 2q35, 5q13.1, 6q22-23, 7q21.11, 9q22, 14q12, 
and 16q24.184.  To summarize, chromosome 5 is most 
frequently linked to ADHD.  Interestingly, the 
specifically linked region at 5p13 is near the DAT 
gene locus85.  The overall lack of consistency among 
linkage studies may be accounted for by several 
factors including differences in ADHD diagnosis or 
the identity of ADHD study populations2.  It is also 
possible that ADHD is a complex disorder caused by 
several common polymorphisms in only a few genes.  
In this case, it is most likely that several variants in a 
localized pathway or a functionally related set of 
genes are contributing to the disorder. 

Since genome-wide linkage studies yielded only 
limited data, many groups opted to study ADHD 
using a candidate gene approach.  In such a method, 
researchers choose genes that are likely involved in 
the disorder and look for association of specific 
alleles to that disorder.  In ADHD candidate gene 
studies, the catecholaminergic neurotransmitter 
systems are the most common candidates examined 
(ADHD associated genes reviewed in refs. 86 and 
87).  Studies of smaller populations as well as larger 
meta-analyses88,89 have found association of several 
genes with ADHD including dopamine β-hydroxylase 
(DBH)88-90; dopamine D2

90,91, D4
88-90, 92, and D5 

receptors88-90; the serotonin transporter (SERT)88-90, 92  
and various serotonin receptors88, 89, 92; acetylcholine 
receptors88,92; monoamine oxidases A92 and B94; 
synaptosomal associated protein of size 25 kDa 
(SNAP25)88-90, 92; and, most importantly, DAT and 
the DAT 3’-VNTR85,88-90,92,95.  The linkage data 
clearly point to a complex genetic basis for ADHD, 
and the most consistent findings invariably point to 
DAT. 

Perhaps the most direct link of DAT function to 
ADHD comes from studying the function of rare 
coding variants of the DAT protein.  Several studies 
have looked for single nucleotide polymorphisms 
(SNPs) in the dopamine transporter gene and 
identified only seven low-frequency coding variants – 
V24M, V55A, R237Q, V382A, A559V, E602G, and 
R615C34, 96-100. However, only the work of Mazei-
Robison and coworkers examined subjects diagnosed 
with strictly ADHD (i.e. without comorbid psychiatric 
disorders); the A559V variant was identified in two 
brothers from this population34.  Later functional 
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characterization of this mutant transporter revealed a 
basal DA leak. DA efflux that typically only occurs 
upon stimulation (i.e. AMPH treatment) is happening 
without any pharmacological manipulation101. The 
only other DAT variant with a phenotype of interest 
thus far is V382A, a transporter that does not properly 
traffic to the plasma membrane and can exist in the 
plasma membrane in a transport-inactive state102. 

Research on nearly all aspects of DAT regulation 
and function are still being actively studied.  Many 
open questions remain regarding DAT regulation, 
trafficking, and involvement in signaling networks, as 
well as molecular characterization of rare coding 
variants.  It is noteworthy that there are several useful 
animal models of ADHD (animal models of ADHD 
reviewed in ref. 14) including the DAT knockout 
mouse that displays hyperactivity and learning 
impairments30,103,104 and a DAT knockdown mouse 
that displays hyperactive behavior and allows for 
pharmacological manipulation since some DAT 
remains105-107.  These models allow for in vivo studies 
of DAT mutations as well as DAT mutant function in 
the context of other genetic manipulations. 
 
CONCLUSIONS 

It should be abundantly clear that ADHD is an 
incredibly complex disorder.  The etiology is not fully 
understood, but it is obvious that several genes and 
proteins are somehow connected in a diffuse web of 
interactions, regulations, and cross-communications.  
The dopamine transporter, however, stands out as a 
key player in ADHD.  Research continues to 
investigate the function and regulation of DAT.  
Ultimately, a further understanding of DAT is 
essential for understanding the role of altered 
dopamine signaling in ADHD and guiding future 
therapeutic strategies. 
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