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Imagine that while watching the latest episode of your 
favorite television show, you suddenly hear glass 
breaking at your kitchen door. Although you’re in the 
middle of an important scene, you freeze and strain 
your ears to try and listen for other sounds. Is 
someone trying to break in or has your cat knocked 
over a glass? Attention allows us to process important 
stimuli, like the sound of a possible intruder, at the 
expense of other items present in our environment 
(e.g. the television)3. As noted by the authors of a 
recent model of the neural systems of attention, 
reorienting attention toward “novel, potentially 
threatening” stimuli is of great importance4, 5. Fear 
conditioning studies in rodents and humans have 
shown that the amygdala is important for the 
acquisition and expression of conditioned fear and 
mediates a variety of behavioral and autonomic 
responses to threat-related cues6-8. Using positron 
emission tomography (PET) and functional magnetic 
resonance imaging (FMRI), investigators have found 
that the amygdala also responds preferentially to 
emotional faces9, 10 and scenes11. For scenes, this 
response may depend on the arousal level of a 
stimulus rather than its valence12-14. Arousal refers to 
the energy or intensity level of a stimulus and can 
range from calm to excited, whereas valence indicates 
how pleasant or unpleasant a stimulus might be15. 
Early lesion studies in animals suggested that the 
amygdala might play a role in orienting to novel 
events16 and low level amygdala stimulation can lead 
to “attention”-like orienting responses17 and increased 
cortical arousal18. Behavioral data show that 
emotionally salient stimuli can be better identified 
than neutral items19-21, may lead to facilitated 
detection of subsequent stimuli22, 23 and can impair 
detection of other important events24-27, possibly by 
“capturing” attention. The anatomical projections of 
the amygdala may enable it to influence attention via 

modulation of sensory areas28, cortical regions 
implicated in attentional orienting and control29, and 
subcortical structures involved in modulating arousal 
and attention30. This review will focus on evidence for 
the amygdala’s role in modulating attention based on 
these three patterns of connectivity. 

 
SENSORY MODULATION 

According to the biased competition model of 
attention31, stimuli in the environment compete for 
processing resources based on a combination of 
sensory salience and relevance to current goals. Top-
down attention that biases sensory processing based 
on behavioral relevance is thought to be allocated by a 
frontoparietal network that includes the frontal eye 
fields (FEF) and areas along the intraparietal sulcus 
(IPS)4. These regions modulate activity in sensory 
areas in response to cues in order to direct covert 
attention32-35 by increasing gain at attended locations36 
or by altering feature tuning37. Anatomical tracing 
studies in non-human primates have demonstrated 
that the amygdala sends topographically organized 
feedback projections to higher order visual areas (e.g. 
areas TE and TEO in the macaque) and sparser 
projections to earlier levels of the visual pathway 
including primary and secondary visual cortices28, 38, 

39. These feedback connections from the amygdala to 
visual cortex may act in parallel to top-down attention 
by transiently boosting perceptual processing of 
emotional stimuli, allowing them to “out-compete” 
non-emotional items for available resources28, 40. 

Increased activity in primary and secondary visual 
cortices and the fusiform gyrus has been observed 
while participants view emotional relative to neutral 
faces41-43 and scenes,12, 44, 45 with a greater response to 
scenes than faces11, 46. The level of activity in the face 
responsive region of the fusiform gyrus varies as a  
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function of the amygdala response to fearful 
compared to neutral faces42 even when the faces 
appear outside the current focus of attention,43 as long 
as attentional or perceptual resources are available47, 

48. Vuilleumier and colleagues49 performed a novel 
FMRI study using patients with damage to the 
amygdala and/or hippocampus due to medial temporal 
lobe epilepsy and healthy adult controls in order to 
examine the necessity of the amygdala for affective 
perceptual enhancement. Healthy adults and patients 
with damage limited to the hippocampus showed the 
expected increase in fusiform activity in response to 
fearful compared to neutral faces. Critically, this 
differential fusiform response to emotion was 
attenuated in patients who had amygdala damage and 
the level of right or left fusiform activity decreased as 
the level of ipsilateral amygdala sclerosis increased.  

If emotional stimuli processed by the amygdala 
are more strongly represented in sensory areas, two 
potential predictions follow: when these stimuli 
appear at task relevant locations, they should be more 
readily detected and when they are task-irrelevant (i.e. 
distractors) they should interfere with detection of 
concurrent stimuli. Anderson and Phelps have 
proposed that the amygdala enhances sensory 
processing to facilitate attention for emotional stimuli 
based on a manipulation of the attentional blink (AB) 
paradigm50. In the AB task, detection of a target 
during a rapid serial visual presentation display 
temporarily impairs processing of a subsequent 
target51, 52. If an arousing, aversive word appears as a 
target at a short interval following the first target, it is 
more accurately identified than a neutral word even 
when emotion is irrelevant for the task20. Unlike 
healthy adults, patients with left or bilateral amygdala 
damage do not exhibit increased identification of 
aversive second targets50. However, there is no direct 
evidence that this results from sensory enhancement. 
Several studies have looked at how fearful faces 
impact performance on visual search tasks. One 
behavioral study found that task-irrelevant fearful 
faces may facilitate subsequent search for neutral 
items appearing in the same spatial location23. Greater 
amygdala activation in response to masked fearful 
faces correlates with faster detection of positive or 
negative schematic faces during a subsequent 
behavioral task53. In contrast to these findings, 
Williams and colleagues54 observed that participants 
were worse at detecting fearful compared to happy 
faces in the presence of neutral face distractors even 
though the amygdala was more active when fearful 
faces were present in a search display. However, 
perceptual differences between the face stimuli may 
have led to the results of this study.  

Lavie’s model of selective attention under load 
indicates that processing of distractors decreases if the 
perceptual load of a task is high55. This suggests that 

emotional distractors present outside the current focus 
of attention may not always be processed by the 
amygdala and would therefore be incapable of 
influencing behavior. Consistent with this model, Hsu 
and Pessoa found that activity for fearful and neutral 
face distractors in the amygdala and fusiform gyrus 
decreased when the number of distinct items in a 
search display increased (reflecting greater perceptual 
load). When the sensory salience of the search display 
was degraded to reach the same level of difficulty as 
the perceptual load condition, face related activity 
increased relative to a baseline condition56. Reaction 
times on the search task were slower when faces were 
present, as compared to absent, during the salience 
condition, supporting the idea of increased distractor 
interference. Although activity in the amygdala and 
fusiform gyrus was greater for fearful faces relative to 
neutral faces during this condition, reaction times did 
not differ by expression. In summary, although much 
data strongly suggests that the amygdala can modulate 
sensory areas, there is little evidence that this 
modulation has a behavioral correlate.  
 
ATTENTIONAL MODULATION 

The effect of emotion on spatial attention has 
been extensively studied using a modified spatial 
cueing paradigm called the dot probe task57, 58. In this 
task, subjects typically view a pair of words, faces, or 
scenes in which one item is threat-related and the 
other neutral. A brief target stimulus is then presented 
in the same or opposite location as the emotional 
item. The affective cue is thought to attract attention 
in a stimulus-driven manner because it is not 
predictive of the upcoming target location. Several 
neuroimaging studies have used this task to examine 
the possibility that the amygdala facilitates spatial 
attention by interacting with regions involved in 
attentional allocation rather than by sensory 
enhancement alone. Armony and Dolan59 used a 
version of this task combined with differential 
classical conditioning in an FMRI experiment to 
examine whether aversively conditioned cues could 
direct spatial attention. During trials in which an 
angry face that had previously been paired with an 
unpleasant noise (CS+) was presented with a different 
angry face unpaired with noise (CS-), participants 
were faster to detect a target when it appeared in the 
same location as the CS+ (cued trials) and slower 
when the target followed the CS- (uncued trials). The 
amygdala and fusiform gyrus were more active during 
presentations of the CS+ than the CS-. Crucially, the 
putative FEF, IPS, and lateral orbitofrontal cortex 
were more active during cued and uncued trials 
compared to when only the CS+ or CS- was presented 
on both sides of fixation. The behavioral and imaging 
data thus support the hypothesis that attention was 
modulated by the conditioned stimulus. Pourtois and 
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colleagues found that following the appearance of a 
fearful face cue, the response in IPS contralateral to 
the fearful face was decreased for uncued targets, an 
effect that was not observed during cue-only trials60. 
The authors interpreted this to mean that allocating 
attention to emotional stimuli may produce a 
“processing cost” when subjects must subsequently 
reorient attention. However, the consequence of a 
potential processing cost in IPS is unclear, since there 
was no behavioral difference associated with fearful 
face cues and no amygdala activation was observed 
during this experiment. In typical spatial cueing 
studies, differences in reaction time between cued and 
uncued trials are not always found when the cue-
target stimulus onset asynchrony (SOA) is 
approximately 200-500 msec61, the interval used in 
the Pourtois study. The two experiments using a short 
cue-target SOA (<150 msec) in the dot probe task 
have found amygdala activation to fearful or angry 
face cues as well as cue validity effects, consistent 
with a role for the amygdala in orienting attention to 
potential threat59, 62, 63.  

Novel, unexpected environmental stimuli attract 
attention and elicit an orienting response that 
habituates rapidly in the absence of a significant 
associated outcome64, 65. The human amygdala 
responds to unfamiliar neutral faces66, 67 and unusual 
scenes12, but this response decreases quickly. Lesion 
studies in rats have shown that the amygdala is 
necessary for the acquisition of conditioned 
orientation to visual or auditory cues that cue food 
delivery, but does not participate in unconditioned 
orienting65, 68, 69. Several investigators have proposed 
that the amygdala acts as a detector for emotionally or 
biologically salient information67, 70 and may provide 
an interrupt signal to reorient attention to highly 
important events7, 63. In contrast, an influential model 
of attention suggests that a ventral frontoparietal 
network, including the temporoparietal junction 
(TPJ), anterior insula and regions of the middle and 
inferior frontal gyri, is responsible for reorienting 
attention to behaviorally relevant events4, 5. A recent 
study found that the inferior frontal component of this 
network was specifically engaged during infrequent, 
presumably unexpected attentional shifts71. The 
inferior frontal gyrus makes up a significant portion 
of the ventrolateral prefrontal cortex72 (VLPFC). 
Although the amygdala has few connections to lateral 
prefrontal and posterior parietal cortices, it has 
moderate reciprocal connections to the ventral-most 
portion of the inferior frontal gyrus, corresponding to 
area 47/12 of the VLPFC29, 39, 73. The potential 
functional similarities and anatomical connections of 
the VLPFC and amygdala suggest a possible 
mechanism by which the amygdala could influence 
cortical attentional networks in response to 
emotionally salient events, particularly if they are 

unanticipated. Brain regions involved in detecting 
unexpected or infrequent environmental changes have 
often been studied using oddball paradigms in which 
subjects detect a rare discrepant target among a series 
of standard stimuli4. The amygdala and VLPFC 
respond more to rare targets in auditory oddball 
tasks74, 75 when they elicit an arousal response76 and to 
aversive words presented among neutral words, but 
not to neutral oddballs differing in semantic or 
perceptual features77. Fichtenholtz and colleagues 
presented two groups of subjects with infrequent 
squares and aversive or neutral scenes among 
standard circle stimuli to examine whether attentional 
networks responded differently depending on whether 
the emotional items were relevant to current goals78, 

79. The VLPFC was engaged by infrequently 
presented scenes regardless of task relevance but the 
response was greater for aversive than for neutral 
items. Reaction times were slowest for aversive 
scenes regardless of target status and fastest for 
square targets. These data support the idea that the 
VLPFC is involved in redirecting attention to novel 
events and suggest that it can be modulated by 
stimulus valence and/or arousal possibly due to input 
from the amygdala78, 79. In contrast, the IPS and TPJ 
did not appear to respond to infrequent aversive 
stimuli unless they were targets.79 However, several 
complications arise when interpreting these results 
because the emotional stimuli used were negative and 
arousing. The right VLPFC has been linked to 
emotion regulation80, 81 and response inhibition82, and 
it is possible that the response to aversive items 
reflects greater cognitive control rather than 
attentional capture. Additionally, several studies have 
suggested that arousal itself may be particularly 
important for engaging the VLPFC76, 83, and different 
parts of the inferior frontal gyrus may be sensitive to 
valence and arousal84. Two recent studies suggest that 
the amygdala and VLPFC may interact to evaluate 
emotional stimuli85, 86. Future studies could vary 
stimulus valence and arousal and more rigorously 
manipulate task-relevance and attentional focus to 
investigate the specific conditions under which the 
VLPFC and amygdala are employed.  

When an affectively salient stimulus is irrelevant 
to ongoing goal-directed behavior and is not 
sufficiently important, attention is not fully redirected 
and is instead maintained on the current task. For 
example, distracting emotional information can cause 
subjects to respond more slowly78, but performance 
failure occurs only when processing capacity is nearly 
exhausted25. The rostral, pregenual cingulate region 
corresponding to areas 24 and caudal 32 (rACC) is 
thought to have a role in detecting or resolving 
emotional distraction87, 88 and has direct reciprocal 
projections with the amygdala29. The rACC is more 
active when participants must ignore negative 
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compared to neutral word content during emotional 
Stroop tasks87, 89, when fearful faces appear at 
unattended locations43 and when aversive scene or 
fearful face distractors appear unexpectedly78, 90. 
Although these studies suggest a role for the rACC in 
detecting or resolving emotional distraction, most 
failed to show a behavioral correlate reflecting 
interference. In a modified attentional blink paradigm, 
task-irrelevant emotional items presented shortly 
before a target decrease target detection accuracy 
compared to neutral distractors25. Interestingly, this 
effect occurs for aversive, erotic, and conditioned 
complex scenes25-27 but not fearful faces91, possibly 
indicating the importance of arousal in capturing 
attention. Using FMRI, Most and colleagues92 found 
that aversive scene distractors interfered with target 
detection and were associated with increased 
amygdala activation when compared to neutral 
scenes. Greater rACC activation in this study 
appeared to be driven by individual differences in 
subjects’ ability to ignore emotional scenes, as 
evidenced by decreased amygdala activity. 
Conversely, a recent FMRI study found that more 
accurate detection of fearful relative to neutral face 
second targets in the AB task was related to greater 
rACC response in the absence of amygdala 
activation21. In this case, the fearful expression was 
unimportant for reporting facial identity and greater 
rACC activity could have reflected increased attention 
when participants were aware of the emotional 
stimulus. From these studies, it is unclear whether the 
rACC detects and/or resolves affective interference. 
Control of attention over distracting information is 
typically studied using Stroop-type paradigms in 
which conflict must be monitored or resolved93 and 
none of these studies examined rACC function in 
conflict situations per se94. Etkin and colleagues94, 95 
developed a task in which participants had to report 
whether faces were fearful or happy while ignoring a 
congruent or incongruent word label, thereby 
providing response conflict. Conflict resolution was 
defined based on trials in which an incongruent trial 
followed a previous incongruent trial whereas conflict 
detection was thought to occur when an incongruent 
trial followed a congruent trial. In support of this 
dichotomy, amygdala activation increased during the 
conflict detection condition and subjects were slower 
to respond compared to the conflict resolution 
condition, which was associated with increased rACC 
activity and a concurrent decrease in amygdala 
response94.  
 
LINKS TO NEUROMODULATORY SYSTEMS 

The amygdala may also influence sensory 
processing and attention through its connections with 
subcortical neuromodulatory systems39. Numerous 
studies have examined the importance of the 

amygdala and locus coeruleus noradrenergic system 
for emotional memory96, but little work has been done 
to determine whether norepinephrine modulates 
attention to affective stimuli. A behavioral study in 
humans showed that increasing the availability of 
norepinephrine through a reuptake inhibitor improved 
the ability of subjects to detect emotional compared to 
neutral targets in an attentional blink task97. Tentative 
support for amygdala involvement in this process 
comes from a recent FMRI experiment showing 
increased amygdala activity to fearful faces in 
participants who had taken the same reuptake 
inhibitor98. The amygdala is also reciprocally 
connected with the nucleus basalis39, which provides 
cholinergic input throughout cortex and is thought to 
be important for a variety of attentional functions 
such as normal attentional shifting to unattended 
targets99-101. Classical conditioning studies in animals 
have shown that amygdala-mediated release of 
acetylcholine is important to return auditory cortex 
neuron receptive fields to prefer a conditioned 
stimulus102. In humans, frequency specific changes in 
auditory cortex during differential classical 
conditioning are correlated with increased amygdala 
and basal forebrain103 activity, which appears to be 
dependent on acetylcholine104. The amygdala also 
contributes to acetylcholine-dependent EEG 
desynchronization, which is thought to reflect 
increased cortical arousal or attention105, 106. When the 
relationship between a cue and its conditioned 
outcome changes unexpectedly, the amygdala 
interacts with a network that includes the nucleus 
basalis, substantia nigra and posterior parietal cortex 
to increase attention to the cue65, 107-109. Participants 
who had taken a cholinesterase inhibitor initially 
showed impaired performance during a house-
matching task in the presence of unattended fearful 
faces compared to those who received a placebo, 
suggesting greater attentional capture by the fearful 
faces with increased acetylcholine levels110. The 
subjects who had taken the drug also showed greater 
activity to unattended fearful faces in the dorsal 
anterior cingulate, intraparietal sulcus and a region of 
the lateral orbitofrontal cortex similar to that observed 
during attentional shifts to conditioned stimuli59. The 
amygdala-mediated release of acetylcholine may 
therefore facilitate attention to emotional stimuli99. 
 
CONCLUSION 

Current data suggest that the amygdala modulates 
sensory cortices to bias activity for emotional stimuli 
such that they compete more effectively than non-
emotional items for attention. Enhanced attention to 
affective events may be bolstered by amygdala-
VLPFC or neuromodulatory interactions and 
weakened by rACC influence. Future studies should 
more rigorously manipulate attentional demands and 
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address the relative importance of arousal versus 
valence, specific emotions and possible differences 
resulting from stimulus type (e.g. faces versus scenes) 
in these processes. 
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