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Current investigations of SERT regulation implicate 
several Ser/Thr kinases in modulation of both activity 
and localization, possibly in part through presynaptic 
receptor activity 10-15. Rodent models demonstrate the 
impact of a loss in SERT activity and SERT alleles on 
behavior16, 17 and are critical for understanding the 
complex role of 5-HT in human disease states. 
However, there is a pressing need for identification of 
endogenous regulators of 5-HT signaling, particularly 
SERT, and these investigations can profit from tools 
drawn from the behaviorally straightforward model 
organism Caenorhabditis elegans (C. elegans). 
Although unsuitable for modeling most human 
disease states, this model system offers approaches 
that are impractical with mammalian SERT to provide 
insight into the mechanism of action of 
antidepressants, potential drug targets for treatment of 
5-HT-linked disorders, and identify genes responsible 
for behavior. This review describes the power of 
forward genetics in this model organism to investigate 
the mechanisms regulating 5-HT transporter activity 
by examining the role of 5-HT and SERT in C. 
elegans behavior, particularly how these behaviors 
may serve as the basis for a forward genetic screen.  

 
C. elegans AND FORWARD GENETICS 

The nematode C. elegans is an excellent model 
system neurogenetic research: animals are transparent 
and therefore ideal for fluorescent reporter imaging, 
there are many viable neuronal knockouts available 
where the cognate disruption in mammals is inviable, 
the core synaptic machinery is well conserved from 

invertebrates to man (Figure 1). In addition,  there are 
a plethora of well-developed techniques for studying 
this organism including genetics, biochemistry, 
primary cell cultures, and RNAi technology. C. 
elegans are easily cultivated in the laboratory, 
withstand cryopreservation, and in sub-optimal 
environmental conditions (such as prolonged 
starvation) maintain a metabolically inactive state 
known as dauer arrest for months. Each individual C. 
elegans contains a numerically and morphologically 
invariant 959 cells, including 302 neurons, enabling 
lineage mapping for each cell27, 28 and reconstruction 
of the entire animal by serial electron micrograph29. 
These provide an intimate knowledge of the structure 
and connectivity of the nematode nervous system. In 
particular, the easily monitored behaviors (egg-laying, 
locomotion) and short generation time of C. elegans 
(~3 days from egg to adult) make it an optimal 
organism for forward genetic approaches. 
Hermaphroditic reproduction permits line and 
mutation propagation without staged crosses and also 
simplifies isolation of homozygous mutants, thus 
random mutagenesis of a parental group of animals 
yields 25% of F2 progeny that are homozygous for 
any given mutation. These mutants are then screened 
for a particular phenotype of interest. As a result, 
forward genetic screens have been the technique of 
choice for nematode biologists for many years to 
impartially isolate any number of participants in a 
given pathway. Screens isolating mutants that 
phenocopy a known mutant, such as abnormal egg-
laying and touch

Getting beyond Prozac: A C. elegans approach 
 
Leda Ramoz 

 
Since its debut in 1986 the selective serotonin reuptake inhibitor (SSRI) fluoxetine (ProzacTM) has taken 
society and mental illness by storm, becoming one of the most widely prescribed medications in America 
for the treatment of depression, obsessive-compulsive-disorder, bulimia nervosa, and anxiety1. Despite 
its pervasiveness in society, the exact mechanism of action of these and other antidepressants as well 
as their effects on endogenous regulation of their target protein, the serotonin transporter2 are largely 
unknown. Synaptic serotonergic activity is primarily regulated by recycling of serotonin (5-
hydroxytryptamine, 5-HT) from the synaptic cleft through activity of the presynaptic serotonin 
transporter (SERT, 5-HTT, SLC6A4)3, 4, a transmembrane protein that is a major target of 
psychostimulants such as MDMA (“ecstasy”) as well as many antidepressants such as fluoxetine5,2. The 
monoamine neurotransmitter 5-HT is an important modulator of vertebrate cardiovascular and cognitive 
function regulating a wide range of physiological and behavioral processes including gut function, body 
temperature, sleep, appetite, aggression, and mood6. SERT deregulation is linked to a variety of disease 
states, those listed above as well as alcoholism and autism1,7-9, yet we are only beginning to understand 
the mechanisms behind endogenous regulation of SERT. 

Neuroscience Graduate 
Program, Vanderbilt 
University School of 
Medicine, U1205 
Medical Center North, 
Nashville, TN 37232, 
USA. 
Correspondence e-mail: 
leda.ramoz@vanderbilt.
edu. 



 

 
VANDERBILT REVIEWS | NEUROSCIENCE VOLUME 2 | 2010 | 49

©2010 Vanderbilt Brain Institute.  All rights reserved. 

CANDIDATE REVIEWS

sensitivity, have been utilized in the past to elucidate 
functional components of neuronal signaling such as 
neurotransmitter biosynthesis and packaging, as well 
as led to the discovery of programmed cell death30-32. 
The tedious prospect of screening tens of thousands of 
random mutants in search of the few mutants of 
interest stresses the importance of having a phenotype 
that is easily observable in the laboratory and 
optimally amenable to a high-throughput process. 
Only a subset of mutants isolated in a screen will 
contain defects in a particular pathway of interest, for 
example a screen for animals defective in egg-laying 
may yield mutations in the nervous system as well as 

vulval muscle development. Potentially interesting 
mutants therefore must undergo further genetic or 
pharmacological tests to determine the deficient 
pathway.  In the case of a abnormal egg-laying screen, 
animals defective in vulval formation rather than 
malfunction in neural circuitry are distinguished by 
their egg-laying responses to exogenous 5-HT31. 
Thus, a phenotype for a forward genetic screen should 
not only be easily scored in the laboratory but also 
sensitive to genetic and pharmacological tools with 
which to examine the integrity of these circuits. The 
actions of 5-HT within C. elegans provides insight 
into the potential phenotypes expressed by SERT-
defective animals (which theoretically express 
elevated synaptic 5-HT) which may then be exploited 
in a screen for genes controlling SERT trafficking, 
localization, and activity.  

 
C. elegans AND 5-HT 

In C. elegans (Figure 2a) 5-HT is an active 
participant in a variety of motor and autonomic 
behaviors. Application of exogenous 5-HT mimics 
the presence of food resulting in increased egg-laying 
and pharyngeal pumping (the nematode feeding 
mechanism) and decreased locomotion33. Animals 
deficient in 5-HT synthesis display decreased male 
mating efficiency34, increased reproductive lifespan, 
increased fat storage, increased dauer arrest, 
decreased egg-laying18, and defective starvation-
dependent slowing in response to food (known as 
“enhanced slowing”)35. In addition, 5-HT modulates 
complex chemosensory36 and olfactory learning37 
behaviors. These behaviors are thought to be 
regulated by eight classes of serotonergic neurons 
identified through anti-5-HT immunofluoresence 
(Figure 2b, Table 1), four of which are located in the 
head of the animal (see expanded view page 3). 
Cloning of the tph-1 gene in C. elegans combined 
with GFP imaging has identified the NSMs, ADFs, 
HSNs, CPs, AIMs and RIH as 5-HT production 
sites18. Serotonergic neurons not expressing tph-1 are 
presumed to obtain their serotonin through activity of 
the C. elegans serotonin transporter, mod-5, although 
this requires further investigation. 
MOD-5 
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Figure 1 | 5-HT biosynthesis is conserved from C. elegans to man18. 5-HT is 
packaged into vesicles (grey spheres) through the activity of a vesicular 
monoamine transporter (VMAT, cat-119, pale blue plus). Synaptic vesicle release 
is facilitated by the well conserved SNARE complex (yellow), many of the 
components of this complex include the two illustrated above (UNC-64/syntaxin, 
UNC-18/nSec-1) were originally identified in C. elegans20, 21. As in mammals C. 
elegans 5-HT receptors are divided into metabotropic (ser-122, ser-423, ser-524, 
and ser-725 coupled to Gαq, Gαo, Gαs and Gαs respectively), and ionotropic 
(mod-126) categories. 

Figure 2 |  C. elegans.  a | Nomarski image of adult C. elegans. Image courtesy of the Hardin Lab.  b | Anti-5-HT immunofluoresence of adult male 
C. elegans. Image courtesy of the Loer Lab. 
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The C. elegans serotonin transporter (mod-5) gene 
encodes a protein with 44% amino acid identity with 
mammalian SERT proteins that confers paroxetine-
sensitive 5-HT transport on nonneuronal cells after 
heterologous expression40. mod-5 activity within the 
HSNs, ADFs, and NSMs is inferred from the 
detection of 5-HT immunofluoresence in mutants that 
lack the ability to synthesize 5-HT (tph-1) after 
incubation with exogenous 5-HT and which can be 
blocked by selective serotonin reuptake inhibitor 
(SSRI) fluoxetine40. mod-5 null mutants are viable 
and healthy, and consistent with the hypothesis that 
these animals express excess synaptic 5-HT these 
animals exhibit hyperenhanced slowing, increased 
egg-laying in response to 5-HT, and reduced fat 
content40, 41. The effects of exogenous 5-HT and 
behaviors in animals lacking of 5-HT synthesis 
indicate mod-5 mutants might be expected to express 
dauer entry resistance and increased pharyngeal 
pumping, although this has not yet been characterized. 
In the following sections we will discuss the role of 
mod-5 activity within a selection of these phenotypes 
easily scored in the laboratory to ascertain their 
suitability as a basis for a forward genetic screen.   

 
MOD-5 AND PHARYNGEAL PUMPING 

Nematodes feed by the peristaltic motion of the 
pharynx known as pharyngeal pumping, which serves 

to suck in and trap a slurry of bacteria within a 
bulbular extension of the pharynx, which is then 
ground and pushed into the intestine42. Worms 
perform this motion about 40 times a minute in the 
absence of food and greater than 200 times a minute 
in the presence of food43. Traditional methods of 
measuring pharyngeal pumping involve manual 
quantification of pumping rates; hence this behavior is 
not frequently used in forward genetic screens. More 
sophisticated methods of quantifying pumping rates 
exploit the transparent nature of the worm, correlating 
pumping rate with an intake of a fluorescent reporter 
comparable in size to bacteria44. This paradigm is 
amenable to high-throughput methods but requires an 
initial investment in instrumentation capable of 
isolating and recording fluorescence from a single 
worm. Pharyngeal pumping is thought to be partly 
regulated by the two serotonergic neurosecretory 
motor neurons (NSMs) located in the anterior bulb of 
the pharynx (Figure 3). These are the most robustly 
stained serotonergic neurons within the animal and 
send processes to the region of the pharynx where 
bacteria accumulate, suggesting they are the “food 
sensing” neurons of the worm42. Exogenous 5-HT 
increases pharyngeal pumping33, however laser 
ablation of the NSMs only modestly decreases 
pharyngeal pumping43. Further ablation of all neurons 
within the pharynx except M4 causes only minor 
deficits in pharyngeal pumping43, suggesting that an 
intrinsic pacemaker ability may exist within 
pharyngeal muscle cells and that most pharyngeal 
neurons are dispensable under standard laboratory 
conditions. Interestingly, tph-1 mutants show 
wildtype pumping rates in the absence of food but 
deficient pumping in the presence of food18 
demonstrating serotonin is not required for basal 
pumping activity. mod-5 mutants are expected to 
show increased pharyngeal pumping for which there 
is a much smaller potential pool of confounding 
mutants than other phenotypes. Further investigation 
will demonstrate the potency of this phenotype and 
role of mod-5 in this behavior that has the potential to 
provide a basis for a screen to elucidate regulators of 
SERT expression and function. 

 

Table 1 | Serotonergic neurons in C. elegans. 

Figure 3 | Anti-5-HT immunofluoresence in the C. elegans head neurons. 
Photo courtesy of the Loer Lab: http://home.sandiego.edu/~cloer/loerlab/5-
HTcells.html 
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MOD-5 AND EGG-LAYING 
Egg-laying is one of the most popular phenotypes 

for genetic screens in C. elegans because abnormal 
egg-laying is easily observable in the laboratory with 
manual techniques. The effects of 5-HT and other 
pharmacological agents on egg-laying are readily 
examined by incubating a single animal in buffer 
containing drug and counting the number of eggs laid 
after a short period. Mutant animals incapable of egg-
laying are easily identified within a large population 
as they become bloated with eggs retained in the 
uterus, a phenotype known as “egl” or more colorfully 
as “bag of worms,” which describes the process of 
egg-hatching within the adult animal. Egg-laying is 
regulated by activity of the HSNs (Figure 4) and 
VCs, both which innervate the vulval muscle19, 38, 39, 

45. Mutant hermaphroditic animals in which the HSNs 
undergo cell death display an egl phenotype30, and 
this mutation confers resistance to fluoxetine and 
imipramine induced egg-laying46, which indicates a 
modulatory role for mod-5 at the HSNs in egg-laying. 
Consistent with the hypothesis that mod-5 mutants 
express increased synaptic 5-HT, mod-5 mutants are 
hypersensitive to the presence of 5-HT and lay more 
eggs than wildtype at a given 5-HT concentration40. 
The biggest difference between the two groups lies at 
a modest concentration of 5-HT (~6mM) where a 
wildtype worm will lay between 0 and 14 eggs within 
an hour, (on average about 2.5 eggs) and a mod-5 
animal under the same conditions will lay between 0 
and 17 eggs, with an average of 10 eggs (unpublished 
data, Figure 5). Based on the variability observed in 
individual egg-laying responses, screening a mutant 
population for the mod-5 egg-laying phenotype 
requires either generating an average egg-laying 
profile for clonal populations of mutagenized F2 
animals (instead of assaying single mutants), thereby 
increasing the number of total experiments by 10-fold 
or the number of false positives recovered. 

Alternatively a screen could be envisioned utilizing 
the effects of SSRIs on the egg-laying system, where 
wildtype animals would be expected to lay eggs in 
response to fluoxetine, yet the drug would fail to 
induce egg-laying in mod-5 mutants. However 
application of the antidepressants fluoxetine, 
imipramine, and clomipramine to both mod-5 and tph-
1 animals results in egg-laying similar to that 
observed in wildtype47 indicating these 
antidepressants activate alternative targets within the 
worm, possibly the 5-HT receptors themselves47. 
Therefore, although SSRI-induced egg-laying is HSN 
dependent, it is 5-HT and mod-5 independent. 
Together these studies indicate the egg-laying 
circuitry as well as the influence of mod-5 on egg-
laying is more complex than initially envisioned. 
There are multiple levels for modulation of egg-
laying, from neurons in the head to the vulval muscle, 
thus the level at which the action mod-5 most 
significantly influences egg-laying is unclear. The off-
target effects of SSRIs in C. elegans limit the 
potential egg-laying phenotypes of mod-5 mutants for 
use in forward genetic screens and the use of these 
drugs to examine the integrity of mod-5 and HSN 
function. However, egg-laying remains an easily 
identifiable, semi-high throughput, and well 
characterized phenotype which may be utilized to 
examine regulatory genes controlling SERT 
transporter trafficking, localization, and activity. 

 
MOD-5 AND LOCOMOTION 

Abnormal locomotor activity is another C. 
elegans behavior easily observed in the laboratory. 
Paralyzed animals are easily identified within a 
population or in response to exogenous drug, and 
many mutations have been characterized that result in 
abnormal or uncoordinated movement. Application of 
exogenous 5-HT results in decreased locomotion33 
and mod-5 null mutants display increased sensitivity 
to 5-HT induced immobilization40. This phenotype 
could be exploited by incubating a population of 
mutagenized animals on a plate containing 5-HT and 
isolating immobilized animals. However, isolated 

Figure 4 | GFP imaging of the C. elegans vulva revealing left and right HSN 
cell bodies with axons synapsing the vulval musculature. Anterior is left, 
ventral is down. Nonspecific fluorescence in anterior and dorsal areas is gut 
autofluoresence. Photo courtesy of wormbase.org. 
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Figure 5 | Average egg-laying response of wildtype 
and SERT-defective mutants in increasing 
concentrations of 5-HT. n=50 for each data point.  
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mutants may contain defects in 5-HT reuptake as well 
as body muscle formation and GABA and 
acetylcholine synthesis and release. To prevent 
isolation of animals with general mutations of the 
motor circuit, a locomotory-based screen should 
require animals to move to a particular area of the 
plate before assessment of 5-HT induced 
immobilization, similar to the paradigm used to 
observe the enhanced slowing response. Animals 
starved for a brief period (30 min) display a normal 
locomotor rate which dramatically slows upon 
encountering a bacterial lawn (enhanced slowing35), a 
trait evolved presumably to protect the animal from 
starvation. This is observed in the laboratory by 
manually quantifying the locomotor rate of starved 
animals as they move from an area without food to a 
bacterial lawn. Starved animals are not hypersensitive 
to inhibition of locomotion by 5-HT, suggesting this 
behavior is modulated presynaptically. 5-HT 
synthesis mutants completely lack this response, a 
deficit that is rescued by the application of exogenous 
5-HT35. Enhanced slowing is blocked by 5-HT 
receptor antagonists mianserin and methiothepin35 
further supporting the role of 5-HT in this behavior, 
and is potentiated by fluoxetine40, suggesting this 
response is a direct measure of mod-5 activity. mod-5 
mutants display wildtype locomotory rates under 
standard laboratory conditions and exhibit a hyper-
enhanced slowing response. Starved wildtype animals 
typically slow from a rate of 60 body bends per 
minute to 15 body bends per minute upon 
encountering food, whereas mod-5 mutants become 
almost immobile40. Enhanced slowing is partially 
mediated through the putative food sensing NSMs as 
laser ablation of these neurons significantly, but not 
completely, impairs the enhanced slowing response35. 
Enhanced slowing in NSM ablated animals is not 
potentiated by fluoxetine35, indicating mod-5 
influences locomotion at the NSMs. These data 
demonstrate the important regulatory role of mod-5 
within the C. elegans motor circuit and the utility of 
this phenotype in a screen to elucidate mechanisms of 
SERT function. However, observation of this 
phenotype in the laboratory is labor intensive and 
would be more effective in a screen if amenable to 
higher throughput methods. 

 
SUMMARY 
The unique in-depth knowledge of neuronal wiring 
and development paired with the elegant combination 
of genetic tractability and simplified behavior makes 
the synaptically conserved C. elegans system 
amenable to many powerful approaches, particularly 
forward genetics. Until recently the effects of 5-HT in 
this system have been broadly examined through 
excessive exogenous application of 5-HT or a 
widespread loss of 5-HT synthesis. Recent 

characterizations of SERT-defective mutants provide 
phenotypes, particularly pumping and locomotion, 
with which to investigate endogenous regulators of 
SERT and 5-HT signaling. Further characterization of 
these mutants may reveal additional phenotypes, 
including resistance to dauer entry and fat 
accumulation, to use in a screen which may reveal the 
impact of SERT alleles on 5-HT transport and 
turnover. These approaches may provide unbiased 
assessments of transporter regulatory molecules both 
in the worm and in man, potential novel drugable 
targets for the treatment of many 5-HT-related 
disorders, and help elucidate the genetic basis of 
behavior. 
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