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Psychostimulants like amphetamine (AMPH) are used 
to study behavior and physiology in animal models of 
Parkinson’s disease, schizophrenia, and addiction 1, 2, 
3.  While the symptoms of these diseases are quite 
disparate in humans, they are all, to some degree, 
linked to the function of dopaminergic systems in 
brain.  Recent evidence suggests that common 
intracellular signaling pathways may be important in 
the treatment and pathogenesis of these diseases.  One 
such pathway involves the serine/threonine protein 
kinase Akt.  Human studies demonstrate that genetic 
variation in the isoform Akt1 influences dopamine-
associated structures and functions in humans4, and, 
potentially, the risk for schizophrenia, 
methamphetamine abuse5, and Parkinson’s disease6. 
Human studies have also discovered defects in 
phosphorylation of Akt related to mental illness 
diagnoses7, 8, 9, suggesting that activators of Akt, like 
the phosphotidylinositol 3-kinase (PI3K) proteins, 
also modulate dopamine (DA) in brain.  PI3K is 
activated by receptor tyrosine kinases (RTKs), which, 
in turn, are activated by a diverse set of hormones, 
including insulin10, and growth factors, including 
brain-derived neurotrophic factor11 (BDNF).  
Intriguingly, many RTK ligands, along with PI3K/Akt 
itself, influence the actions of AMPH and other 

psychostimulants12-17. 
One of the most studied functions of AMPH is its 

ability to increase synaptic DA.  AMPH accomplishes 
this by multiple mechanisms, including DA-efflux 
through reversal of the dopamine transporter (DAT), 
the major protein involved in synaptic clearance of 
DA.  AMPH is also capable of entering the cell to 
trigger release of DA from pre-synaptic vesicle stores, 
again by reversal of transporter function.  Trafficking 
of the DAT to the cell surface has recently shown to 
be dependent on RTKs18, PI3K19, and Akt20, 
providing a molecular mechanism to explain the 
potential for hormones and growth factors to 
modulate DA systems and responses to stimulants.   

In addition to surface levels of DAT, the 
magnitude of DA release elicited by AMPH, and the 
effects on consequent behaviors, are also governed by 
the amount of pre-synaptic DA available.  Pre-
synaptic DA can be influenced by several factors, 
including DA synthesis, the health of DA neurons, 
and the density of DA terminals, processes where 
PI3K/Akt also plays a role13.  Thus, the goals of the 
present review are to (1) model the regulation of the 
DAT and responses to psychostimulants by PI3K/Akt, 
(2) review the activators of PI3K/Akt in brain, and 
analyze their PI3K/Akt dependent functions, and (3) 
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integrate evidence from animal and culture studies to 
assess mechanisms underlying the relationship 
between RTKs, PI3K/Akt signaling, and responses to 
psychostimulants.  As activation or inhibition of 
PI3K/Akt signaling profoundly influences DA-related 
behaviors, understanding the different levels (cellular 
and molecular) at which Akt modulates AMPH 
actions provides insights into how this pathway 
regulates both pre-synaptic DA and the DAT, an 
important pharmacological target.  Understanding 
AMPH responses may help to inform ways to target 
Akt for the treatment of psychiatric and neurologic 
diseases. 
 
PI3K/AKT SIGNALING, DAT SURFACE 
EXPRESSION, AND RESPONSES TO 
PSYCHOSTIMULANTS 

The PI3K/Akt signaling cascade can be activated 
following stimulation of RTKs21.  The tyrosine-
phosphorylated protein products of receptor 
stimulation interact with the SH2 domain on growth 
factor sensitive isoforms of PI3K, stimulating its lipid 
kinase activity.  PI3K then catalyzes phosphorylation 
of phosphoinositides at the 3-position in the inositol 
ring, causing an increase in the generation of PIP2 
and PIP3.  The Pleckstrin homology (PH) domain of 
Akt interacts with these phosphorylated 
phosphoinositide byproducts, which causes 
membrane translocation of Akt.  This translocation 
allows Akt to be phosphoryated itself at the 
Threonine-308 and Serine-473 residues by 
phosphoinositide-dependent kinase 1 (PDK1) and the 
mammalian target of rapamycin (mTOR) complex 2 
(mTORC2).   Phosphorylation of Akt at the 308 and 
473 residues is necessary for full activation of the 
enzyme’s kinase function.21 

Inhibition of PI3K pharmacologically with 
LY294002 decreases cell surface expression of the 
DAT both in vitro, in heterologous cell culture lines, 
and ex vivo, in striatal synaptosomes22.  Stimulation of 
PI3K activity with either insulin pretreatment or 
constitutively active PI3K results in an enhancement 
of DA uptake22.  A direct role for Akt in these effects 
is suggested by studies in vitro where AMPH-induced 
internalization of the DAT, and consequent reductions 
in DA uptake, are blocked by a virus expressing 
constitutively active Akt or insulin stimulation, in a 
PI3K- and Akt-dependent manner20.  Compelling in 
vivo evidence to support the relationship between 
PI3K/Akt signaling and the DAT comes from studies 
in hypoinsulinemic animals, which show reduced Akt 
activity in brain along with reduced DAT cell surface 
expression, DA clearance, and amphetamine-induced 
efflux of DA12.  Pharmacologic inhibition of PI3K in 
the rodent striatum causes a parallel reduction in 
AMPH-induced DA efflux, and local pretreatment 
with insulin restores the effects of DA clearance and 

AMPH-induced efflux in hypoinsulinemic mice12.  
Together, this evidence suggests that local activitation 
of RTK/PI3K/Akt signaling is the mediator of these 
effects in hypoinsulinemic animals. 

The decreased DAT cell surface expression and 
AMPH-induced DA efflux with PI3K inhibition 
provides a potential mechanism to explain how Akt 
activation and inhibition affects psychostimulant- and 
reward-related behaviors observed in other studies.  
Hypoinsulinemic animals show diminished self-
administration of AMPH3, consistent with the 
diminished availability of surface DAT to promote 
DA release with drug use.  In a similar fashion, 
administration of the PI3K inhibitor LY294002 
reduces the sensitizing effects of cocaine16.  In 
addition to addiction models, Parkinson’s disease 
models also often rely on AMPH-induced behavioral 
endpoints to track functional effects of various lesions 
and treatments.  Usually, these models involve 
AMPH-induced locomotor rotations following 
unilateral lesions or treatments to DA cell bodies in 
the substantia nigra.  A unilateral 6-hydroxydopamine 
lesion (6-OHDA) to the substantia nigra, for example, 
results in differential AMPH-induced release of DA 
between the lesioned and unlesioned sides of brain, 
and this functional asymmetry is reflected in 
increased turning behavior toward (ipsiversive) the 
lesioned side. Unilateral injections of associated 
adenovirus vectors (AAVs) expressing myristolated 
Akt (myr-Akt),  a constitutively active form of Akt, 
results in contraversive turning behaviors.  This 
suggests a relative increase in AMPH-induced DA in 
the myr-Akt expressing side.  This enhanced AMPH 
response is likely due at least in part to elevated nigral 
DA associated with myr-Akt expression, which 
supports the overall ability of Akt signaling to 
promote the actions of AMPH13. 

Characteristic cellular changes associated with 
Akt signaling also reflect differences in reward 
sensitivity and responses to stimulants observed with 
Akt modulation.  Withdrawal periods following 
chronic opiate administration, for example, cause 
diminished sensitivity to opiate reward (as measured 
by conditioned place preference (CPP)), reductions in 
Akt phosphorylation, and decreased midbrain DA 
neuron size 23.  The cellular basis of the effects on 
sensitivity to reward are emphasized in this particular 
study, as viral inhibition of PI3K/Akt signaling in the 
midbrain itself reduces cell body size and CPP, 
suggesting the Akt downregulation is sufficient to 
cause the observed cellular and behavioral responses 
to chronic opiates.  Viral enhancement of the 
pathway, conversely, reverses the effects of chronic 
opiates on cell size and reward-related behaviors23.  
Similarly, myr-Akt injections, which increase 
responses to AMPH13, as stated above, also enlarge 
tyrosine hydroxylase (TH) neuron cell bodies in 
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midbrain13, 24 and increase the density of striatal TH 
terminals13.  Indeed, oftentimes it is difficult to 
disentangle the potential cellular versus molecular 
influences of Akt on   responses to psychostimulants, 
unless the effects evaluated are compared on an acute 
time scale (where molecular effects like trafficking 
presumably predominate) versus a chronic time scale, 
when the trophic influence of Akt become prominent.  
RTK activators, which have a growing number of 
documented PI3K-dependent effects, have long been 
studied as modulators of responses to 
psychostimulants in different contexts.  Thus, findings 
from these studies provide insight into the 
mechanisms whereby Akt signaling in brain can 
promote DA release in response to psychostimulants 
(See model in Figure 1). 
 
PI3K/AKT-DEPENDENT INFLUENCES OF 
RTKS ON DOPAMINE SYSTEMS 

RTKs that stimulate Akt signaling in brain: 
Insulin stimulates PI3K/Akt signaling through 
activation of a receptor tyrosine kinase (RTK) and 
promotes DAT trafficking to the plasma membrane20.  
While the insulin receptor is widely distributed in 
brain25, there are many other RTKs in brain which 
affect DA systems that also have PI3K-dependent 
effects.  Among the RTK ligands also capable of 
inducing Akt phosphorylation are nerve growth 
factor26(NGF), brain-derived neurotrophic 
factor11(BDNF), glial-derived neurotrophic 
factor27(GDNF), fibroblast growth factor 28(FGF), and 
the epidermal growth factor (EGF) family of proteins, 
which includes neuregulin-18(NRG-1).  A role for 
many of these RTKs has been postulated in either the 
pathogenesis or treatment of schizophrenia29, 
psychostimulant addiction30 and Parkinson’s31, 

suggesting that RTKs influence dopaminergic 
systems in a similar fashion to PI3K/Akt signaling. 

PI3K-dependent cellular influences of RTKs: An 
increasing number of PI3K-dependent effects of RTK 
ligands have recently been uncovered, largely focused 
on the trophic effects of Akt.  For example, the 
promotion of neurite outgrowth in dopaminergic cell 
lines by NGF is partly inhibited by the PI3K inhibitor 
LY29004232.  In addition, the ability of NRG-1 to 
induce chemotactic migration is blocked by inhibition 
of PI3K and the NRG-1-associated RTK, erbB233. 
IGF-1 stimulation of growth cone expansion in 
cultured neurons is also attenuated by treatment with 
LY29400234.  Intriguingly, myr-Akt expression in the 
substantia nigra, described above, results in increased 
tyrosine hydroxylase positive terminals in the striatum 
without changing cell density in the nigra itself.  This 
suggests that the increased terminal density is not due 
to changes in cell number but changes in target 
innervation13.  These findings suggest that one 
potential mechanism for the influence of Akt on DA 
systems is through promotion of axonal outgrowth 
from DA cell bodies, resulting in increased DA 
terminal density.  Together with evidence supporting 
the influence of Akt on cell size, mentioned above, 
and the PI3K-dependence of BDNF, IGF-1, and 
estrogen on neuroprotection in vitro27 and in vivo10, 
Akt seems to be a powerful positive modulator of DA 
systems13. 

RTKs, PI3K, and DA synthesis and release:  In 
addition to cellular events, which occur over a longer 
time course, RTKs also promote short-term 
modulation of DA systems through  PI3K/Akt 
signaling.  In PC12 cells, NGF, EGF, and IGF-1 
enhance stimulated release of DA release in a manner 
subject to inhibition of PI3K35, 36.  Recent evidence 
implicates that this effect is true in brain also, as 
treatment with BDNF in striatal slice preparations 
also enhances stimulated release of DA, and this 
effect is blocked by LY249002 administration37.  The 
mechanisms underlying the enhanced release of DA 
by RTKs is unknown, but they are believed to be 
presynaptic37, and could potentially involve a 
combination of factors including stimulation of DA 
synthesis by TH13, enhancement of calcium-
responsible secretory vesicles35, and promotion of DA 
recycling via DAT trafficking to the cell surface20.  
These mechanisms are all consistent with the overall 
effect of myr-Akt viruses in the dopaminergic 
midbrain- a promotion of pre-synaptic DA function 
reflected by increased cell size, terminal density, total 
nigrostriatal dopamine content, and AMPH-induced 
behaviors13, 24.  These mechanisms, in conjunction 
with promotion of cell surface DAT, contribute to the 
ability of Akt to promote DA release in response to 
AMPH.  
 

Figure 1 | Model of PI3K/AKT influence on the 
dopamine transporter. 
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ACTIVATORS OF PI3K/AKT SIGNALING AND 
RESPONSES TO PSYCHOSTIMULANTS 

RTKs in DAT trafficking:  According to the model 
provided in Figure 1, RTK activators will promote 
DAT cell surface expression, DA uptake, and 
responses to stimulants, and inhibitors, such as 
LY249002, will diminish these effects.  One study 
supporting this model showed that, in rat striatal 
synaptosomes, both RTK inhibition (with genistein 
and tyrphostin) and PI3K inhibition led to a rapid 
downregulation of DA clearance and DAT cell 
surface expression18.  Conversely, acute growth factor 
(BDNF) treatment increased DA uptake, and this 
increase is prevented upon co-treatment with the PI3K 
inhibitor LY29400218, paralleling previous findings 
on the effects of insulin.   In addition, the effect of 
RTKs on DA uptake in this study are primarily 
dependent on the Vmax for uptake, as opposed to the 
Km.  Thus, this effect of RTKs on DA clearance is 
attributable to the total number of available DAT, 
rather than a change in affinity18. 

BDNF and responses to stimulants: Thus, the 
regulation of the DAT by RTKs directly parallels the 
modulation of DAT by insulin12, and which is 
dependent in part on PI3K.  This is significant for the 
established role of BDNF in the regulation of DA 
release and related behaviors in response to 
psychostimulants15, 38.  Both intra-NAc or intra-VTA 
infusions of BDNF enhance locomotor responses to 
cocaine15, consistent with the model in Figure 1 of 
increased DAT availability and overall promotion of 
pre-synaptic DA by Akt.   Several studies support this 
relationship between BDNF and psychostimulant 
behaviors, with anti-BDNF antibodies decreasing and 
viral enhancement of BDNF increasing locomotor 
activity in response to methamphetamines38,39.  In line 
with these findings, antibodies directed against either 
BDNF or its RTK also diminish DA release in 
response to methamphetamine38, suggesting BDNF 
promotes mechanisms related to increasing stores of 
pre-synaptic dopamine. 

GDNF-related responses to psychostimulants: 
Interestingly, BDNF and GDNF seem to have 
opposite effects on reward-related behaviors, as 
studies show that GDNF decreases cocaine and opiate 
conditioned place preference40, while BDNF 
increases drug reward and promotes self-
administration of stimulants30.  While the effects of 
GDNF seem contrary to our model, studies that 
measure GDNF effects on AMPH-induced release of 
D, support our model, with GDNF stimulation 
increasing and GDNF inhibition decreasing AMPH-
induced DA efflux41, 42.  This is in direct parallel to 
the proposed influence of BDNF on 
methamphetamine-induced efflux38, suggesting that 
BDNF and GDNF may not ultimately have entirely 
opposite effects on responses to AMPH.  Other 

findings on GDNF in support of our model include 
pronounced enhancements of DA uptake in GDNF-
treated midbrain neuron cultures43 and enhanced 
AMPH-induced locomotion with single nigral 
injections of GDNF 44.  Studies in animals with 
nigrostriatal lesions show that GDNF treatment 
enhances striatal DA content45 and increases cell 
surface labeling of the DAT by radioligands46, 47, 
suggesting an overall support of pre-synaptic DA 
function by GDNF.  GDNF thus appears to enhance 
locomotor effects of stimulants, although conditioned 
place preference is diminished in treated animals. 

Potential role of BDNF in cocaine sensitization: 
BDNF, in contrast to GDNF, is theorized to have an 
important role in the initiation of drug addiction30.  
The role of BDNF in models of psychostimulant 
addiction is particularly intriguing, as cocaine self-
administration has been shown to increase midbrain 
BDNF levels30.  In mice trained to self-administer 
cocaine, local deletion of BDNF in the nucleus 
accumbens, through conditional knockout strategies, 
diminishes cocaine self-administration30.  The 
dynamics of BDNF signaling in the acquisition of 
cocaine addiction are therefore in line with our model.  
In normal animals, upregulation of BDNF with 
cocaine administration30, according to our model, 
would lead to net activation of PI3K/Akt signaling.  
This, in turn, would stimulate DAT trafficking, 
providing an increased numbers of substrate for 
cocaine to bind to with repeated drug administration 
and also promoting replenishment of pre-synaptic 
DA.  Intact Akt signaling, we hypothesize, is required 
for appropriate reuptake and recycling of DA into pre-
synaptic terminals with DA release. Future 
biochemical and physiological studies are needed to 
determine the validity of this model. 

Other RTKs and modulation of DAT: There are 
many other RTKs that may influence DA function 
similarly, including IGF-1, estrogen, FGF, and EGF.  
Some evidence already exists for modulation of DA 
function by these RTK ligands.  Both FGF and 
epidermal growth factor (EGF) increase DA uptake in 
cultured cells48, and FGF acutely enhances DAT cell 
surface expression28.  However, the Akt dependence 
of these effects have yet to be determined. 
 
CONCLUSIONS 

The consensus in the literature on overall effects 
of Akt on DA systems is toward a promotion of DA 
release and DA-related behaviors in response to 
AMPH.  Growth factor and hormonal signaling 
through RTKs is an increasingly well understood 
mechanism for regulation of nigrostriatal DA with 
therapeutic implications.  The multiple mechanisms 
whereby RTKs and Akt potentially enhance AMPH 
actions converge at the promotion of are pre-synaptic 
DA function, causing increases in cell size, axonal 
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density, DAT trafficking and, potentially, 
upregulation of tyrosine hydroxylase.  Animal models 
that focus on the temporal relationship between RTK 
signaling and DAT dynamics are warranted in order 
to separate contributions of DAT trafficking (on an 
acute time course) and cellular trophism (on a chronic 
time course) to AMPH actions; the Akt-dependence 
of any observed effects should also be established.  
Future studies in humans will bear out the potential of 
these mechanisms to translate into treatments of 
dopaminergic diseases. 
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