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TRPV1 and the Intrinsic Neuronal Response to stress
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Abstract

Keywords

By gating cation entry into cells, the TRP superfamily of ion channels aid in signal transduction TRP channels
of various stimuli. One particular TRP channel, TRPV1, activates upon exposure to certain noxious TRPV1
stimuli such as heat, low pH, and pressure. Although first characterized as a channel critical to nocicep- Neuronal stress
tion, TRPV1 is now known to participate in such diverse activities as mediating synaptic plasticity, initi- response
ating and regulating filopodia, aiding axonal guidance and migration, and participating in the neuronal Neurotoxicity
stress response. Evidence from the literature, reviewed here, suggests that TRPV1 may promote neuronal Neuroprotection
survival under stress. Using glaucomatous neurodegeneration as a model of neuronal stress, a potential
role of TRPV1-mediated neuroprotection is outlined here. Reasoning for this protective role draws upon
TRPV1-/- data and the demonstrated abilities of TRPV1 to sensitize and translocate to the membrane
in response to Stressors, to localize to synapses, and to maintain synaptic structures via potentiating excit-

atory synaptic activity.

TRPV1: A multifunctional TRP channel

Transient receptor potential (TRP) channels repre-
sent a diverse superfamily of proteins that gate cation en-
try into cells. Functional characteristics of TRP channels
are so dissimilar that these proteins comprise six subfami-
lies grouped solely by amino acid homology rather than by
function!. In mammals, these subfamilies include 28 dif-
ferent TRPs: canonical (TRPCI1-7), vanilloid (TRPVI-
6), melastatin (TRPM1-8), ankyrin (TRPA1), polycystin
(TRPP1-3) and mucolipin (TRPML1-3)?. First character-
ized in the Drosophila phototransduction cascade’, TRP
channels are situated in the cell membrane, which positions
them to transduce extracellular sensory information to the
intracellular space. TRP channel subunits all possess six pu-
tative transmembrane (TM) domains with a stretch of hy-
drophobic amino acids between TM5 and TMG6 that serves
as a pore region (Figure 1). When these subunits tetramer-
ize, they form a pore permeable to monovalent and diva-
lent cations. Upon activation, TRP channels mediate Ca**
flux across membranes, resulting in an increase in [Ca®].
Perturbations of neuronal Ca** signaling are a hallmark of
neurodegenerative disease, thus it is particularly important
to understand how TRP channels functionally influence

neuropathic mechanisms*.

One subfamily of TRP channels, the vanilloid
TRPs (TRPVs) derive their name from the vanillyl func-
tional group found on some of their ligands. Of the TRPVs,
TRPV1 was the first discovered and remains the best char-

acterized’. TRPV1 was first discovered based on its activa-
tion by the pungent component of chili peppers, capsaicin®.
TRPV1 transduces information regarding other noxious
stimuli, including heat (42 °C temperatures), low pH
(<6.0), and pressure®’. Within the peripheral nervous sys-
tem, TRPV1 channels are expressed in primary sensory af-
ferent fibers, allowing peripheral pain information to reach
the central nervous system®. Accordingly, TRPV1 knock-
out mice exhibit a reduced pain response, which makes this
channel of particular interest as a target for pain and hyper-
algesia therapeutics®”®.

TRPV1 activity depends upon the sensitization
state of the channel, which can be influenced by cellular
signaling cascades. Phosphorylated TRPV1 represents a
channel state that is more sensitive to activation'®. Protein
kinase A (PKA)", protein kinase C (PKC)"?, protein kinase
D (PKD)®, cyclin-dependent kinase 5 (Cdk5)'* and Ca®*/
calmodulin-dependent protein kinase I (CaMKII)* all sen-
sitize TRPV1 by phosphorylation at serine, threonine, or ty-
rosine residues (Figure 1). This sensitization can be reversed
by protein phosphatase 2B (calcineurin), which employs a
Ca*-dependent phosphatase activity during this desensi-
tization process’. When assessing TRPV1 function within
injury or pathology, it is important to consider these modu-
latory effects by protein kinases and phosphatases.

Although TRPV1 was first characterized as a mo-
lecular detector of noxious stimuli, the discovery of wide-

spread TRPV1 expression throughout the brain suggested
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Figure 1. TRPV1 channel structure and functionally important
residues. TRPV1 is a membranous ion channel characterized
by intracellular N- and C-termini, 6 transmembrane (TM) do-
mains, and a cation-permeable pore region between TM5 and
TMS6. Protein kinases phosphorylate specific residues (red ar-
rows) in order to sensitize TRPV1 to ligand interactions (blue
arrows). Figure constructed from reviewed information's.

that the channel may possess additional functions beyond
nociception'. It was proposed that there must be a class
of endogenous ligands (endovanilloids) that regulated this
signaling'®. This class of ligands exists, and includes en-
docannabinoids such as anandamide and N-arachidono-
yl-dopamine (NADA), lipoxygenase products, as well as
endogenous inhibitors like PIP,. The endocannabinoids
are particularly interesting because anandamide and anan-
damide-like structures can often act at both TRPV1 and the
cannabinoid (CB1 and CB2) receptors'. These promiscu-
ous interactions indicate that there may be some interplay
between the cannabinoid system and TRPV1.

Functions of TRPV1 in the central nervous system
Although TRPV1 is well-characterized with respect
to pain perception at the periphery, data regarding its func-
tion within the CNS is limited. Examination of TRPV1
knockout mice revealed a reduction in anxiety, conditioned
fear responses, long-term potentiation (LUTP) in the hip-
pocampus, and long-term depression (LTD) in the dentate
gyrus'” %, These alterations in behavior and neurophysiol-
ogy suggest the relevance of TRPV1 to synaptic plasticity
and neuronal networks. Within the CNS, TRPV1 activa-
tion in dorsolateral periaqueductal gray neurons increases
neuronal activity by potentiating input from glutamatergic
synapses®'. Despite TRPV1’s involvement in modulating
synaptic transmission, it was not known if TRPV1 itself was
located in synaptic terminals. Recently, it was determined
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that TRPV1 is present in synaptic structures by colocaliza-
tion with pre- and post-synaptic markers as well as presence
within biochemical fractions of synaptosomes and the post-
synaptic density™.

TRPV1 functions in developmental aspects of the
CNS, such as regulation of the neuronal growth cones and
filopodia. These TRPV1-positive filopodia contain synap-
tic vesicular and scaffolding proteins, thus it is likely that
TRPV1 plays a role in synapse formation” ?%. These studies
were complemented by another developmental study which
indicated that TRPV1 mediates LTD in the developing su-
perior colliculus via the depression of glutamatergic retino-
collicular synapses®. Altogether, these examples show that
TRPV1 is involved in plasticity and activity of synapses.

TRPV1 and the neuronal stress response

TRPV1 expression and localization in neurons is
affected by injurious stressors and pathology. Increases in
TRPV1 protein were observed in models of neuronal injury
such as lingual nerve injury®, chronic constriction injury?,
and gentamicin-induced ototoxicity?. In human tissue,
increases in TRPV1 protein levels were found in aged and
photoaged skin and its associated nerve fibers®, as well as in
tissue collected from patients with traumatic and diabetic
neuropathy™.

In multiple instances, TRPV1 has been implicated
in physiological stress responses. Injured cells release ATP
into the extracellular space, which can bind metabotropic
ATP receptors®. These ATP receptors in turn sensitize
TRPV1 via PKC-dependent phosphorylation®. Addi-
tionally, neurodegenerative diseases often have a sustained
neuroinflammatory component that contributes to pathol-
ogy>. Proinflammatory chemokines bind G protein-cou-
pled receptors, which can cause downstream sensitization
of TRPV1 by PKC?*. Another proinflammatory mediator,
nerve growth factor (NGF), promotes an increase in mem-
brane current carried by TRPV1 by increasing the number
of TRPV1 channels inserted in the membrane®. NGF binds
the TrkA receptor, which activates a signaling cascade that
ultimately phosphorylates TRPV1 at tyrosine residue Y200
via Src kinase. Tyrosine phosphorylation is involved in traf-
ficking ion channels® and receptors”, and is responsible for
increasing the number of TRPV1 channels at the membrane
following NGF binding®. These examples show that neuro-
nal stressors can affect TRPV1 both by sensitizing the chan-
nel to activation as well as increasing levels of TRPV1 at the
membrane, where it enhances current.

TRPV1: functionally neurotoxic or neuroprotective?
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For many years, it has been known that capsaicin
treatment causes degeneration of primary sensory neurons®
as well as many neurons of the central nervous system*. Both
in vivo and in vitro data gathered from mesencephalic dopa-
minergic neurons indicate that direct activation of TRPV1
with capsaicin or the endogenous ligand anandamide medi-
ates cell death®. Such treatment produces a large increase in
[Caz*]i, subsequent mitochondrial damage, and cell death.
However, the pathway mediated by anandamide may not
actually act through TRPV1 due to the inability of TRPV1
antagonist capsazepine to prevent anandamide-induced cell
death*!. This is particularly important to consider in relation
to cellular signaling occurring in neuropathy—anandamide
may contribute to neurotoxicity independently of TRPV1.
Although direct activation of TRPV1 via capsaicin is neuro-
toxic, there is some evidence that TRPV1 can be function-
ally neuroprotective. In a global ischemia model, TRPV1
antagonist capsazepine was able to block the neuropro-
tective effects of CB1 receptor antagonist rimonabant in
CALl hippocampal neurons®. The ability of capsazepine
to block neuroprotection in this case suggests that TRPV1
at least partially mediates the neuroprotective effects of
rimonabant®. This data concerning neurotoxic versus neu-
roprotective functions must be considered with the under-
standing that perturbing neurons with TRPV1 agonists and
antagonists (some of which are not endogenous) does not
necessarily represent functions that actually occur in stressed
or degenerating neurons in vivo. While evidence supports
neurotoxic and neuroprotective roles of TRPV1, it is of
primary importance to understand that channel function is
dictated by the neuronal signaling milieu. This signaling in-
evitably varies between classes of neurons as well as between
different injury and disease states.

TRPV1 function in retinal ganglion cells: potential neu-
roprotection

The role of TRPV1 in neuronal survival remains
controversial, especially with respect to disease and injury
states in vivo. Glaucoma, an irreversible optic neuropathy,
presents an especially interesting system in which to study
TRPVI1. In glaucoma, intraocular pressure (IOP) is the
primary modifiable risk factor*, so many animal models
of this neurodegenerative disease require inducing elevat-
ed IOP* “, It is known that this channel contributes to
pressure-induced changes in Ca®* signaling in retinal gan-
glion cells (RGCs)* and retinal microglia’. Preliminary data
from TRPV1 knockout mice suggests a neuroprotective role
of TRPV1 against pressure-induced neurodegeneration of

RGCs (Ward - unpublished data). These TRPV1-/- mice,

when subjected to IOP elevation, exhibited increased optic
nerve pathology when compared to wildtype controls. This
is unusual, given that pressure is known to activate TRPV1
in RGCs, and that such Ca?* influx can cause neurotoxic-
ity. It seems logical that loss of TRPV1 would render RGCs
less susceptible to pressure-induced death in vivo; however,
this would not be the case if TRPV1 activation is actually
neuroprotective. The potential for a TRP channel to exhibit
neuroprotective activity in retinal injury is not unprecedent-
ed, as a recent study of retinal ischemia/reperfusion injury
indicated that TRPCG is protective®.

Our working hypothesis is that TRPV1 functions
as an intrinsic stress responder that slows down RGC degen-
eration by increasing excitatory activity at RGC synapses.
In the DBA/2 mouse model of glaucoma, RGCs experienc-
ing degeneration regularly exhibit dendrites with decreased
complexity that lack higher-order branching, an indication
of dendritic pruning®. Likewise, it is known that synaptic ac-
tivity is a crucial factor in long-term synapse maintenance.
Increased TRPV1 activity at RGC synapses may counter the
dendritic pruning seen in glaucoma, as retention of synapses
requires maintenance of synaptic activity. In fact, eyes with
elevated IOP exhibit increased levels of TRPV1 in the inner
plexiform layer (IPL) of the retina® (Figure 2), which sup-
ports the idea of increased synapse potentiation in response
to stress. The IPL includes extensive synaptic connections
between RGC dendrites and bipolar cells, so this observed
localization to the RGC dendrites may involve potentiation
of synaptic connections under IOP stress.

As described in this review, TRPV1 exhibits a func-
tional profile that fits with this working hypothesis. First,
TRPV1 exhibits an intrinsic stress response that often in-
cludes increased levels of channel expression in injured and
degenerating neurons®. Second, under stressed condi-
tions, TRPV1 is sensitized by phosphorylation and relocal-
ization to the membrane, where it increases membrane cur-
rents>> 3 3> Third, within neuronal networks in the CNS,
TRPV1 is known to modulate synaptic plasticity'”*° and to
potentiate input from glutamatergic synapses®'. Finally, the
potential for TRPV1-mediated neuroprotection is support-
ed by our preliminary data, where TRPV1-/- mice exhibit
reduced RGC survival despite elevated IOP. Altogether,
these functions indicate that TRPV1 may exhibit neuropro-
tective activity in glaucoma.

This hypothesis specifically addresses a potential
TRPV1-mediated mechanism for intrinsic neuroprotec-
tion. Examination of TRPV1 function outside the neuron
itself may provide even more information regarding how
this channel mediates RGC survival. For example, retinal
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Figure 2. TRPV1 expression increases in RGC dendrites with
elevated IOP. A. Immunolabeling for TRPV1 in a 6 month
DBA/2] mouse retina from an eye with normal IOP. TRPV1
localizes primarily to the ganglion cell layer (GCL). B. TRPV1
immunolabeling increases in an age-matched retina with ele-
vated IOP. Labeling persists in the GCL and increases in the in-
ner plexiform layer (IPL), where RGC dendrites ramify. Figure
modified for use with permission from author®’.

microglia exhibit pressure-dependent release of IL-6, a cy-
tokine that is protective against pressure-induced RGC
death’'. Specific antagonism of TRPV1 revealed that this
release was partially mediated by TRPV1-induced Ca?* in-
flux’. It is therefore likely that TRPV1-mediated neuropro-
tection is not simply intrinsic to RGCs, but may also involve

glial cells.

Conclusions

Transduction of stimuli from the extracellular envi-
ronment is a critical component of the neuronal response to
stressors. The responses of TRPV1 to stress, reviewed here,
indicate a potential role of TRPV1 in neuroprotection.
TRPV1 activation is known to potentiate glutamatergic syn-
apses, thus relocalization of TRPV1 to RGC dendrites may
be involved in slowing the progression of dendritic pruning
in glaucoma. Neurodegenerative diseases such as glaucoma
do not push neurons unidirectionally toward death without
a response from intrinsic cellular mechanisms that counter
dysfunction. It is therefore important to characterize intrin-
sic stress responders such as TRPV1 in order to assess the
potential for therapeutic interventions.
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