Measuring listening-related fatigue in children

Hornsby, B., Davis, H., Camarata, S. & Bess, F.

International Collegium of Rehabilitative Audiology Meeting
May 17-19, 2019, Hong Kong
Acknowledgements

Lab Members and Collaborators

- Fred Bess
- Stephen Camarata
- Sun-Joo Cho
- Hilary Davis
- Ben Hornsby
- Sasha Key

- Caitlin Dold
- Aimee Grisham
- Keren Rosario-Ortiz
- Sam Sekator
- Maureen Virts
Disclosures

• All authors are employed by Vanderbilt University (VU) and Vanderbilt University Medical Center (VUMC)

• Financial Disclosures- this work has been supported by federal and industry grant mechanisms
 – IES #R324A110266 (Bess, PI)
 – IES #R324A150029 (Bess, PI)
 – NIH R21 DC012865-01A1 (Hornsby, PI)
 – Starkey, Inc (Hornsby, PI)

• Nonfinancial Disclosures
 – None
What is listening-related fatigue?

- **Subjective fatigue** is an ongoing “state”, a mood or feeling of tiredness, exhaustion or lack of energy, a reduced desire or motivation to continue a task.
 - Quantified using surveys and questionnaires.
- **Listening-related fatigue** is simply a type of subjective fatigue resulting from the continued application of effort during listening tasks.
 - Pichora-Fuller et al., 2016

See Hornsby, Naylor & Bess, 2016 for review.
Quantifying Fatigue Subjectively

• Some pediatric fatigue scales exist:
 • Pediatric Quality of Life- Multidimensional Fatigue Scale
 – PedSQL-MFS; Varni, et al. 2002
 • Childhood Fatigue Scale
 – CFS; Hockenberry et al. 2003
 • Fatigue Scale-Adolescent
 – Hinds et al. 2007

• But none are specific to hearing loss or focus on listening-related fatigue
Development of The Vanderbilt Fatigue Scale for Children with Hearing Loss (VFS-CHL)

- Phase I- Defining the issues
 - Literature review, focus groups and interviews
- Phase II- Creation of initial item pool
- Phase III- Initial data collection
 - Item analysis, item reduction and preliminary data collection and scale assessment
- Phase IV- Additional validation and preliminary data analyses
Phase I: Defining the Issues

- Literature review provided background theory & relevant constructs
- Focus groups & interviews
 - CHL (N=23)
 - Parents of CHL (N=17)
 - Teachers/School service providers (N=28)

Example Prompts from our Moderator's Guide

<table>
<thead>
<tr>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>How often do you feel physically or emotionally tired due to difficulty listening?</td>
</tr>
<tr>
<td>Is fatigue from listening a problem for your student?</td>
</tr>
<tr>
<td>How many different kinds of listening situations cause you (your student) to feel physically or emotionally tired?</td>
</tr>
<tr>
<td>What coping strategies do you (or your student) use to recover from fatigue?</td>
</tr>
</tbody>
</table>

- Focus groups lasted ~60 minutes
- Interviews lasted ~10-45 minutes based on the child's age and interest
Talking to kids about fatigue is not straight forward….

• Moderator: “So... 'fatigue', what do you think of when you hear that word?”

• Child: “I never heard that word, so, like, fatigue
 – sounds like phantom,
 – so maybe a squid?”
Phase 1: Defining the issues

“First thing I do when I get home is take my hearing aids out. I just need a break.”
- Student with hearing loss

“My child will withdraw at the end of a long day of listening.”
- Parent of a child with hearing loss

“Trying harder to listen and understand drains me and makes me feel down.”
- Student with hearing loss

“My child will zone out or go into a bubble when she needs a break from listening.”
- Parent of a child with hearing loss

“My brain needs a rest from listening.”
- Student with hearing loss

“It’s like my brain’s getting, um, very tired of hearing things.”
- Student with hearing loss

Social-Emotional (External-Internal Behaviors)

Physical (Sleep/Rest)

Cognitive (Attention)

Listening-Related Fatigue

“It’s like my brain’s getting, um, very tired of hearing things.”
- Student with hearing loss

“Yeah, you wanna give up... you put all of your focus on what they're trying to say and you still can't hear them.”
- teen with bilateral hearing aids
Development of The Vanderbilt Fatigue Scale for Children with Hearing Loss (VFS-CHL)

- Phase I- Defining the issues
 - Literature review, focus groups and interviews
- Phase II- Creation of initial item pool
Phase II: Item Development

Range of Listening-Related Fatigue

MILD

Social-Emotional (Internal-External Behaviors)

Physical (Sleep/Rest)

Cognitive (Attention)

Listening-Related Fatigue

SEVERE
<table>
 <thead>
 <tr>
 <th>Fatigue Severity</th>
 <th>Domain: Cognitive (Attention)</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>Severe</td>
 <td>Behaviors: becomes unfocused, unwillng/unable to maintain effort and attention when completing even routine mental activities; decides to disengage- Shuts down, gives up -observed in a wide range of listening situations</td>
 </tr>
 <tr>
 <td>Moderate</td>
 <td>Behaviors: must apply substantial mental effort to overcome difficulties remaining attentive. May involuntarily tune/zone out. May need prompting. -observed in moderately challenging listening situations</td>
 </tr>
 <tr>
 <td>Mild</td>
 <td>Behaviors: Some difficulty following fast-paced conversation and remaining attentive. -observed ONLY in very challenging situations</td>
 </tr>
 </tbody>
</table>
Phase II: Item List Development

- ~550 items created (range: 157-212/group)
 - Reduced to **60 items/group** via expert panel review

<table>
<thead>
<tr>
<th></th>
<th>Cognitive</th>
<th>Physical</th>
<th>Social/Emotional</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>Moderate</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>21</td>
</tr>
<tr>
<td>Mild</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>60</td>
</tr>
</tbody>
</table>

- Cognitive Interviews (N=23)
 - 9 Children; 7 Parents; 7 Teachers
Sample items from the VFS-CHL

- My brain gets tired after listening all day
 - Item from the Child scale

- Listening takes a lot of effort for my child
 - Item from the Parent scale

- The student seems to get worn out from listening all day at school
 - Item from the Teacher scale
Development of The Vanderbilt Fatigue Scale for Children with Hearing Loss (VFS-CHL)

• Phase I- Defining the issues
 – Literature review, focus groups and interviews

• Phase II- Creation of initial item pool

• Phase III- Preliminary data collection
 – item analysis, item reduction and initial evaluation of scale characteristics
Phase III: Preliminary Data Collection

- Data collected online and paper/pencil from >900 respondents
 - ~75-80% with HL

- N=393 parents
 - 296 CHL
 - 94 without HL
 - 3 unknown

- N=214 children
 - 160 CHL
 - 51 without HL
 - 3 unknown

- N=304 teachers
 - 243 CHL
 - 61 without HL

VANDERBILT
SCHOOL OF MEDICINE
Phase III: Initial Item Assessment

- Analyzed data to identify & select high quality items for the final scale:
 - Quantitative: Item Response Theory- IRT
 - Want high information items across a range of severities
 - Items with appropriate threshold order and good separation between response thresholds (good discrimination)
 - Items that were stable across age and gender groups
 - Used differential item functioning (DIF) to examine item stability
 » Across age (7-12 vs 13-18 y.o.) & gender
 - Qualitative: Expert review
 - Removed redundant items via expert review
Phase III: Initial Item Assessment

- **Child & Teacher EFA** suggests unidimensional model of listening-related fatigue
 - Unidimensional
 - Cognitive, Social-Emotional, Physical
 - Listening-Related Fatigue

- **Parent EFA** suggests a 2-factor model of listening-related fatigue
 - Factor 1
 - Social-Emotional, Cognitive
 - Factor 2
 - Physical
 - Listening-Related Fatigue
Phase III: Item Reduction

• Final versions selected for validation:
 – Parent scale- 12 items, 2 factors
 • 7 cognitive/social-emotional items
 • 5 physical items
 – Child scale- 10 items
 – Teacher scale- 8 items
Development of The Vanderbilt Fatigue Scale for Children with Hearing Loss (VFS-CHL)

- Phase I- Defining the issues
 - Literature review, focus groups and interviews
- Phase II- Creation of initial item pool
- Phase III- Preliminary data collection
 - Item analysis, item reduction and preliminary data collection and scale assessment
- Phase IV- Additional validation and preliminary data analyses
Phase IV: VFS-CHL Validation

• Data collection and analyses are ongoing
 – N= 840 respondents (376 Parents; 128 Children; 336 Teachers)
• Initial analyses suggest the scales are valid and provide a reliable estimate of listening-related fatigue
 – Test-retest reliability
 – Concurrent validity
 – Construct Validity
VFS-CHL: Test-retest reliability

- Strong correlations and absolute agreement between test-retest VFS scores
 - Spearman’s rho ranged from .70 -.86

<table>
<thead>
<tr>
<th></th>
<th>N=37</th>
<th>N=157</th>
<th>N=72</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teacher</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
VFS-CHL: Concurrent Validity

- Examined associations bw VFS’s and generic fatigue (PedsQL-MFS) and depression (Child Depression Inventory-CDI) measures

- Analysis of additional ~150 participants (50/group- children, parents, teachers) reporting on CHL only

- Across respondent groups, VFS scores show
 - weak/moderate associations with various PedsQL scales
 - r values ranged from -0.22 to -0.74
 - and with various CDI results
 - r values ranged from 0.24-0.64
VFS-CHL: Associations w/ PedsQL

- VFS scores show weak to moderate negative correlations with generic fatigue (PedsQL) measures (lower value = more fatigue)
 - Data for cognitive fatigue shown

![Graphs showing correlations with PedsQL measures for Child, Parent, and Teacher perspectives with R² values: 0.2359, 0.3428, and 0.4761 respectively. N values: 48, 50, 50.]
VFS-CHL: Associations w/CDI

- VFS scores also show weak to moderate positive correlations with a depression scale (CDI)
 - Data for CDI Total score shown

Child

Parent

Teacher

N=50

R^2 = 0.1592

N=50

R^2 = 0.2625

N=44

R^2 = 0.1844
VFS-CHL: Construct Validity

• Construct validity is based, in part, on stakeholder input during the test development process

• In addition, our scale appears to sensitive to effects of hearing loss on listening-related fatigue, at least in adults
 – But sensitivity to hearing loss in children may (or may not) vary among respondent scales
VFS-AHL/CHL and self-reported HL

Error bars = 1 standard error

= significant differences

N=463
N=376
N=128
N=336

n=198 234 31
136 181 59
43 59 26
67 297 39

VANDERBILT
SCHOOL OF MEDICINE
• Disabilities *other than HL* may also increase listening-related fatigue
 – This can confound our results
• I.e., Ratio of children with/without disabilities may vary across samples

<table>
<thead>
<tr>
<th></th>
<th>Child</th>
<th>Parent-Proxy</th>
<th>Teacher-Proxy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CNHL</td>
<td>CHL</td>
<td>CNHL</td>
</tr>
<tr>
<td>Cognitive Disability</td>
<td>13% (2)</td>
<td>16% (10)</td>
<td>11% (5)</td>
</tr>
<tr>
<td>Visual Impairment</td>
<td>7% (1)</td>
<td>5% (3)</td>
<td>7% (3)</td>
</tr>
<tr>
<td>Behavioral/Emotional Problem</td>
<td>40% (6)</td>
<td>36% (22)</td>
<td>47% (21)</td>
</tr>
<tr>
<td>Physical Disability</td>
<td>20% (3)</td>
<td>5% (3)</td>
<td>9% (4)</td>
</tr>
<tr>
<td>Speech-Language Impairment</td>
<td>0% (0)</td>
<td>13% (8)</td>
<td>9% (4)</td>
</tr>
<tr>
<td>Genetic/Chromosomal Syndrome</td>
<td>7% (1)</td>
<td>8% (5)</td>
<td>7% (3)</td>
</tr>
<tr>
<td>Other</td>
<td>13% (2)</td>
<td>16% (10)</td>
<td>11% (5)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>15</td>
<td>61</td>
<td>45</td>
</tr>
</tbody>
</table>
VFS-CHL and additional disabilities

- Disabilities *other than HL* may also increase listening-related fatigue
 - This can confound our results
 - I.e., Ratio of children with/without disabilities may vary across samples

\[
\begin{array}{c|c|c}
\text{No Hearing Loss Group} & \text{Hearing Loss Group} \\
\hline
\text{78\%- No disability} & \text{57\%- No disability} \\
\text{22\%- ≥1 Disabilities} & \text{43\%- ≥1 Disabilities} \\
\end{array}
\]

- Error bars = 1 standard error
- I.e., Ratio of children with/without disabilities may vary across samples
VFS-CHL and additional disabilities

- Disabilities *other than HL* may also increase listening-related fatigue
 - This can confound our results
 - I.e., Ratio of children with/without disabilities may vary across samples

VFS-CHL and additional disabilities

- Disabilities *other than HL* may also increase listening-related fatigue
 - This can confound our results
 - I.e., Ratio of children with/without disabilities may vary across samples

![Graph showing IRT scale scores for No Hearing Loss Group and Hearing Loss Group](image)

- No Hearing Loss Group:
 - 79% - No disability
 - 21% - ≥1 Disabilities

- Hearing Loss Group:
 - 56% - No disability
 - 44% - ≥1 Disabilities

Error bars = 1 standard error
Disabilities other than HL may also increase listening-related fatigue. This can confound our results. I.e., Ratio of children with/without disabilities may vary across samples.
VFS-AHL/CHL and self-reported HL

May reflect confound of additional disabilities

Error bars = 1 standard error

= significant differences
Conclusions

• The VFS-CHL is an ecologically valid measure of listening-related fatigue in children based on child self-report or parent/teacher proxy report
 – All scales provide valid and reliable measure of listening-related fatigue for CHL
 • Presence of additional disabilities increases risk for fatigue
Thanks for Listening!

Questions?

For more information check out our lab websites:
https://my.vanderbilt.edu/listeninglearninglab/

https://my.vanderbilt.edu/hearingandcommunicationresearch/