

Tired from Listening? Exploring Associations Between Listening-Related Fatigue and Fatigability

Introduction

- Mounting evidence strongly suggests that adults and children with hearing loss are at increased risk for greater listening effort and long-term, listening-related fatigue^{1,2,3,4}. Severe, long-term, fatigue can have significant negative effects on quality of life⁵.
- Long-term fatigue refers to feelings of fatigue that recur frequently or are constant⁵.
- The Vanderbilt Fatigue Scale for Adults with Hearing Loss (VFS-AHL) has been developed to measure longterm listening-related fatigue⁸.
- Subjective reports of long-term fatigue are highly variable in people with hearing loss and our understanding of its underlying causes are limited^{2,3,4}. The construct of fatigability may explain some of the variability in long-term fatigue.
- Fatigability describes the relationship between the level of perceived fatigue and the level of activity required to elicit the percept⁶.
- Currently, a validated measure of listening-related fatigability does not exist.
- Long-term fatigue may reflect a high level of daily demands and activity. Alternatively, it could reflect a high level of fatigability⁷. Our hypothesis is that people with hearing loss experience increased fatigability in everyday listening situations, which increases their risk for long-term fatigue.
- Purpose: This poster examines associations between short-term, listening-related, fatigability and long-term fatigue using subjective measures. A secondary purpose was to examine the effects of hearing loss and device type on long-term fatigue and fatigability.

Table I: Sample VFS-AHL-10 (Long-Term Fatigue) Items

Select a single response that best describes how often you experience the following in a typical week.

Items	Response Options				
	Never/ Almost Never	Rarely	Sometimes	Often	Almost Always/ Always
I feel worn out from everyday listening.	0	1	2	3	4
It takes a lot of energy to listen and understand.	0	1	2	3	4

Table II: Sample Fatigability Items							
For each item, please select ONE (1) rating which best describes how							
often you may feel fatigued or tired after completing the activities							
described below. Mark N/A if you have not experienced the situation often							
enough to make a reliable judgment.							
Items	Response Options						
	Never/				Almost		
	Almost	Rarely	Sometimes	Often	Always/		
	Never				Always		
Participating in an important							
group meeting at work or	0	1	2	3	4		
school for 1 hour							
Talking on the phone with a							
friend or family member for	0	1	2	3	4		
15 minutes							

See our website for additional information on listening-related fatigue. https://my.vanderbilt.edu/hearingandcommunicationresearch/

Caitlin Dold¹, Samantha Sekator¹, Hilary Davis¹, Sun-Joo Cho², & Benjamin W.Y. Hornsby¹ ¹Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine; ²Peabody College, Vanderbilt University

Methods

- Long-term fatigue was measured using a 10-Item version of the Vanderbilt Fatigue Scale-Adults with Hearing Loss (VFS-AHL)⁸ while short-term fatigue was assessed using a newly developed 10-item Fatigability Scale for adults with hearing loss. (See Tables I & II)
- Data were collected from multiple sources using online and in person versions of the VFS-AHL⁸ and Fatigability Scale.
- Responses were obtained from 468 adults (5 no responses) with and without hearing loss (See Table III).
- Respondents self-reported their hearing loss as mild/slight (n=56), moderate (n=102), severe (n=54), profound (n=44), or not reported (n=9) based on their perceived speech understanding difficulties.
- EFA model fit was evaluated using multiple indices (rootmean-square error of approximation index (RMSEA) <.06; root-mean-square residual (RMSR) <.08, comparative fit index (CFI) and Tucker-Lewis index (TTL) >.95)

Table III: Participant Characteristics	# Participants		
Hearing Loss/No Hearing Loss	265/198		
One Ear/ Both Ears	31/234		
Male/Female/NR	130/331/2		
Hearing Aid/CI/BAHA/Other/None/No Response	132/51/2/4/76		
Total Number of Participants	463		

Results

Exploratory Factor Analyses (EFA):

- EFA was used to assess similarity in the underlying constructs of fatigue and fatigability. Results on the combined scales revealed a good fit with all items loading on a single unidimensional factor.
- RSMEA=0.12; RSMR=0.05; CFI=0.98; TTL=0.97

Correlations between Fatigue and Fatigability:

- There were strong, significant (all p values <0.05), positive correlations between fatigue and fatigability across all hearing groups, unilateral and bilateral losses, and gender (r² values ranged from .72–.92).
- See Figures I & II

Effect of self-reported hearing loss and device type on long-term fatigue and fatigability:

- A series of Mann-Whitney tests were used to examine differences in fatigue, and in fatigability, between respondents with varying degrees of hearing loss.
- Results revealed systematic increases in fatigue, and fatigability, as degree of loss increased up to the severe rating (significant p values ranged from .000-.018; See Figure III).
- However, as degree of loss increased from a severe to profound level, fatigue and fatigability decreased (p=.002) and .001, respectively).
- For respondents with severe-to-profound hearing loss, hearing aid users reported significantly more fatigue than Cl users (See Figure IV).
- Although the reason for the difference is unclear

Figure I: Scatter plot showing associations between IRT scale scores for longterm fatigue versus fatigability. Solid and dashed lines show best fits to normal hearing and hearing loss data, respectively.

Figure II: Scatter plot showing associations between IRT scale scores for longterm fatigue versus fatigability for respondents with varying degrees of selfreported hearing loss. Solid lines show best fits to the data

Figure III: Mean fatigue & fatigability IRT scale scores as a function of selfreported hearing loss level. Lower values indicate less fatigue/fatigability. Error bars = ± 1 standard error; stars = significant differences

Figure IV: Mean IRT scale scores (long-term fatigue and fatigability) for respondents with self-reported severe and profound hearing loss who use hearing aids and CIs. Error bars = ± 1 standard error. Stars = significant differences.

Conclusion & Next Steps

- Exploratory factor, and correlation, analyses revealed a strong association between fatigability and long-term fatigue.
- This supports our hypothesis that long-term listening-related fatigue may be a consequence of high fatigability experienced in everyday listening situations.
- In contrast to prior work using generic fatigue scales², using a listening-related fatigue scale (the VFS-AHL), long-term fatigue, and fatigability, systematically increased with degree of self-reported HL up to the severe range (see Figure III).
- Interestingly, compared to those with only severe losses, listening-related fatigue and fatigability decreased significantly for respondents with profound hearing loss (see Figure III).
- The reasons for this decrease are unclear but may reflect decreased engagement in listening-related tasks.
- Respondents with severe-profound self-reported hearing loss who use CIs reported less fatigue than hearing aid users.
- The reasons for this difference are unknown but may reflect greater self-reported hearing loss and disengagement during listening-related tasks among CI users, or a benefit of CI use. • Next steps include using the VFS-AHL to:
- Identify the behavioral, psychological, and physiologic factors responsible for the increased fatigue and fatigability associated with self-reported hearing loss.
- Explore benefits of interventions for reducing listening-related fatigue and fatigability.

Key References

Hornsby, B. (2013). The Effects of Hearing Aid Use on Listening Effort and Mental Fatigue Associated With Sustained Speech Processing Demands. Ear and Hearing, 34(5), 523-534. Hornsby, B. & Kipp, A. (2016). Subjective ratings of fatigue and vigor in adults with hearing loss are driven by perceived hearing difficulties not degree of hearing loss. Ear and Hearing 37 (1), 1-10. Alhanbali, S., Dawes, P., Lloyd, S., & Munro, K. J. (2017). Self-Reported Listening-Related Effort and Fatigue in Hearing-Impaired Gustafson, S., Lancaster, H., Cho, S-J., Camarata, S., & Bess, F. (2017). Subjective Fatigue in Children With Hearing Loss Assessed Using Self- and Parent-Proxy Report. American Journal of Audiology 26(3S): 393-407. Hornsby, B. W., Naylor, G., & Bess, F. H. (2016). A taxonomy of fatigue concepts and their relation to hearing loss. *Ear and* Hearing, 37, 136S-144S. Eldadah B. (2010) Fatigue and Fatigability in Older Adults *PM R*, 2 (2010), pp. 406-413 Hockey, Robert. (2013). The Psychology of Fatigue: Work, Effort and Control: Cambridge University Press. Dold, C., Bess, F., Camarata, S., McGarrigle, R., Davis, H., Cho, S-J. & Hornsby, B. (2017, November). Initial Development of the Vanderbilt Fatigue Scale for Adults with Hearing Loss (VFS-AHL). Poster presented at the American Speech-Language-Hearing Association convention. Los Angeles, CA. Hospers, J. M. B., Smits, N., Smits, C., Stam, M., Terwee, C. B., & Kramer, S. E. (2016). Reevaluation of the Amsterdam Inventory for Auditory Disability and Handicap Using Item Response Theory. Journal of Speech, Language, and Hearing Research, 59(2), 373-

Acknowledgements

This work was supported by a grant from Starkey Inc (Hornsby- PI) and the NIH National Institute on Deafness and Other Communication Disorders (NIDCD) grant #R21DC012865 (Hornsby- PI).