Too Tired to Listen?

Quantifying Listening-related Fatigue using the Vanderbilt Fatigue Scale

Hornsby, B., Camarata, S., Davis, H. Cho, S-J., & Bess, F.

AAA 2018

Nashville, TN, USA
Disclosures

• All authors are employed by Vanderbilt University (VU) and Vanderbilt University Medical Center (VUMC)

• Financial Disclosures- this work has been supported by federal and industry grant mechanisms
 – IES #R324A110266 (Bess, PI)
 – IES #R324A150029 (Bess, PI)
 – NIH R21 DC012865-01A1 (Hornsby, PI)
 – Starkey, Inc (Hornsby, PI)

• Nonfinancial Disclosures
 – None
Acknowledgements

- Lab Members and Collaborators
 - Fred Bess
 - Stephen Camarata
 - Sun-Joo Cho
 - Hilary Davis
 - Ben Hornsby
 - Sasha Key
 - Caitlin Dold
 - Aimee Grisham
 - Keren Rosario-Ortiz
 - Sam Sekator
 - Maureen Virts
What is fatigue?

- No universally accepted definition exists
 - Occurs in the physical and mental domains

- **Subjective fatigue** is an ongoing “state”, a mood or feeling of tiredness, exhaustion or lack of energy, a reduced desire or motivation to continue a task
 - Quantified via questionnaires and survey instruments

- **Behavioral (Cognitive) fatigue** is an outcome, a decrement in performance
 - Quantified via changes in physical or mental performance over time

- **Physiologic measures** can be used as indirect markers of subjective and behavioral fatigue

“[I recommend] that the term fatigue be absolutely banished from precise scientific discussion”.

--- Muscio (1921)
What is fatigue?

• No universally accepted definition exists
 • Occurs in the physical and mental domains

• **Subjective fatigue** is an ongoing “state”, a mood or feeling of tiredness, exhaustion or lack of energy, a reduced desire or motivation to continue a task
 • Quantified via questionnaires and survey instruments

• **Behavioral (Cognitive) fatigue** is an outcome, a decrement in performance
 • Quantified via changes in physical or mental performance over time

• **Physiologic measures** can be used as indirect markers of subjective and behavioral fatigue

"[I recommend] that the term fatigue be absolutely banished from precise scientific discussion".

----Muschio (1921)

See Hornsby, Naylor & Bess, 2016 for review
Consequences of fatigue

Adults—
- Inattention, lack of concentration, poor mental processing and decision-making skills
- Less productive and more prone to accidents
- Less active, more isolated, less able to monitor own self-care

Children w/ Chronic Illnesses—
- Inattention, concentration, distractibility
- Poorer school achievement, higher absenteeism

Amato, et al. 2001; van der Linden et al. 2003; DeLuca, 2005; Eddy and Cruz, 2007; Ricci et al. 2007
Who Has Fatigue?

- **Everybody!**
 - Complaints of *mild transient* fatigue are common even in healthy populations

- **Severe, recurrent fatigue** is NOT common in healthy populations but is common in many chronic health conditions
 - Cancer, HIV AIDS, Parkinson’s, MS

- Very little work examining fatigue associated with hearing loss in adults or children
Quantifying Fatigue Subjectively

• Subjective measures include surveys, rating scales and questionnaires that ask about mood or feelings

• Fatigue scales may be
 – Uni-dimensional: Assumes all fatigue is similar
 • Measured using a single scale

See e.g., Dittner et al., 2004 for review
Quantifying Fatigue Subjectively

- Or multidimensional: Requiring multiple scales to measure various dimensions of fatigue
Quantifying Fatigue Subjectively

• Many options, but none are specific to hearing loss or focus on listening-related fatigue

See Hornsby, Naylor and Bess, 2016 for review
Is fatigue a problem for people with hearing loss?

“....... I can attest to the FATIGUE caused by prolonged intensive listening in noise through hearing aids.......”.

Mark Ross, 2006, 2012
Pediatric Audiologist

• What do the data say?
Severe Fatigue

*\textit{p}<0.05

- Compared to POMS normative data, older adults seeking help for HL report
 - similar fatigue but
 - significantly lower vigor

- Age range: 55-94 years
- \(N = 116 \)

Hornsby, B. & Kipp, A. (2016)
Adults with HL are at increased risk for **severe** fatigue and vigor deficits

- **More than twice** as likely to report severe fatigue and
- **More than 4 times** as likely to report severe vigor deficits!
- Severe = >1.5 st. dev. above mean

Hornsby, B. & Kipp, A. (2016)
But... fatigue was not associated with degree of hearing loss

- Surprisingly, no association bw degree of loss and any fatigue/vigor domain
 - Similar result for POMS data as well

- N= 143
- Age range: 22-94 years
- PTAs: 5-80 dB (Median: 33 dB)

Hornsby, B. & Kipp, A. (2016)
Type of hearing loss and fatigue

- Used a generic measure (FAS) to examine differences in fatigue between hearing loss groups
 - HA, CI, SSD (n=50 adults/group)
- No significant differences in fatigue between HL groups
 - But all HL groups reported more fatigue than NH controls

Fatigue measure—Fatigue Assessment Scale (FAS)

Modified from Alhanbali et al., 2017
Similar findings in Children with HL (CHL)

- CHL report more overall and cognitive fatigue than children without HL
- CHL (n=60) and CNH (n=43)
 - 6-12 years olds
 - Bilateral, mild to moderately-severe HL

From Hornsby et al., 2017
But... fatigue ratings in CHL are NOT associated with degree of hearing loss

- No association between degree of loss and fatigue
 - Regardless of domain, or PTA measure
 - Same as adult data

![Graph showing no association between CHL rating and overall fatigue](chart.png)

- **Correlation coefficient:** $r = -0.117$
- **P-value:** $p = 0.382$
Take Home Points

• **Generic** fatigue measures suggest, in everyday settings adults & children with HL are at increased risk for fatigue,
 • Especially for more **severe** fatigue and vigor deficits

• The risk is **not** associated with the degree of HL
 • Generic measures may underestimate fatigue severity in adults and children with HL

• These findings highlight the need for a tool **specifically** designed to assess listening-related fatigue
The Vanderbilt Fatigue Scale (VFS) for Adults and Children with Hearing Loss

- Phase I- Defining the problem (Davis)
 - Focus groups and interviews
- Phase II- Item creation (Davis)
- Phase III- Initial data collection (Camarata)
 - item analysis (IIIa), item reduction (IIIb) and preliminary scale assessment (IIIc)
- Phase IV- Collection and preliminary analyses of validation data (Camarata)
- Summary/Conclusions (Hornsby)
Listening-Related Fatigue Scales: Current Work

- Vanderbilt Fatigue Scale-AHL (Adults with Hearing Loss)
- Vanderbilt Fatigue Scale-CHL (Children with Hearing Loss)
 - Pediatric Version
 - Caregiver Version
 - Teacher/Service Provider Version

GOAL: create and validate a measure to quantify fatigue in individuals with hearing loss with specific focus on listening-related issues.
“I went to a great conference today. It was riveting and I was hooked on pretty much every word. And then I got home and collapsed on the sofa. I’ve had to turn my ears off to rest in silence and my eyes are burning.

..the impact of deafness doesn’t just manifest itself in communication. It’s about the energy involved in lipreading and being attentive all day long.

Processing and constructing meaning out of half-heard words and sentences. Making guesses and figuring out context. And thinking of something intelligent to say in response to an invariably random question.

It’s like doing jigsaws, Sudoku, and Scrabble all at the same time.”

Ian Noon blog post
Fatigue Scale Development Process

• **Phase I: Defining listening-related fatigue and issues**
 – Literature Review: background theory and constructs
 – Focus Groups: individual experiences

• **Phase II: Item Development and Revisions**
 – Focus group data review
 – Expert review
 – Cognitive interviews
 • AHL, CHL, parents, and teachers
Item Development Overview

1. Quotes obtained during focus groups of individuals with hearing loss
2. Item coding and item writing by team
3. Cognitive interviews
4. Item list for data collection
5. Test Item Analysis
Phase I: Focus Groups

DEFINITION: Specialized groups in terms of purpose, size, composition, and procedures

PURPOSE: thoughtfully explore through discussion a topic or phenomena of interest to researchers

GOALS: extract qualitative data on the topic at hand through group member interactions and discussion

Content validity: the extent to which a measure represents all facets of a given construct
Phase I: Focus Groups

- Focus groups of adults with hearing loss
 - N=8 groups, 42 adults with hearing loss
 - Mild to moderate HL, two age groups
- Focus groups/interviews with children with hearing loss (CHL), their parents and their teachers
 - N=9 groups, 17 parents, 28 teachers/school service providers, 23 children with hearing loss

MODERATOR’S GUIDE

<table>
<thead>
<tr>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>How often do you feel physically or emotionally tired due to difficulty</td>
</tr>
<tr>
<td>listening?</td>
</tr>
<tr>
<td>How many different kids of listening situations cause you to feel</td>
</tr>
<tr>
<td>physically or emotionally tired due to difficulty listening?</td>
</tr>
<tr>
<td>What coping strategies do you/the student use to recover from fatigue?</td>
</tr>
<tr>
<td>Is fatigue from listening a problem for your student?</td>
</tr>
</tbody>
</table>
Phase I: Defining the Issues

Listening-Related Fatigue

“In the cafeteria, they try to listen but that’s their starting time of “fading down” so they just kind of take it a break time. I’ve had my one student, she sometimes just takes her implant off and even turns the volume down on her hearing aid and that’s like her time to just sit and not have to listen.”

–Deaf education teacher

“When I get home at night I’m more tired than you are because I’ve had to listen all day...Mentally making myself aware..., you got to be tuned into everything going on around you...”

–adult with hearing loss

“I gave up...after the evening was over, I was physically tired...I was exhausted afterwards...”

–adult with hearing loss after eating at a restaurant with friends

“Yeah, you wanna give up. You just don't want to try anymore because you know you won't actually get what they're trying to say or sometimes you think it's just you. Maybe I need to try a little harder to listen but when you do try, you put all of your focus on what they're trying to say and you still can't hear them.”

–teen with bilateral hearing aids
Phase I: Defining the Issues - CHL

“Fatigue sounds like phantom, so maybe a squid?”

PARENT AND TEACHER PROXY REPORT
Phase II: Item Development

- Focus group audio recordings transcribed
- Multi-disciplinary team created a coding strategy to organize and analyze the participant comments
 - Common themes, modified as new themes emerged
- Each transcription was coded by two trained lab staff members
 - Each statement was given at least one code (up to 5)
 - Agreement verified by third reviewer
Phase II: Item Development

Focus Group Comments

- Social (External Behaviors)
- Emotional (Internal States)
- Cognitive (Attention)
- Physical (Sleep/rest)
Phase II: Construct Map-AHL

Level	**D2: Cognitive (Attention)**
3-Severe Fatigue
(observed in a wide range of listening situations) | **Behaviors:** becomes *unwilling/unable to maintain effort and attention* when completing even routine mental activities. *Shuts down, gives up.*

2-Moderate Fatigue
(observed in moderately challenging listening situations) | **Behaviors:** must apply *substantial mental effort* to overcome difficulties remaining attentive. May *tune/zone out.* May need prompting.

1-Mild Fatigue
(observed in very challenging situations only) | **Behaviors:** *Some difficulty* following fast-paced conversation and remaining attentive.
“At lunch I go to the car and sit...by myself. That gives me an hour of not having to listen or concentrate on anything.”

I need a listening break during the work day.

I need time to relax after listening for a long time.
Phase II: Item List Development-AHL

- 300 items created
- Team review reduced to 103 items

<table>
<thead>
<tr>
<th></th>
<th>Cognitive</th>
<th>Physical</th>
<th>Emotional</th>
<th>Social</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe</td>
<td>10</td>
<td>11</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Moderate</td>
<td>15</td>
<td>12</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>Mild</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>29</td>
<td>27</td>
<td>27</td>
<td>20</td>
</tr>
</tbody>
</table>

- Cognitive Interviews (N=7)
Sample Items from the VFS-AHL

<table>
<thead>
<tr>
<th>Never/Almost Never</th>
<th>Rarely</th>
<th>Sometimes</th>
<th>Often</th>
<th>Always/Almost Always</th>
</tr>
</thead>
<tbody>
<tr>
<td>• It takes a lot of energy to listen and understand.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• How often do you feel tired due to trouble hearing and understanding?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Frequency Scale

<table>
<thead>
<tr>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neither Agree nor Disagree</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Listening fatigue is a daily struggle.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Having to tell people that it is hard for me to understand them is emotionally draining.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Agreement Scale
Sample Items from the VFS-CHL

<table>
<thead>
<tr>
<th>Never</th>
<th>Rarely</th>
<th>Sometimes</th>
<th>Often</th>
<th>Always</th>
</tr>
</thead>
</table>

- I use a lot of energy trying to understand what others are saying.
- I get annoyed when I have to listen in a noisy place.
- I get stressed when I have difficulty understanding others.
- I get sleepy after listening for a long time.
- I need a break after listening in a noisy place.
Phase III: Preliminary Data Collection

• Preliminary version of the scale
 – 103 items
 – N=581 adults
 • Online and paper

VFS-CHL Phase III Data Collection
 60 items
 • N=393 parents
 • N=160 children
 • N=304 teachers

Field Testing:
 Summer/Fall 2018
Phase IIIa: Initial Item Assessment

- 103 test items were assessed
 - Items covered 4 domains of mild-severe listening-related fatigue,
 - 581 adults with (n=434) and without (n=147) hearing loss
 - Data collected online and in person via paper/pencil
- Item Response Theory (IRT) was used to identify high quality items
 - High information items
 - Appropriate threshold order and good separation between response thresholds (good discrimination)
- Exploratory factor analysis found all items loaded on a single factor
- Hypothesized item severity (mild, moderate, severe) was examined and items deemed incorrectly categorized in terms of severity were recoded.
Item Response Theory

- How do we select the "best" items for a test?
- How many items are needed?
- Do two items test the same "factor?"
- Goal- optimal number (and difficulty range)
Classical vs Item Response Models

- Items Analysis
 - Classical Test Theory
 - Latent Trait Models
 - Item Response Theory
 - 1P
 - 2P
 - 3P
 - 4P
 - Rasch Models
 - Similar
CTT vs IRT

<table>
<thead>
<tr>
<th>CTT</th>
<th>IRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>The test is the unit of analysis</td>
<td>The item is the unit of analysis</td>
</tr>
<tr>
<td>Measures with more items (longer) are more reliable than their counterparts</td>
<td>Measures with fewer items (shorter) can be more reliable than their counterparts</td>
</tr>
<tr>
<td>Comparing scores from different measures can only be done when the test forms/measures are parallel</td>
<td>Item responses of different measures can be compared as long as they are measuring the same latent trait</td>
</tr>
<tr>
<td>Item properties depend on a representative sample</td>
<td>Item properties don’t depend on a representative sample</td>
</tr>
<tr>
<td>Position on the latent trait continuum is derived by comparing the test score with scores of the reference group</td>
<td>Position on the latent trait continuum is derived by comparing the distance between items on the ability scale</td>
</tr>
<tr>
<td>All items on the measure must have the same response categories</td>
<td>Items on the measure can have different response categories</td>
</tr>
</tbody>
</table>

Modified from: https://www.mailman.columbia.edu/research/population-health-methods/item-response-theory
How are items behaving in the scale?

Logistic model of $p(\text{correct})$

Ability [difficulty] scale is arbitrary. Abilities can be below 0 and above 100.

Each item has its own logistic curve, specified by difficulty and discrimination.
I become mentally tired when it is hard to listen.

- Category response curves for a single test item
 - Probability of choosing a response option based on the individual's level of fatigue
- Responses for this item are ordered and steep response slopes indicate good item discrimination
Phase IIIb: Item Reduction

- Based on IRT analyses and internal review, 61 unique, high quality, items were selected for additional external review and analysis.
- Eleven, external, content experts reviewed items for relevance and clarity:
 - 95% of items were judged as “Quite” or “Highly” relevant by >50% of the reviewers.
 - These items were revised based on content expert feedback to improve clarity.
Phase IIIb: Item Reduction

• This information was used to select items for
 – A 40 item multidimensional scale for research purposes
 • 10 items/domain; 1 mild, 4 moderate, 5 severe items
 • Designed for research purposes (e.g., interest in multiple domains or high test information)
 – A 10 item unidimensional scale for clinical use
 • 4 physical, 3 social, 2 cognitive, 1 emotional items
 – 1 mild, 2, moderate, 7 severe items
Phase IIIc: Subscale assessment

- These subset scales were analyzed using IRT methods to examine
 - measurement invariance and
 - test information/reliability
Advantage of IRT scoring

- Response distributions of summed scores versus IRT scale scores for the 40 item scale
Phase IIIc: Subscale assessment

![Graph](image)

Test Information

- **IRT Scale Score**
 - Less Fatigue
 - More Fatigue

Standard Error

- **IRT Scale Score**
 - Less Fatigue
 - More Fatigue

Lines represent:
- 10 Items
- 40 Items
- Criterion
Phase IIIc: Subscale assessment

• Used differential item functioning to examine measurement invariance for 40 item scale
 – No items affected by age (18-88 years old),
 – gender, or
 – Self-reported hearing loss

• Suggests scale scores are reliable across age, gender and hearing loss groups
Phase IV: VFS-AHL-10 Validation

- Sample includes 463 adults with (n=265) and without (n=198) HL
 - Data collected online and in person
- Data analyses are ongoing but initial analyses confirms high test information and good test-retest reliability
 - And sensitivity to effects of hearing loss
VFS-AHL-10: Phase III vs IV

![Graphs showing test information and standard error for Phase III and IV compared to the criterion.](image_url)
VFS-AHL-10: Test-retest reliability

- Adults with (n=55) and without (n=90) HL completed the scale twice.
- Mean time bw testing was 29 days (5-90 day range)
VFS-AHL-10 Construct Validity

• Our scale appears to have construct validity for people with hearing loss

• Along with responses to the 10-item scale we collected data using two other generic fatigue measures (POMS- Fatigue and Vigor subscales) and Fatigue Assessment Scale (FAS) and the HHIE/A.
VFS-AHL-10 and self-reported HL

- VFS-AHL-10 is sensitive to effects of self-reported HL on listening-related fatigue
- Note significant decrease in fatigue as self-reported loss increases from severe to profound

![Graph showing IRT Scale Score with error bars indicating significant differences between levels of hearing loss](image)
VFS-AHL-10: Concurrent Validity

- VFS scores show weak to moderate correlations with generic fatigue (FAS and POMS fatigue) and vigor measures.
- A stronger association is noted with perceived hearing difficulties (HHIE/A).
VFS-AHL-10: Concurrent Validity

- VFS scores show weak to moderate correlations with generic fatigue (FAS and POMS fatigue) and vigor measures.
- A stronger association is noted with perceived hearing difficulties (HHIE/A).

<table>
<thead>
<tr>
<th></th>
<th>VFS-AHL-10</th>
<th>POMS Fatigue</th>
<th>POMS Vigor</th>
<th>FAS</th>
<th>HHIE/A Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spearman's rho</td>
<td>1.000</td>
<td>.568**</td>
<td>-.343**</td>
<td>.560**</td>
<td>.841**</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>457</td>
<td>457</td>
<td>457</td>
<td>435</td>
</tr>
<tr>
<td>POMS Fatigue</td>
<td>.568**</td>
<td>1.000</td>
<td>-.589**</td>
<td>.732**</td>
<td>.549**</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>457</td>
<td>457</td>
<td>457</td>
<td>435</td>
</tr>
<tr>
<td>POMS Vigor</td>
<td>-.343**</td>
<td>-.589**</td>
<td>1.000</td>
<td>-.613**</td>
<td>-.344**</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>457</td>
<td>457</td>
<td>457</td>
<td>435</td>
</tr>
<tr>
<td>FAS</td>
<td>.560**</td>
<td>.732**</td>
<td>-.613**</td>
<td>1.000</td>
<td>.514**</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>457</td>
<td>457</td>
<td>457</td>
<td>435</td>
</tr>
<tr>
<td>HHIE/A Total</td>
<td>.841**</td>
<td>.549**</td>
<td>-.344**</td>
<td>.514**</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>298</td>
<td>295</td>
<td>295</td>
<td>281</td>
</tr>
</tbody>
</table>

**. Correlation is significant at the 0.01 level (2-tailed).
Conclusions

- Listening-related fatigue in AHL appears to be a unidimensional construct
 - Dimensionality may vary for CHL depending on the respondent (child, parent, teacher)
- The VFS-AHL (10 and 40 item versions) is an ecologically valid measure of listening-related fatigue
 - Good content validity (40 and 10 item)
 - Good construct and concurrent validity (10 item)
 - Good test-retest reliability (10 item)
Next Steps

• See our posters this Friday for more information
 – PP1345: Tired from Listening? Exploring associations between listening-related fatigue and fatigability
 – PP1144: My Ears are Exhausted! Development of a Fatigue Scale for Children with Hearing Loss

• Complete analyses of VFS-AHL-10 validation data
• Collect validation and reliability data using the 40 item scale
• Create IRT scoring algorithm and matrix for relating IRT scores and summed scores
Thanks for Listening!

Questions?

For more information check out our lab websites:

https://my.vanderbilt.edu/listeninglearninglab/

https://my.vanderbilt.edu/hearingandcommunicationresearch/