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a b s t r a c t

Positive sequential dependencies occur when the response on the current trial n is positively correlated
with the response on trial n − 1. They are observed in a Judgment of Frequency (JOF) recognition
memory task (Malmberg & Annis, 2012), and we developed a process model of them in the REM
framework (Malmberg, Holden, & Shiffrin, 2004; Shiffrin & Steyvers, 1997) by assuming that features that
represent the current test item in a retrieval cue carry over from the previous retrieval cue. We tested the
model with data that distinguish between the number of times two given items were studied (frequency
similarity) and the similarity between stimuli (item similarity), which was varied by presenting either
landscape photos (high similarity), or photos of everyday objects such as shoes, cars, etc. (low similarity).
Twomodels of item similaritywere tested by assuming that the item representations share a proportion of
features and that the exemplars fromdifferent stimulus classes vary in the distinctiveness or diagnosticity.
A comprehensive exploration of several variants of these models directly was conducted comparing BIC
and SBICR model selection statistics. The analyses establish the plausibility of the basic model of positive
sequential dependencies, which assumes that differences in the similarity of the stimuli and differences
in vigilance to the JOF task account for the pattern of sequential dependencies that we observed. They
also indicate that different decision criteria are used to classify different stimuli on the JOF scale.

© 2013 Elsevier Inc. All rights reserved.
1. Amodel of positive sequential dependencies in judgments of
frequency

Testing often assesses task performance over the course of
many test trials, andmanymodels assume the independence of the
individual tests in order for them to be valid instruments for mea-
suring or understanding. For instance, independence is required
by many statistical tests, including maximum-likelihood analyses,
analyses of variance, etc. (Anderson, 1971). Nevertheless, there
are extensively documented cases in the psychological literature
where the independence assumption does not hold. Absolute iden-
tification is perhaps the most well known example. In an absolute
identification task, a subject classifies stimuli, usually along a sin-
gle perceptual dimension, and the number of stimulus categories is
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equal to the number of mutually exclusive responses. For instance,
tones ofm different frequenciesmay be classified along anm-point
scale by assigning an integer to each stimulus. Because the map-
ping of the stimulus to the response is arbitrary and the stimuli are
similar, absolute identification requires training—and even then it
is difficult. The upshot is that errors are made in the classification
process, and these errors are non-random, violating the indepen-
dence assumption (Lacouture & Marley, 1995; Mori, 1989; Mori &
Ward, 1995; Ward & Lockhead, 1971).

Positive sequential dependencies (SDs) occur when the current
response is positively correlated with a previous response (or
stimulus), which is known as assimilation. If the response to the
current stimulus on trial n, is Sn, and the response to the previous
stimulus value on trial n − 1, is Sn−1, then assimilation is observed
when the subjects’ estimate of the current stimulus increases
as the nominal difference between successive stimuli increases.
For instance, assimilation is observed if a stimulus of category
3 is given a greater average rating following the presentation
of a stimulus from category 5 than following a presentation of
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a stimulus from category 4. A similar pattern is often observed
between the current response and the prior response (for a
discussion of these different forms of assimilation see Jones, Love,
& Maddox, 2006), and negative SDs or contrast is observed in
absolute identification, typically at lags greater than 1 and only
when feedback is provided (Ward & Lockhead, 1970).

SDs are also found in recognition memory tasks, including
detection, confidence ratings, and judgments of frequency (Malm-
berg & Annis, 2012). Assimilation is observed in yes–no recogni-
tion; Sn−1 and Sn are more likely than chance to be classified as
both studied or both unstudied. Testing recognition memory via a
judgment of frequency (JOF) is similar to absolute identification in
that it requires a mapping of m classes of stimuli to m responses;
items are studied a various number of times, and the subject re-
spondswith the number of times thewordwas presented at study.
Although they are robust, SDs in recognition memory are not yet
well understood. We therefore found it instructive in prior stud-
ies to directly compare the SD observed in JOFs to those observed
in absolute identification. For instance,Malmberg and Annis (2012,
Exp5) had subjects studywords from1 to 6 times in font sizes vary-
ing at six levels. During the course of study subjects performed an
absolute identification task, classifying the font size of the stimu-
lus. Following study, recognitionmemory was tested via JOFs. Pos-
itive SDs between the prior response and the prior stimulus and
the current response were observed for both tasks, but the pat-
terns of negative SDs observed between recognition tasks and ab-
solute identification were different, as noted above. Perhaps most
importantly, contrast was observed in absolute identification at
lags greater than 2, but contrast was only observed in the JOFs at
lag 1. Thus, similar decision structures may give rise to different
patterns of SDs, depending on the task. Moreover, it would not be
unreasonable to assume that absolute identification and JOFs do
not share the exact same mechanisms, based on the different on
different patterns of SDs that are observed. But to what extent ab-
solute identification and JOFs differ is not the goal of the current
research, rather, we seek to describe a model that captures those
patterns of SDs observed in recognition memory.

Here, we present the results of the initial investigation of the
mechanisms underlying positive SDs in recognition memory in
the form of a process-model of the JOF task conceived within the
framework of the retrieving effectively frommemory theory (REM,
Malmberg, Holden et al., 2004; Shiffrin & Steyvers, 1997). Since,
like all memory models, REM models assume that recognition is
based on the outcome of an interaction between a retrieval cue and
the contents ofmemory, themore similar the cue is to the contents
of thememory, themore familiar the stimulus seems. For a JOF, we
assumed that the greater the familiarity of the stimulus the greater
the JOF assigned to it (Hintzman, 1988; Malmberg, Holden et al.,
2004), andwe conducted a series of analyses of the hypothesis that
correlations in the information used to make successive JOFs are
the result of a carryover of the information used to probe memory
from trial to trial, perhaps as the result of lapses in attention or
vigilance. Last, the model assumes that the subject is unaware that
carryover occurs, and therefore the subject fails to discount the
cross-trial correlations in the information gleaned from memory
(cf. Huber, Shiffrin, Lyle, & Ruys, 2001).

2. A Model of judgments of frequency (JOFs)

REM assumes that lexical/semantic traces are represented as
vectors of w geometrically distributed, feature values (Shiffrin &
Steyvers, 1997). The environmental base rate of feature values
is determined by the geometric distribution parameter g . When
an item is studied, its lexical/semantic trace is activated, and t
attempts to store a feature to an episodic trace aremade. The prob-
ability that a feature will be stored on each attempt is u∗. If the
Fig. 1. The probability of value j as a function of j and the geometric distribution
parameter, g . As g decreases, the mean and variance of the density function
increase. Thus, representations become less similar and more distinctive as g
decreases.

feature is stored, it is copied correctly from the lexical/semantic
trace with probability c , otherwise the feature value stored is 0. If
the feature is not copied correctly, then the stored value is drawn
randomly from the geometric distribution: P(V = j) = g(1−g)j−1,
where j ∈ {1 . . . ∞}. Most importantly, g affects the distinc-
tiveness of the representations (Malmberg, Zeelenberg, & Shiffrin,
2004). As g increases, the mean feature value increases and the
variability of the feature values increases (see Fig. 1). Thus, when
the geometric distribution is defined by relatively low values of g ,
the representations that are created will tend to consist of a wider
variety of features values, and will therefore be more distinctive
compared to when the geometric distribution is defined by a rela-
tively high g value.

Repetitions. For the JOF task, items are studied one ormore times
on a long study list, and there are different ways to model item
repetitions (Criss, Malmberg, & Shiffrin, 2011; Shiffrin & Steyvers,
1998). The simplestmodel assumes that each study repetition of an
item results in additional storage attempts to the trace storedwhen
the item was presented the first time (Malmberg & Shiffrin, 2005;
Shiffrin & Steyvers, 1997, 1998). Therefore, the probability of stor-
ing a feature in episodic memory after studying an item r times is

P(storage) = 1 − (1 − u∗)
tr (1)

where r is the number of times an item is repeated, and t is the
number of attemptsmade at storing a feature on a given repetition.

We also considered a potentially richer encoding model in
which a new traced is created with probability, η (Malmberg,
Holden et al., 2004; Shiffrin & Steyvers, 1997, 1998). When η is 0,
a repetition will never elicit the storage of a new trace in memory,
which is the simple model just described, and when η is 1, a
repetitionwill always create a new trace.When an item is repeated
and an accumulation of information occurs in a trace stored on a
previous presentation, unstored features (i.e. features that have a
value of 0) are overwritten according to the rules described above.
We assume that for all repetitions of a stimulus, only one trace,
corresponding to that stimulus, accumulates features.

Retrieval. There are a number of ways to model retrieval
when performing recognition (see Malmberg, 2008, for a review),
and certain assumptions are necessary to achieve an appropriate
level of yes–no accuracy when the stimuli are not randomly
chosen (Malmberg, Holden et al., 2004; Malmberg & Xu, 2007;
Xu & Malmberg, 2007). However, in the present experiment,
all test items were studied, and therefore we will work with
a simple model of retrieval that assumes that the test item’s
lexical/semantic trace serves as the retrieval cue, and it is matched
in parallel to the episodic traces stored during study. For each trace,
j, a likelihood ratio, λj, is computed:

λj = (1 − c)njq
∞
i=1


c + (1 − c) g (1 − g)i−1

g (1 − g)i−1

nijm
, (2)

where, njq is the number of non-matching features in j, and nijm is
the number of matching features in episodic trace j. The value of g
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used in this calculation is the same value of g used during encoding.
The log odds are obtained from the average likelihood ratio for the
n traces compared to the retrieval cue,

φ = ln


1
n

n
j=1

λj


, (3)

where n is the number of episodic traces stored during study,
and they are next compared to a set of criteria in order to make
the JOF. How these criteria are placed has a significant impact on
qualitative predictions, and we will discuss different models of
criterion placement in subsequent sections.1

Carryover. We refer to this model of assimilation as the carry-
over model. It shares a key assumption with several models of ab-
solute identification; the information on which a decision is made
on trial n − 1 is not independent of the information in which the
decision on trial n is made (Brown, Marley, Donkin, & Heathcote,
2008; Petrov & Anderson, 2005; Stewart, Brown, & Chater, 2005).
On each trial, there is a probability, 1 − a, that a carryover pro-
cess occurs in which each feature from the retrieval cue on trial n
carries over to the retrieval cue on trial n + 1 with probability b.
Therefore, as a increases, the number of trials in which carryover
occurs decreases. If a = 1, then no carryover occurs and b is irrel-
evant. Similarly, when b = 0, the a parameter is irrelevant and the
carryover process does not occur. In both of these cases, the model
reverts to the Shiffrin and Steyvers (1997) model.

A tacit assumption of the model is that the subject fails to dis-
count the information carrying over from trial-to-trial (cf. Huber
et al., 2001). The failure to discount the carryover produces assim-
ilation. For example, imagine that a subject carries over all the fea-
tures from trial 1 to trial 2. They then globally match the features
in the retrieval cue to the contents in memory (see Eq. (2)) and
generate an odds value (see Eq. (3)). In this case, the odds value on
trial 2 is equal to the previous odds value on trial 1. Thus, the sub-
ject makes the same response on trial 2 as he or she did on trial 1.
Let us say, on trial 3, however, the subject refreshes their retrieval
cue and does not carry over any features from trial 2. In this case,
the subject is free from any influence of previous trials and makes
a response that is independent of all other responses. Therefore, if
the subject refreshes their retrieval cue on every trial, all responses
would be independent. This is the assumption made in the origi-
nal Shiffrin and Steyvers (1997)model andwould only occur in the
current model when the refresh parameter takes on the value of 1
or b takes on a value of 0.

JOFs. The JOF decision mechanism proposed by Malmberg,
Holden et al. (2004) assumes that the log odds on each trial are
compared to a set of decision criteria. These criteria are generated
according to the equation:

Ck = αk + β, (4)

where Ck is the criterion associated with the JOF k, where k =

1 . . . n, α is the slope, and β is the intercept. The log odds are
compared to the set of criteria. The JOF corresponds to the value k
associated with the greatest criterion exceeded. If the odds do not
exceed any criteria, the JOF corresponds to the value k associated
with minimum criterion value.

Although biased guessing may not be a general characteristic
of the JOF paradigm, when the items are generally unfamiliar,
it is quite possible that participants may make use of the entire
response scale rather than always responding with low JOFs since

1 For binary old–new recognition, when the log odds are greater than 0, an ‘‘old’’
response is given. Accordingly, the average hit rates are greater and the average
false-alarm rates are lower for items generated from a geometric distribution with
a relatively low g value and for items repeated relatively frequently at study.
they are aware that some items were presented several times.
Hence, a guessing mechanism was implemented that assumes
there is a probability, γ , that the participant will randomly choose
a response on the upper half of the response scale on trials where
the log odds fall below the middle criterion. For example, if the
response scale ranges from 1 to 6, and the log odds fall below the
criterion associated with the JOF of 3, there is a probability, γ ,
that the participant will randomly choose, according to a uniform
distribution, 4, 5 or 6. When γ is 0, no guessing occurs.

Modeling stimulus similarity. In prior JOF studies, the similarity
of the stimuli has been shown to be critical (Hintzman, Curran, &
Oppy, 1992;Malmberg, Holden et al., 2004). In ourmodel of recog-
nition memory, increasing the similarity of the items decreases
their discriminability, and itwould be impossible to distinguish be-
tween the items presented one time versus 6 times at the upper
limit. We refer to this as item similarity.2 Hence, we expected that
amanipulation of item similarity would result in decreased JOF ac-
curacy and increases in SDs, since the model predicts correlations
among adjacent responses during testing to the extent that their
episodic representations and retrieval cues are comprised of simi-
lar sets of features. Independent of item similarity is the dimension
on which the JOFs are made, which is the unidimensional familiar-
ity value, φ, obtained from the global-matching retrieval process
(Eq. (2)). Each repetition condition produces a distribution over φ,
and the more similar the number of times test items are studied,
the greater the categorical prototype of their respective distribu-
tions. We refer to this dimension as frequency similarity. Frequency
similarity is related to SDs to the extent that greater frequency sim-
ilarity between adjacent test items leads to a greater correlation in
the adjacent responses at test.

Here,we consider twomodels of item similarity. The firstmodel
that we consider assumes that a proportion of feature values were
shared among traces in memory. In order to generate similar
traces, a vector, P , was filled with feature values according to
the geometric process outlined above. For each additional vector,
A, P(Ai = Pi) = s, where i is the index of the element of the vector.
Thus, as the parameter s increases, the proportion of features
shared between two representations increases. The second model
assumed that the distribution of feature values differed in terms
of the g parameter. The g parameter models the environmental
base rate of feature values. Note that low base rates correspond
to highly distinctive or diagnostic features whereas high base
rates generate feature values that are less diagnostic. In terms
of computation, as the g parameter increases, the distribution
of feature values becomes positively skewed, as shown in Fig. 1.
The key distinction between these two models is that the latter
model assumes that less similar stimuli not only overlap less
in the representations, but less similar representations are also
comprised of more diagnostic or uncommon features and are
more distinctive representations (Malmberg, Steyvers, Stephens,
& Shiffrin, 2002; Shiffrin & Steyvers, 1997). Note that these models
need not bemutually exclusive andwewill therefore also consider
the more complex model in which both s and g are used to create
systematic variability in item similarity.

2 Compare this to a typical absolute identification experiment, where the stimuli
always vary in similarity only along some perceptual dimension, and this variable
will be positively related among adjacent stimuli only to the extent that the stimuli
are perceptually similar to each other. In absolute identification, the effect of
similarity is twofold: Increases in similarity lead to both a decrease in accuracy and
an increase in positive SDs (McGill, 1957; Mori, 1989; Ward & Lockhead, 1971).
In recognition memory testing, however, it is important to distinguish between
frequency similarity and the similarity with which items are represented and the
similarity of the items. The representation of two items may be very different (e.g.,
DOG and TRANSITOR), but the information that they elicit frommemorywould tend
to be similar when studied the same number of times.
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Fig. 2. Sample of items presented to participants in the landscape and object condition.
3. Experiment

The carry over model creates positive sequential dependencies
in recognitionmemory testing because the information onwhich a
decision is made from trial to trial is correlated. However, it is un-
clear whether the carryover model can provide a qualitatively ac-
curate account for assimilation among JOF responses. To assess the
carryover model, we sought a reasonably complex and challenging
set of data that allows us to distinguish between frequency simi-
larity and item similarity. For this reason, we presented subjects
with items that were either high or low in item similarity with
photos of landscapes (e.g. mountains, sunsets, fields etc.) corre-
sponding to high similarity items, and photos of everyday random
objects (e.g. shoes, chairs, cars etc.) corresponding to low similarity
items. Fig. 2 shows a sample of the items presented. To manipu-
late frequency similarity, the items in both conditions were pre-
sented from 1 to 6 times during study, and JOFs were collected to
test recognition memory. We speculated that the degree to which
information carries over from trial to trial during the course of test-
ing may fluctuate due to the ability of the subject to maintain an
optimal level of vigilance when performing the task.

4. Method

4.1. Subjects

One-hundred-and-ten undergraduate students at the Univer-
sity of South Florida participated in exchange for course credit.

4.2. Design and materials

Repetitions were manipulated within subjects and within lists,
and similaritywasmanipulated between subjects. Similarity of the
stimuli were manipulated by presenting either landscape photos
(high similarity), or photos of everyday objects such as shoes, cars,
etc. (low similarity). The 240 color object images consisted of ev-
eryday inanimate objects such as shoes, chairs, motor vehicles,
clocks, food, kitchenware, candles etc., while the 240 color land-
scape images consisted of sunsets over beaches, mountains, par-
ries, etc. Four lists of 60 images eachwere studied. The imageswere
drawn randomly and anew for each subject from the 240 images
described above. Within each list, 10 images were presented for
1.0 s, either once, twice, three, four, five, or six times with at least
1 intervening image between each repetition. Because wewere in-
terested in comparing the patterns of SDs in absolute identification
to a recognition task, we did not use distractor items. Each test list
consisted of the 60 images presented at study. 55 subjects com-
pleted the object condition, and 55 subjects completed the land-
scape condition.

4.3. Procedure

Subjects studied four lists of images and performed amath task
after each. The math task consisted of mentally adding digits for
30 s. Upon completion of themath task, each image from the study
list was presented one at a time, and the subject’s task was to in-
dicate howmany times the word was studied by typing the appro-
priate number into the computer using the numerical keys 1–6.

5. Results

Proportion of correct responses. A 2 (stimulus type: objects vs.
landscapes) ×6 (number of presentations) omnibus ANOVA was
conducted with stimulus type as a between subjects factor and
the number of presentations as a within subjects factor. Panel E
of Fig. 3 shows the proportion of correct responses was greater in
the object condition than in the landscape condition, F(1, 108) =

122.57,MSE = 0.03, p < 0.0005, η2
p = 0.53. There was a main

effect of the number of presentations on accuracy, F(5, 540) =

104.10, MSE = 0.161, p < 0.0005, η2
p = 0.49, and the stimu-

lus type interacted with the number of presentations, F(5, 540) =

8.19,MSE = 0.02, p < 0.0005, η2
p = 0.07. To investigate the

interaction, a trend analysis was conducted. The linear trend for
the object condition was significant, F(1, 54) = 56.74,MSE =

0.05, p < 0.0005, η2
p = 0.51, as well as in the landscape condi-

tion, F(1, 54) = 81.37,MSE = 0.03, p < 0.0005, η2
p = 0.60.

The quadratic trends for the object condition, F(1, 54) = 138.47,
MSE = 0.05, p < 0.0005, η2

p = 0.72, and landscape condi-
tion were also significant, F(1, 54) = 27.12, MSE = 0.03, p <
0.0005, η2

p = 0.33. As the number of presentations increases, the
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Fig. 3. Panels A, and B show the model fits for the error on current trial as a function of the previous response, while panels C, and D show the error on the current
trial as a function of the previous stimulus. Panel E shows the model fits of the proportion correct as a function of the number of presentations. Panel F shows the
model fits for accuracy (d′

i,i+1) as a function the number of presentations, i. The model parameters varied were g, s, and a. The parameter estimates for objects were
g = 0.46, s = 0, and a = 0.85. The parameter estimates for landscapes were g = 0.51, s = 0.54, a = 0.50. Parameters values held constant: b = 0.8, c = 0.75,
t = 18, u = 0.01, w = 50, α = 4.5, β = −4.5, η = 0, γ = 0.
proportion of correct responses decreases in a nonlinear fashion
until the number of presentations equals 6, where the proportion
of correct responses again increases. However, the trough for mid-
dle range of frequencies was shallower in the landscape condition
than in the object condition.

JOF accuracy. To measure JOF accuracy, d′

i,i+1 was calculated for
each stimulus i and i + 1 (Luce, Nosofsky, Green, & Smith, 1982)
in order to measure the ability of the subject to discriminate items
that are adjacent to each other on the frequency dimension. For in-
stance, d′

2,3 is ameasure of the ability of the subject to discriminate
between items presented two versus three times. Panel F of Fig. 3
plots d′

i,i+1 as a function of the number of presentations, i, and the
stimulus condition. A 2 (stimulus type: objects vs. landscapes) ×5
(number of presentations i) omnibus ANOVA revealed JOFs were
more accurate for objects than landscapes, F(1, 108) = 101.30,
MSE = 0.30, p < 0.0005, η2

p = 0.48, and while there was a main
effect of the number of presentations i, F(4, 432) = 21.08,MSE =

0.14, p < 0.0005, η2
p = 0.16, d′

i,i+1 more steeply declined with
increases in the number of presentations in the object condition
than in the landscape condition, F(4, 432) = 18.29,MSE = 0.14,
p < 0.0005, η2

p = 0.15. Comparing Panel E to Panel F of Fig. 3, one
therefore concludes that much of the bow observed in the propor-
tion of correct responses in the landscape condition is due to range
restrictions affecting biases in decision making, whereas the bow
observed in the object condition is associated with changes in the
ability to discriminate between the number of times that the ob-
jects were presented.

Assimilation. Panels A and B of Fig. 3 plot the mean error on trial
n as a function of the current stimulus and the prior response. In
order to ensure that there would be enough data for the analysis,
we binned the responses 1 and 2, 3 and 4, and 5 and 6. One subject
from the object conditionwas excluded from the following analysis
because they did not make every type of response for each current
stimulus and prior response combination. A 2 (stimulus type)
×3 (current stimulus) ×3 (previous response) omnibus ANOVA
was conducted. There were main effects of the stimulus type,
F(1, 107) = 17.59, MSE = 42.80, p < 0.0005, η2

p = 0.14, and
the current stimulus, F(2, 214) = 1140.79,MSE = 0.38, p <
0.0005, η2

p = 0.914; as the number of times a stimuluswas studied
decreased, the overestimate of the JOF increased. There was also
a main effect of previous response on the mean error on trial
n, F(2, 214) = 180.53,MSE = 0.13, p < 0.0005, η2

p = 0.628;
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as the JOF given on the prior trial increased, the JOF on the current
trial tended to increase. That is, positive SDs (i.e. assimilation)were
observed toward the previous response. There was a significant
interaction between the current stimulus value and the stimulus
type, F(2, 214) = 121.82,MSE = 0.38, p < 0.0005, η2

p = 0.53,
such that there was a greater underestimation of large stimulus
values in the landscape condition than in the object condition.
There was no previous response by stimulus type interaction,
F(2, 214) = 2.61,MSE = 0.27, p = 0.076. There were no other
significant interactions.

Panels C and D of Fig. 3 plot the mean error on trial n as a
function of the current and prior stimulus. A 2 (stimulus type) ×3
(current stimulus) ×3 (previous stimulus) omnibus ANOVA was
conducted. There was a main effect of stimulus type, F(1, 108) =

17.74, MSE = 2.98, p < 0.0005, η2
p = 0.14, such that the mean

error in the object condition, (M = −0.24), was higher than in
the landscape condition, (M = −0.72). There were also main ef-
fects of the number of presentations, F(2, 216) = 1153.89,MSE =

0.38, p < 0.0005, η2
p = 0.914, and the prior stimulus, F(2, 216) =

13.94,MSE = 0.09, p < 0.0005, η2
p = 0.11. There was a signifi-

cant previous stimulus by stimulus type interaction, F(2, 216) =

4.80, MSE = 0.09, p < 0.01, η2
p = 0.04, current stimulus by pre-

vious stimulus interaction, F(4, 432) = 9.90,MSE = 0.08, p <
0.005, η2

p = 0.08 and a current stimulus by previous stimulus by
stimulus type interaction, F(4, 432) = 4.15,MSE = 0.08, p <
0.01, η2

p = 0.04. However, these interactions are qualified below.
The previous response and the previous stimulus are con-

founded (Jones et al., 2006), and one simple way to decouple
the previous stimulus from the previous response is to hold the
previous stimulus constant and only let the previous response
vary. We binned the data as described above and conducted a
2 (stimulus type) ×3 (current stimulus) ×3 (previous stimulus)
×3 (previous response) omnibus ANOVA in order to account for
these effects. We again found no main effect of the stimulus type,
F(1, 25) = 3.99,MSE = 3.99, p = 0.057, η2

p = 0.14, a main
effect of the current stimulus, F(2, 50) = 257.47,MSE = 5.50,
p < 0.0005, η2

p = 0.91, a main effect of the previous response,
F(2, 50) = 34.22,MSE = 0.79, p < 0.0005, and no main effect
of the previous stimulus, F < 1. There was a previous stimulus
by current stimulus interaction, F(4, 100) = 3.13,MSE = 1.61,
η2
p = 0.11, such that as the previous and current stimulus value in-

creased, the error on the current trial becamemore negative. Thus,
when the effects of the previous stimulus and response were con-
sidered independently, negative SDs away from the immediately
previous stimulus were observed.

6. Modeling results

We began with six models, identified by all combinations of
the a, g , and s parameters. The a parameter governs the tendency
to carry over features from the previous retrieval cue to the next,
and the g and s parameters determine the geometric distribution
from which features are drawn and the overlap in features
between stimuli, respectfully. The measures of absolute and
relative goodness of fit obtained from themodel fitting procedures
are listed in Table 1. In addition to using the traditional BIC and
AIC measures, we employed a criterion, known as the Schwartz
Bayesian Information Criterion R (SBICR; Dudley & Haughton,
1997) that extends the commonly used BIC to situations in which
one model is being fit to two independent datasets while varying
the same set of parameters. The model with the largest SBICR is
thewinningmodel. Themethods used to obtain these statistics are
described in the Appendix. The SBICR and BIC both resulted in the
exact same ranking for all of the models.

The first set of simulations reveals that the best fit (i.e., the
model with the largest SBICR, and lowest BIC and AIC) was pro-
vided by the model in which all three of the parameters were
Table 1
Lists the negation of the log-likelihoodmultiplied by 2, X2 , degrees of freedom (df ),
Akaike’s Information Criterion (AIC), the Schwartz Bayesian Information Criterion
R (SBICR) and the Bayesian Information Criterion (BIC). The table is sorted by BIC.
Both the SBICR and BIC are in agreement.

Free
parameters

ln L df X AIC SBICR BIC

a, g, s, α, β, c, γ −3419.85 15.00 17.31* 6853.69 −3458.57 6896.15
a, g, s, α, β, c −3432.27 17.00 42.16 6876.54 −3465.46 6912.93
a, g, s, α, β, η −3447.22 17.00 72.06 6906.45 −3480.42 6942.84
a, g, s, α, β −3460.03 17.00 97.67 6930.05 −3487.69 6960.38
a, g, s −3480.77 23.00 139.15 6967.53 −3497.36 6985.73
a, g −3491.08 25.00 159.77 6986.16 −3502.14 6998.29
a −3506.45 27.00 190.52 7014.90 −3511.98 7020.96
g, s −3502.94 25.00 183.49 7009.88 −3514.00 7022.01
a, s −3506.45 25.00 190.52 7016.90 −3517.51 7029.03
g −3543.37 27.00 264.36 7088.74 −3548.90 7094.81
s −3745.11 27.00 667.84 7492.22 −3750.64 7498.29

Note: The SBICR was based on 1595 data points from the landscape condition and
1586 data points from the object condition. The BIC was based on 3181 data points.

* Indicates p > 0.05.

free to vary between conditions (BIC = 6985.73; AIC = 6967.53;
SBICR = −3497.36); Fig. 3 shows the best fit of the a, g, s model
to the SDs and to the JOFs. The g , and s parameters were higher
and the a parameter was lower in the landscape condition than in
the object condition. This suggests that testing more similar stim-
uli inspired less vigilance from the subjects, and thus more car-
ryover, and, most importantly, the most accurate models of the
models considered take into account the sequential dependencies
observed in JOFs.

These statistics are only useful for relative comparisons, and
although the SDs are described by these simple models in
both stimulus conditions, the eye-ball method is sufficient for
determining that even the best fitting model is inadequate to
account for the effect of stimulus type on the accuracy of the JOFs.
Panels E and F of Fig. 3 show the best fit of the a, g, s model to
the percent correct and the accuracy data, which is obviously quite
poor; the model overestimated the bow curve and the accuracy
function in the landscape condition and underestimated the bow
curve and the accuracy function in the object condition. Hence, our
conclusions based on this initial analysis are made provisionally
and subject to revision given the need for a more complex model
since it is quite possible that the carryover parameter is varying
between stimulus conditions only because a more appropriate
assumption has not yet been considered. Therefore, we will next
consider three additional factors that might influence JOF accuracy
in the different stimulus conditions.3 One possibility is that there
were different biases in themanner that the stimuliwere classified.
It is also possible that the objects and landscapes differed in
how well they were encoded during study. Last, some of variance
between conditions was undoubtedly due to random factors or
noise. We consider each of these possibilities in turn in order to
determine whether they help account for JOF performance.

Biases in JOF decisions. The overestimate of the bow curve
and the accuracy function in the landscape condition and the
underestimation in object conditionmay be due to the fact that the
relationships between the underlying distributions of familiarity
were quite different, but the same set of decision criteria were
used to classify the stimuli in both stimulus conditions. Specifically,
the means of the familiarity distributions are very compressed in

3 It is important to note that because SDs are assumed to affect responses across
all stimulus conditions and across all repetition conditions, that SDs do not have an
overall effect on recognition accuracy. For instance, an old response to a target has
the same relationship to the next response regardless of whether a target or foil is
tested (Malmberg & Annis, 2012), and same holds across other dimensions of the
stimuli.
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Fig. 4. Panels A, B show the model fits for the error on current trial as a function of the previous response, while panels C, and D show the error on the current trial as
a function of the previous stimulus. Panel E shows the model fits of the proportion correct as a function of the number of presentations. Panel F shows the model fits
for accuracy (d′

i,i+1) as a function the number of presentations, i. The model parameters varied were g , s, a, α, and β . Parameter estimates for objects: g = 0.22, s =

0.09, a = 0.79, α = 7.16, β = −3.39. Parameter estimates for landscapes: g = 0.65, s = 0.50, a = 0.67, α = 3.45, β = −3.66. Parameters values held constant:
b = 0.8, c = 0.75, t = 18, u = 0.01, w = 50, η = 0, γ = 0.
the landscape condition, which is certainly one factor that affects
accuracy. Therefore, it is possible that restricting themodels to use
the same decision criteria would lead to suboptimal JOFs in one or
both stimulus conditions. For instance, if the lower criteria used
to classify the objects were too conservative for the classification
of the landscapes, then subjects would tend to underestimate the
frequency with which landscapes were repeated.

To explore this possibility, we added the decision parameters,
α and β , to the a, g, s model and allowed them to vary freely
between stimulus conditions. The fits of the model are shown in
Fig. 4. Table 1 shows that thesemodifications improved the qualita-
tive and quantitative fits (BIC = 6960.38; AIC = 6930.05; SBICR =

−3487.69). Themodel provided a significantly better fit to the data
than the simpler a, g, s model, X2(2) = 41.48, p < 0.01. Never-
theless, as shown in Panel F Fig. 4, themodel still overestimated the
accuracy in the landscape condition. It is also interesting to note
that the difference in the carryover parameter observed between
the two stimulus conditions decreased, compared to the simpler
model, suggesting that the strain to account for difference in JOF
accuracy by the simpler model was artificially being captured by a
change in SDs.
Differences in encoding. Two different models of encoding were
considered. The first model varied the way traces are stored in
memory. For example, it is possible that traces do not always
accumulate in the same trace on each repetition and instead a new
trace is formed. Thiswasmodeledwith the η parameter. Therefore,
this model varied the a, g, s, α, β , and η parameters between
conditions. The second encoding model varied the accuracy of
encoding. In REM, this is governed by the c parameter. Therefore,
in this model, the a, g, s, α, β , and c parameters were all free to
vary between conditions.

The results of the model fitting procedure, shown in Table 1,
revealed that both the models in which c and η were varied im-
proved the fits over models that did not consider variations in
encoding across stimulus conditions, X2(2) = 55.51, p < 0.01
and X2(2) = 25.61, p < 0.01, respectively. However, varying c
was shown to improve the fit of the model (BIC = 6912.93; AIC =

6876.54; SBICR = −3465.46) more so than when η was allowed
to vary (BIC = 6942.84; AIC = 6906.45; SBICR = −3480.42). The
accuracy of encoding decreased from the object to the landscape
condition, while the amount of new traces formed, increased from
object to the landscape condition. The fits of the model in which c
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Fig. 5. Panels A, B show the model fits for the error on current trial as a function of the previous response, while panels C, and D show the error on the current trial as
a function of the previous stimulus. Panel E shows the model fits of the proportion correct as a function of the number of presentations. Panel F shows the model fits
for accuracy (d′

i,i+1) as a function the number of presentations, i. The parameter estimates varied were g, s, a, α, β , and c . The parameter estimates for landscapes were
g = 0.66, s = 0.17, a = 0.68, α = 1.49, β = −3.09, c = 0.51. Parameter estimates for objects (same as in Fig. 4): g = 0.22, s = 0.09, a = 0.79, α = 7.16, β = −3.39.
Parameters values held constant: b = 0.8, t = 18, u = 0.01, w = 50, η = 0, γ = 0.
was varied are shown in Fig. 5. Note that for the object condition,
wewere unable to identify parameter estimates that improved the
fit of themodel over the previously consideredmodel in which en-
coding was not varied.

Random influences. Finally, a guessing mechanism, outlined
above, was implemented, governed by the γ parameter. The fits of
themodel are shown in Fig. 6. Therefore, this model involved vary-
ing the following parameters: a, g, s, α, β, c , and γ . Subjects were
more likely to guess when in the landscape condition than when
in the object condition. This model was shown to provide the best
qualitative and quantitative fit to the data. Themodel obtained the
highest SBICR (−3484.37), lowest BIC (6896.15) and AIC (6853.69),
and provided a significantly better fit than the next best model,
X2(2) = 24.85, p < 0.01. Note that in this model there is virtu-
ally no difference in the carryover parameter between the stimu-
lus conditions, even though it was free to vary. The differences in
accuracy between the stimulus conditions were better handled by
changes in the guessing parameter. The model was able to quan-
titatively fit the object data, X2(22) = 3.36, p > 0.05, and the
landscape data, X2(22) = 13.94, p > 0.05.

The model also fits another more subtle aspect of the data. For
objects, the difference in error magnitudes between stimuli on the
current trial increases with stimulus frequency. For example, the
error magnitude difference between the stimuli presented once
and twice is lower than the error magnitude difference between
stimuli presented five and six times. This is not the case in the
landscape condition. The difference in error magnitude is constant
across stimulus frequencies. Themodelwas able to capture the dif-
ferent trends in the landscape and object conditions. The model
was not specifically designed to behave in such a manner, rather
the behavior stems from a small number of reasonable assump-
tions about the nature of human memory and the decisional pro-
cesses involved.

7. General discussion

We devised an account of sequential dependencies (SDs) in
recognition testing that produces a systematic error in the signal
obtained from memory. The noise is produced by a process which
is referred to as carryover, since it is assumed that a certain propor-
tion of features representing the consecutively tested items some-
times carry over from trial to trial. Carryover was implemented
within the REM framework, and we tested several recognition
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Fig. 6. Panels A, B show the model fits for the error on current trial as a function of the previous response, while panels C, and D show the error on the current trial as
a function of the previous stimulus. Panel E shows the model fits of the proportion correct as a function of the number of presentations. Panel F shows the model fits for
accuracy (d′

i,i+1) as a function the number of presentations, i. The parameter estimates varied were g, s, a, α, β, c , and γ . The parameter estimates for landscapes were
g = 0.49, s = 0.41, a = 0.75, α = 1.77, β = −1.78, c = 0.43, γ = 0.12. Parameter estimates for objects: g = 0.39, s = 0.00, a = 0.80, α = 6.69, β = −4.65, c =

0.86, γ = 0.03. Parameters values held constant: b = 0.8, t = 18, u = 0.01, w = 50, η = 0.
models that differed significantly in complexity with JOF data ob-
tained from an experiment in which both stimulus similarity and
item similarity were varied. Our analyses indicate that the carry-
over model is an adequate account of the positive SDs in JOFs, and
assumptions concerning encoding anddecisionmaking differences
are required to account for the effect of item similarity in the accu-
racy of JOFs.

Carryover in the broader context. One way to interpret the
carryover model is that vigilance or attentional control is required
during recognition testing (cf. Jacoby, 1991), and especially during
lapses of attention, the information used tomake prior recognition
decisions is erroneously combined with the information used
to make a new decision. Part of the evidence to support this
assumption is that the fitting procedure suggested that carryover
only occurred on about 20%–30% of the trials; post hoc attempts to
fit the model on the assumption that carryover occurred on every
trial were unsuccessful. Hence, we speculate that periodic lapses
of attention introduce systematic forms of noise in recognition
memory testing, and this noise deflects the present response in
the direction of prior response because the subject is unaware that
the signal received from memory consists of noise in the form of
information about the prior occurrence of earlier items in addition
to information about the prior occurrence of the current test item.
The fact that positive SDs are seemingly ubiquitous in recognition
testing (Malmberg & Annis, 2012), and they varied little between
stimulus conditions when measured via the carryover parameter,
but other parameters did, suggests within the framework of our
model that lapses in attention are a relatively general characteristic
of recognition testing.

Many recent models of absolute identification also assume that
positive SDs arise from information that carries over from trial-
to-trial (Brown et al., 2008; Petrov & Anderson, 2005; Stewart
et al. 2005), and one might speculate that these models would be
useful for accounting for recognition memory testing. However,
the SDs found in recognition testing are different than those found
in absolute identification (Malmberg & Annis, 2012), and therefore
it is unclear how useful models of absolute identification would
be in accounting for JOFs since those models make no predictions
concerning the performance of other tasks. It is, of course, possible
that positive SDs in absolute identification are also related to lapses
in attention during perceptual testing.

In contrast, the framework within which we work accounts for
dozens of episodic memory phenomena, and we generalized some
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assumptions from related REM models. For instance, in develop-
ing our model of positive SDs, we noted that there is a strong
relationship between short-term recognition and long-term recog-
nition (e.g., Nelson & Shiffrin, 2013). In fact, the carryover mecha-
nism we proposed is inspired by short-term recognition findings
that suggest features representing different items presented in a
temporal sequence get combined at a cognitive level of represen-
tation without the subject’s knowledge (Huber et al., 2001; San-
born, Malmberg, & Shiffrin, 2004). Hence, our carryover model can
be straightforwardly viewed as an extension of the ROUSE short-
term recognition model, implemented in a REM long-term recog-
nition framework. The carryover model is also an extension of the
JOF model used to account for the interactions of normative word
frequency, item similarity, and repetitions observed in recognition
testing (Malmberg, Holden et al., 2004), which assumed thatword-
frequency was correlated with the distinctiveness of the features
used to representwords (Malmberg et al., 2002; Shiffrin& Steyvers,
1997), and that item similarity is varied by manipulating the pro-
portion of shared features among items constructed from a given
base rate distribution of feature values.

There are several models that assume that the nature of
stimuli affects the allocation of attentional resources during the
study phase (DeCarlo, 2002, 2007; Howard, Bessette-Symons,
Zhang, & Hoyer, 2006; Maddox & Estes, 1997; Malmberg &
Murnane, 2002). For instance, several models assume that rare
words attract more attention than common words when they are
studied (see Malmberg & Nelson, 2003, for a review). In REM,
rare words are distinguished from common words by lowering
the g parameter, thereby making the features more distinctive
(Malmberg, Zeelenberg et al., 2004). Intuitively speaking, object
photographs would likely contain more distinctive features
than landscape photographs on average. Indeed, this intuitive
assumption is corroborated by the best fitting models involving
variations in the g parameter across stimuli. On this note, it may
not be overly surprising that lapses in attention would be slightly
more prevalent during testing in the landscape condition than
in the object condition, but the difference between the current
data and previous findings is that variations in vigilance across
stimuli were found at test, while this effect has been speculated
to only occur at study, and of course, SDs cannot be explained by
fluctuations in the attention during study, since the order in which
items were tested was determined randomly (also Malmberg &
Annis, 2012).

Stimulus versus item similarity. JOFs are particularly interesting
because the similarity of stimuli may be varied along dimensions
on which the JOF is made (i.e., number of presentations) and along
dimensions that are independent of the JOF scale. Test items vary
in the extent to which they are perceptually or semantically sim-
ilar and they vary to the extent that they were presented similar
number of times during study. This aspect of recognition memory
testing distinguishes it from perceptual testing using the absolute
identification procedure where only the dimension on which the
stimuli are judged at test distinguish the class of items tested. The
present experiment varied the stimuli on both dimensions by us-
ing highly similar landscape photos in one condition and dissimilar
object photos in the other condition. Hence, the challenge of the
model was to simultaneously account for both, and the empirical
questionwas how item similaritywould affect SDs in JOF. Although
we observed a large drop in accuracy in the landscape condition,
we did not observe an increase in assimilation. This was an un-
expected finding insofar as SDs are only obtained when accuracy
is compromised, and therefore the present finding is a challenge
for any model of SDs. In absolute identification tasks, for instance,
increased stimulus similarity causes accuracy to decrease and as-
similation to increase (McGill, 1957;Mori, 1989;Ward& Lockhead,
1971).
Three correlates of item similarity. There were three factors
besides the similarity of stimuli and variability in the amount of
carryover that we found necessary to model in order to account
for the accuracy of the JOFs. According to the model, there is
variability in the amount of feature overlap and the number of
times items were presented, and these differences influence the
distribution of odds values in each condition. There is therefore
no single optimal set of decision criteria for all conditions of the
experiment, and it is natural to assume, therefore, that subjects
vary their decision criteria when presented with these different
distributions of odds values. By varying the decisional criteria, the
model was shown to provide a better fit to the data than when
assuming the criteria stay constant across stimulus conditions. In
addition, the best fittingmodel indicated that encodingwas noisier
in the landscape condition than in the object condition. This is an
interesting result, as there is a large body of evidence that shows
the amount of attention a stimulus receives is positively related
to the strength of the encoded trace and stimuli that possess
more distinctive features receive more attention on average (see
Malmberg & Nelson, 2003, for a review), but there does not appear
to be such differences in vigilance associated with recognition
testing insofar as the positive SDs were about the same in the
landscape and object conditions. Last, we considered the influence
of guessing. We assumed that subjects make use of the entire
response scale. For example, the subject knows that they were
presented with a number of stimuli that were presented six times.
However, if the odds values are consistently low, as was the case
in the landscape condition, subjects may systematically respond
with a higher JOF than would otherwise be elicited to ensure that
the entire response scale is being utilized.

Negative sequential dependencies. We also observed that the
error on the current trial became more negative as the previous
and current stimulus value increased (also Malmberg & Annis,
2012). On each trial, the JOF given by the subject corresponds to
the greatest criteria exceeded by the log odds value, and the log-
odds range from negative infinity to positive infinity. Therefore,
for every set of criteria that exists, one must consider the special
case of a log-odds value falling below the lowest criterion. In fact,
the log-odds associated with an item may fall below zero, which
suggests that subjects did not recognize its prior occurrence.When
the subject does not have evidence that the item was studied, he
may simply map these log-odds values to the lowest criterion.
Because most stimuli in the current experiment were presented
more than one time, this type of decisional mechanismwould lead
to a systematic underestimation of stimuli that were presented
more than once. That is, the error on the current trial would
become more negative as the stimulus value increased, which is
a negative sequential dependency at the lag which we observed
here and elsewhere (Malmberg & Annis, 2012).

8. Conclusions

Although it is not without some detractors (Treisman &
Williams, 1984), a consensus is emerging that positive sequential
dependencies in cognitive testing are attributable to the persis-
tence of information across trials. Here we presented a carryover
model of positive sequential dependencies in recognition testing
that accounts for the positive SDs found in JOFs during recognition
memory testing. Ourmodel is different from those found in the ab-
solute identification literature in that carryover is only thought to
occur on a small subset of trials,whereas carryover occurs on all tri-
als in models of absolute identification (Brown et al., 2008; Petrov
& Anderson, 2005; Stewart et al. 2005). We speculate within the
present framework that carryover is the result of lapses of atten-
tion during recognition testing.
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Appendix. Fitting methods

When choosing the constant parameter values,we simply chose
‘‘default REM’’ starting values that allowed the model to behave
in a reasonable manner based on dozens of other simulations that
we have reported over the years and qualitatively fit both condi-
tions equally well. When assessing the role of more complex as-
sumptions, we borrowed the best fitting parameter values from
the prior simulations in order to determine how the additional
assumptions may tune themodel’s fit to the data better. It is possi-
ble that other constant values could have been chosen. After defin-
ing the constant and initial parameter values, the Particle Swarm
Optimization algorithm (PSO; Trelea, 2003) was used to estimate
the maximum of the likelihood function. The PSO technique was
used because of the high-dimensionality of the parameter space
and the large number of local minima. PSO is a suitable algorithm
to use for such instances (Trelea, 2003). If the error gradient did not
change by a tolerance of 1 × 105 for 20 iterations, the PSO algo-
rithm would stop and report the parameter estimates. To ensure a
stopping point for the PSO procedure, a maximum of 100 objective
function evaluations were allowed. On each iteration of the PSO
algorithm, 30 ‘‘particles’’, each representing a set of parameter val-
ues, were evaluated. Thus, the PSO algorithm evaluated 3000 dif-
ferent sets of parameter values in total. Each evaluation consisted
of 100 simulated subjects who completed 10 lists.

In order to evaluate the goodness-of-fit, the Likelihood Ratio
Test (LRT) was used according to Eq. (A.1).

G2
= −2 ln Lspecific − (−2 ln Lsaturated). (A.1)

The G2 statistic is distributed with K degrees of freedom where K
refers to the number of extra parameters in the saturated model.
Lspecific is the log-likelihood of the model in question, and Lsaturated
is the log-likelihood of the saturated model. The saturated model
contains a parameter for each data point. The log-likelihood for the
saturated model is calculated by Eq. (A.2).
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where xi is the ith data point, u is themean of the data. The specific
model’s log-likelihood is calculated similarly, but instead of using
the mean of the data as u, the mean of the model’s prediction is
used.

An extension of the Schwartz Bayesian Information Criterion
(SBIC; Schwartz, 1978), known as Schwartz Bayesian Information
Criterion R (SBICR; Dudley & Haughton, 1997), was used in the
model selection process. This criterion is used when it is necessary
to select a single model given multiple independent datasets for
which the parameters may vary. For example, if there are 2 inde-
pendent datasets and a model was fit to both datasets by varying
the same set of parameters, the SBICRwould be an appropriate cri-
terion to select the best model. While it is possible to calculate the
BIC for a single dataset, thismay result in different winningmodels
for each dataset. The SBICR, therefore, offers an elegant solution to
this type of problem. The SBICR is given by Eq. (A.3).

SBICR =

K
i=1

ln Li −
k
2

K
i=1

log(ni) +
K
2
k ln (2π) , (A.3)

where the first term represents the overall log-likelihood across
all K independent datasets. The second term is a penalty term that
takes into account the sample size ni for each dataset, i, and the
number of parameters, k, in the model. Finally, the third term,
known as a bonus, is added to the first two terms. The model with
the largest SBICR is selected.
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