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Dennis, Lee, and Kinnell (2008) claimed that they obtained evidence for a null list-length
effect (LLE) for recognition memory, and that their finding was consistent with
context-noise models and inconsistent with item-noise models of memory. This claim
has since been repeated in several articles (e.g., Kinnell & Dennis, 2011; Turner, Dennis,
& Van Zandt, 2013). However, a more thorough investigation of their data indicates that
Dennis et al.’s findings are inconclusive, and their assertion that empirical observations
of the LLE may distinguish between item-noise and context-noise models is debatable.
In fact, their findings provide very little evidence in favor of a null LLE; there is actually
a credible positive LLE in one condition of their experiment, a finding that context-noise
models cannot explain. Moreover, we show that Dennis et al.’s findings support an
item-noise model like the retrieving effectively from memory (REM) at least as well as a
context-noise model. The source of the erroneous conclusions is identified as the measure-
ment model Dennis et al. developed. In the end, we conclude that the list-length effect
obtained from present experimental designs is insufficient for competitively testing
item-noise and context-noise models of recognition.

� 2015 Published by Elsevier Inc.
A long standing issue in the memory literature concerns is particularly important in distinguishing between models

whether increasing the number of items studied during an
episodic memory experiment affects memory accuracy
when tested via a recognition procedure. The phenomenon
is known as the list-length effect (LLE), and Dennis, Lee,
and Kinnell’s (2008) goal was to determine if changes in
list length are consistent with context-noise models like
BCDMEM, which predicts a null LLE (Dennis &
Humphreys, 2001) or item-noise models like REM, which
predicts a small, positive LLE (Criss & Shiffrin, 2004a,
2004b; Criss, Malmberg, & Shiffrin, 2011; Shiffrin &
Steyvers, 1997). The contribution of their research hinged
on the assertion that, ‘‘The status of the list-length effect
of recognition memory . . .the prediction of a list-length
effect, however, would seem to be an inescapable conse-
quence of the item noise assumption’’ (Dennis et al.,
2008, p. 372). Based on their new experiment, they con-
cluded that increasing the number of items studied does
not affect recognition memory and that their findings are
consistent with context-noise models and inconsistent
with item-noise models.

A more thorough investigation of their findings indi-
cates that Dennis et al.’s assertion that empirical observa-
tions of the LLE may distinguish between item-noise and
context-noise models is debatable. We begin by introduc-
ing the theoretical issue and present several new analyses
of Dennis et al.’s data that indicate straightforward conclu-
sions based on the observed LLE are not supported. Then
we describe the motivations for the Bayesian analysis
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conducted by Dennis et al., how it was implemented, and
what they concluded from it. We show that their strong
conclusions are not supported by their data and that their
conclusions are based on invalid tests of the models in
question. As such, we conclude that the ability of the LLE
to discriminate between models of recognition memory
that predict a null LLE and a small LLE is doubtful.

Some history

For many years, researchers believed that increasing the
number of items studied produces decreases in recognition
accuracy. This was partly due to early reports of an LLE
with recognition memory testing, partly due to similar
findings in tests of memory using recall procedures, and
partly due to intuition; ‘‘everyone knows it is more difficult
to remember many as compared to a few items’’ (see
Gillund & Shiffrin, 1984, for a review). However, there were
some reports of null LLEs in the literature, especially when
several confounding nuisance variables were controlled
(e.g. Koppell, 1977). One problem for establishing a null
LLE is that the frequentist statistical analyses did not pro-
vide any basis for support of a null effect, and it is still
unknown whether the ‘‘controls’’ that were implemented
were not confounded with a different set of nuisances, as
we will see below when we discuss the design of the
experiment conducted by Dennis et al. (2008).
Nevertheless, the issue of whether there was a null or
small LLE became theoretically important with the devel-
opment of several new models of recognition memory.
Dennis and Humphreys (2001), in particular, proposed a
‘‘context-noise’’ model in which recognition is based on
the match between the context used to probe memory
and the context associated with the prior occurrence of
the test item, and only the test item. Their model, known
as BCDMEM, broke with traditional models in several
ways, and it predicts a null LLE.

The difference between BCDMEM and other models of
recognition memory is that BCDMEM assumes that the
episodic representation of an encounter with a word on
the study list only consists of the context information in
which the encounter occurs. These context features are
shown in the left panel of Fig. 1 and they are labeled
‘‘Retrieved Context Features’’. The retrieved context fea-
tures consist of the context features stored during study
in addition to the context features stored during all prior
Fig. 1. Visual representation
encounters with the word. Variability in the features repre-
senting the context of different encounters with a word is
what defines different episodic traces. A critical assump-
tion of BCDMEM is that information about the word itself
is not encoded during any event; the representation of
the word exists prior to the experiment and it is associated
with new context features. The word representations are
labeled ‘‘Item Units’’ in Fig. 1.

At test, when a word stimulus is presented for a recog-
nition judgment in BCDMEM, only the corresponding item
unit is activated and this instigates the retrieval of the con-
text features previously associated with the item unit. The
null LLE is predicted based on this assumption because
only the representation of the test stimulus takes part in
the retrieval process. The number of items studied is irrel-
evant to the particular contexts in which the word has
occurred.

Some of the retrieved context features correspond to
the context features present during the encoding of words
that were studied (targets) and some of the retrieved con-
text features correspond to prior encounters with the
word. If the word was not studied (foil), then the retrieved
context features are those associated with the word previ-
ously. The retrieved context features are compared to con-
text features that are ‘‘mentally reinstated’’ by the subject
and correspond to the context features present during
study. The reinstatement of context features occurs inde-
pendently of the context features retrieved as the result
of the item unit activation. The stimulus is judged to be a
member of the study list if the match between the rein-
stated context features and the retrieved context features
exceeds a decision criterion. Since targets were recently
associated with the reinstated context, they are more likely
to be positively endorsed than foils.

Other models, like the retrieving effectively from mem-
ory (REM) model, assume that during an encounter with a
word on a study list, information is stored about the word,
such as its orthography, phonology, and meaning, and
information is stored about the context in which the word
was encountered. This is shown in the right panel of Fig. 1
where a longer list is illustrated and a shorter list is illus-
trated. Each episodic memory trace consists of both item
and context features.

At test, a retrieval cue consisting of item features repre-
senting the word stimulus and context features is com-
pared to the contents of memory; the greater the
of BCDMEM and REM.



Fig. 2. REM predictions for the filler and no-filler experimental conditions
in experiments like those conducted by Dennis and colleagues. Note the
dependent variable in Dennis et al.’s (2008) analyses was d0 . REM predicts
about a .19 change in d0 in filler condition, given the list-lengths of their
experiment. This is an exceedingly small change in accuracy representing
only a 2% change in the area under the ROC.
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similarity between the retrieval cue and individual traces,
the greater the activation of the traces will be. The illustra-
tion in Fig. 1 shows a target test trial, and activation of the
traces is represented by how dark the traces are, with dark-
ness being positively related to the traces’ activations.
Hence, there is one trace in memory for which there is
strong similarity between the item features in the retrieval
cue and item features in the trace. The remaining traces
match the retrieval cue by chance and therefore less
strongly. The same process occurs for context features in
the retrieval cue used to probe memory and context fea-
tures stored in memory traces. The context matches are
about the same on average for the longer and shorter list
if context does not change wildly from study trial to study
trial.

The familiarity of the target stimulus is the basis of the
recognition decision, and it is the average activation of the
traces in memory. Since there are a greater number of
traces with item features that do not match the item fea-
tures in the retrieval cue for longer lists, the average famil-
iarity of the targets is lower for long lists than for short
lists. Hence, the hit rates are expected to decrease as the
number of items studied increases. This is the basis for
the REM predictions of a positive LLE.

More recently, it has become clear that another factor
needs to be taken into account when considering the effect
of the number of items studied on recognition, the number
of items tested. Under standard testing conditions,
single-item recognition accuracy decreases with increases
in the number of items tested (Annis, Malmberg, Criss, &
Shiffrin, 2013; Criss, Malmberg et al., 2011; Malmberg,
Criss, Gangwani, & Shiffrin, 2012; Malmberg, Lehman,
Annis, Criss, & Shiffrin, 2014). This is referred to as output
interference and it indicates that modeling the storage of
episodic traces during test is necessary, and the result is
that any manipulation of list-length is compromised by
testing memory.

Fig. 2 shows the REM predictions from Shiffrin and
Steyvers (1997) and Criss, Malmberg et al. (2011). Two sets
of predictions are shown: one for the no-filler condition
and one for the filler condition of Dennis et al.’s experi-
ment. The only difference between the two conditions is
that several additional memory traces were stored during
the performance of the 8-min filler activity per Turner,
Dennis, and Van Zandt (2013, pg. 22 of supplement
describing the model simulations). The parameters used
to generate these predictions were the same standard set
of parameters used in numerous earlier studies. What the
predictions show is that REM predicts a small LLE that
rapidly decreases in magnitude with increases in the num-
ber of items studied in the short-list condition, and that the
magnitude of the LLE is virtually nil in the filler condition
due an increase in the traces stored during the retention
interval.1
1 Note that in the simulation, no distinction was made between the
traces stored during study and those stored during recognition testing.
Hence, even though magnitude of the predicted LLE is quite small, the
predictions shown in Fig. 2 are a close approximation, even if they may
overstate the predicted effect of list-length on recognition accuracy.
Dennis, Lee, & Kinnell’s 2008 Experiment

The design of Dennis et al.’s experiment, illustrated in
Fig. 3, is a 2 (list-length: 20 vs. 80 words) � 2 (filler task:
present vs. absent) � 2 (word frequency: common vs. rare)
factorial, with all factors manipulated within-subjects. This
basic design has been used in several studies by Dennis
and his colleagues, and it is considered by proponents of
the context-noise models as the gold standard (Dennis &
Humphreys, 2001; Kinnell & Dennis, 2011; Turner et al.,
2013., etc.). The ‘‘filler task’’ was an 8-min sliding puzzle
activity that was appended to the end of the study lists.
The ‘‘puzzle activity’’ was performed in short-list
conditions to equate the retention intervals. The ‘‘puzzle
Fig. 3. Design of the experiment conducted by Dennis et al. (2008).



Fig. 4. Results from Dennis et al. (2008). BCDMEM predictions are shown
as circles, and REM predictions are shown as squares. See the text for the
procedure used to obtain the best fit predictions.

3 In our frequentist analyses of Dennis et al.’s data, word frequency did
not interact with either list-length or the presence of the filler task, and the
list-length predictions of the models do not critically depend on this factor.
Therefore, all subsequent analyses focus solely on the effects of list-length
and the presence versus the absence of the filler task. A three-way repeated
measures analysis of variance revealed a main effect of word frequency, F(1,
47) = 100.98, p < .001, gp

2 = .682, and a main effect of filler task, F(1,
47) = 9.922, p < .05, gp

2 = .174. Recognition accuracy was greater for
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activity’’ and the ‘‘filler task’’ are the same task (sliding
puzzle) with different labels; the terms are used to differ-
entiate the purpose with respect to the conditions. In the
filler condition, the intended purpose was to equate the
difficulty in reinstating the learning context when memory
was tested, whereas in the puzzle condition, the purpose
was to equate study-test lag.

Because early tests of the models relied on null hypoth-
esis significance tests that had no value in measuring sup-
port for a null LLE, Dennis et al. (2008) conducted their new
experiment and advocated a Bayesian data analysis. But
rather than directly testing the abilities of BCDMEM and
REM to account for their findings and conducting a simple
straightforward Bayesian analysis of the data from their
experiment, Dennis et al. subjected their data to a newly
developed analysis that used a measurement model based
on signal detection theory. The use of a Bayesian hierarchi-
cal measurement model was motivated by several advan-
tages of using Bayesian statistical analyses over more
conventional frequentist analyses. For instance, Bayesian
analyses are highly desirable in cases just like the one
faced by Dennis et al. because they allow one to make
inferences about the plausibility of a null effect, and in this
case, they were especially concerned about conclusions
about the LLE because some theories may predict a LLE
while others may not. (Dennis et al. also presented an
incomplete frequentist analysis of their data, but they
focused their attention primarily on a Bayesian signal
detection analysis of the data from their LLE experiment.)
Based on these analyses, they reported ‘‘evidence for an
absence of a list-length effect’’. A critical problem is that
quantifying support for the null hypothesis within a
Bayesian framework requires an analysis of Bayes’ factor
(Rouder & Lu, 2005), but Dennis et al. did not report
Bayes’ factor. Therefore, it is unclear how much ‘‘evidence’’
formed the basis of Dennis et al.’s conclusion.

We will turn our attention to Dennis et al.’s Bayesian
data analysis below. However, it is first worth briefly con-
sidering a set of null hypothesis significance analyses in
order to highlight the ambiguous nature of Dennis et al.’s
(2008) findings. The dependent variable in Dennis et al.’s
analysis was d0, and Fig. 4 shows that d0 was slightly greater
on average in the short-list than the long-list condition
regardless of the filler activity conditions.2 Dennis et al.
reported the following:

In the filler comparison, where contextual reinstate-
ment was encouraged after both the short and long
lists, a repeated measures ANOVA yielded a
non-significant effect of list length on d (F(1,
47) = 1.65, p = .21). Conversely, in the no filler condition,
where the contextual reinstatement control was
relaxed, a statistically significant effect of list length
on d was found (F(1, 47) = 4.44, p = .04; gp

2 = .09), sug-
gesting that list length did have an effect on perfor-
mance. (p. 365)
2 The use of d0 as the dependent variable led Dennis et al. (2008) to
further problems in the inferences they drew from their data. We will
discuss this problem later in the article.
Hence, by the common standard of the scientific com-
munity, there was not a significant LLE in the filler condi-
tion, but there was a significant LLE in the no-filler
condition. A fair interpretation of these results leads one
to suspect that there might be an interaction between
list-length and the 8-min filler activity. Fortunately,
Dennis et al. (2008) published their data, and therefore,
we were able to run the analysis.3 A (list-length: 20 vs. 80
words) � 2 (filler task: present vs. absent) repeated mea-
sures ANOVA revealed a main effect of the Filler Task, F(1,
184) = 8.08, p = .005. Subjects had greater recognition accu-
racy (measured in d0) in the no-filler condition (M = 2.36,
SD = 0.81) than in the filler condition (M = 2.12, SD = 0.78).
It did not detect a significant main effect of list-length
(F < 1) or a filler � list-length interaction (F < 1). Hence,
Dennis et al.’s one-way ANOVAs support a different set of
statistical inferences than the two-way ANOVA that we
ran. Whereas their analyses suggest there was a positive
low-frequency words than high-frequency words and for words in the
no-filler condition than in the filler condition. There was no main effect of
list-length, F(1, 47) = 1.339, p = .253. Additionally, none of the interaction
effects reached significance. The word frequency � list-length interaction
and the list-length � filler interaction were not reliable, F < 1, nor were the
word frequency � filler, F(1, 47) = 2.721, p = .106, or the three-way inter-
action effects, F(1, 47) = 1.141, p = .291.
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LLE in the no-filler condition, but not in the filler condition,
we did not detect a statistically significant interaction. We
believe that, at the very least, these conflicting analyses
cause one to be somewhat skeptical of drawing any strong
conclusions about the nature the LLE based on Dennis
et al.’s findings. Perhaps more importantly these analyses
cannot provide support for the null LLE.
Bayesian data analysis

As noted by Dennis et al. (2008), we can rely on
Bayesian data analyses to make inferences about the
absence or the presence of the LLE. There are many differ-
ent Bayesian approaches to statistical inference, and statis-
ticians often debate which approach is the best. This
debate is not the subject of the present work; therefore,
we will consider several different analyses and base our
inferences on all of their outcomes. Fortunately, they lead
to the same conclusion.
4 We are ignoring the impact of the priors placed on H0 and H1. In
essence, we are assuming that they are equally likely prior to receiving
Dennis et al.’s data. The layperson for instance may place a greater prior on
H1 because he believes that long lists are more difficult to remember than
short lists. Hence, assuming equal priors makes it more difficult to find
support for the H1 than the layperson might desire.

5 Another way to compute Bayes Factor is to compute it directly from the
result of the paired-sampled t-test Rouder, Speckman, Sun, Morey, and
Iverson (2009). When this computation is performed a BF01 = 2.97 is found
for the filler conditions and a BF01 = .84 is found for the no filler condition.
This analysis indicates that the data are about 3 times more likely under the
null hypothesis than under the alternative hypothesis in the filler condition,
and that the data are approximately 1.4 times more likely under the
alternative hypothesis than under the null hypothesis in the no-filler
condition.
Bayesian parameter estimation

Some researchers advocate a method of parameter esti-
mation for the Bayesian analyses when there are not strong
prior beliefs about the effect or the models in question
(e.g., Kruschke, 2011a, 2011b). Accordingly, one estimates
a posterior probability density distribution over the possi-
ble differences in the means between two conditions. The
dependent variable in Dennis et al.’s primary analysis
was d0, and the empirical question is whether the differ-
ence in d0, referred to as l, is credibly different from 0. A
95% Highest Density Interval (HDI) contains the most likely
95% of parameter values for the differences in recognition
accuracy between the long-list and short-list conditions.
If the HDI spans 0 we may conclude that a null LLE is cred-
ible. If it does not contain 0, and if the mean of the poste-
rior distribution is positive, then we may conclude that a
positive LLE is credible (Kruschke, 2010, 2013). We used
Wagenmakers, Lodewyckx, Kuriyal, and Grasman’s (2010)
Bayesian t-test model to obtain the posterior.

Fig. 5 shows the results of the Bayesian t-test for the fil-
ler condition. The empirical question is whether the differ-
ence in d’, referred to as l, is credibly different from 0. The
thick, solid horizontal line at the bottom of the left panel
shows that the 95% HDI extends from about .01 to .49, indi-
cating that a null effect of list-length is not among the 95%
most credible differences in d0. In other words, there is a
credible LLE ranging from almost non-existent to moder-
ately large in the no-filler condition. The left panel of
Fig. 6 shows the corresponding results for the filler condi-
tion, where the HDI was estimated to be between �.085
and .36. Since 0 falls within the HDI, a null LLE is credible.
Hence, the parameter estimation analyses are qualitatively
similar to the frequentist analyses reported by Dennis et al.
(2008), namely that there is a credible LLE in the no-filler
condition and a credible null LLE in the filler condition,
these conclusions conflict with those based on Dennis
et al.’s signal detection model, which we will discuss
shortly.
Hypothesis testing

Another approach to statistical inference is Bayesian
hypothesis testing where the relative support for multiple
hypotheses is evaluated, and our analyses using
Wagenmakers et al.’s Bayesian t-test also provide the rela-
tive support for the null LLE in the two conditions of
Dennis et al.’s experiment. The null and alternative
hypotheses can be written in terms of the effect size that
they predict, H0: d = 0, and H1: d > 0, respectively. A com-
mon approach to Bayesian hypothesis testing is to calculate
Bayes Factor, BF01, which measures the relative support for
the hypotheses we seek to test.4 If BF01 < 1.0, the data
reduce the relative credibility of the null hypothesis, and if
BF01 > 1.0, then the data increase the relative credibility of
the null hypothesis. Often times it is difficult or impossible
to determine the Bayes factor because the calculation
involves an intractable integral, but if the models are nested,
which is the case here, the Savage-Dickey Ratio Test (Dickey,
1971) is a procedure that simplifies the calculation of the
Bayes factor. At an intuitive level of understanding, the
Savage-Dickey Ratio Test tells us how the data, D, alters
our prior belief that the effect size equals 0. To obtain the
Bayes factor with this technique, the ratio of the height of
the posterior and prior probabilities of the effect size at 0
(d = 0) is calculated (Wagenmakers et al., 2010).

The prior probability density of the effect size, d, is
depicted as the dashed line in the right panel of Figs. 5
and 6 for the no-filler and filler conditions, respectively.
Note, our choice of priors respects a wide range of prior
beliefs about the size of the effect that list-length has on
item recognition by assuming that prior to the experiment
a null LLE is more likely than any other magnitude of LLE,
but also allowing for the possibility of a positive LLE. The
solid line plots the posterior distribution over d indicating
a range of credible beliefs after the data have been col-
lected. For the no-filler condition in Fig. 5, BF01 = .43 which
indicates that the data are approximately 2.33 times more
likely given a positive LLE than given a null LLE, whereas
the data were found to be 1.6 times more likely under
the null hypothesis than under the alternative hypothesis
for the filler condition in Fig. 6.5

Summary of findings

Although Dennis et al. declared that they found ‘‘evi-
dence against a list length effect’’, they did not report an



Fig. 5. Analysis of the no-filler condition of Dennis et al. (2008). The left panel plots the posterior density distribution of the mean difference between list-
length conditions. Zero falls slightly outside the 95% HDI. The right panel plots the prior and posterior density distributions over the effect size. The density
over effect size equal to 0 is reduced slightly after the data are taken into account.

Fig. 6. Analysis of the filler condition of Dennis et al. (2008). The left panel plots the posterior density distribution of the mean difference between list-
length conditions. Zero falls within the 95% HDI. The right panel plots the prior and posterior density distributions over the effect size. The density over
effect size equal to 0 is increased slightly after the data are taken into account.
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analysis that weighed the relative support for and
against the LLE. The data provide support for a positive
LLE in the no-filler condition and a null LLE in filler con-
dition, but the evidence in both cases is equivocal;
Dennis et al.’s findings have little diagnostic value one
way or the other. For example, according to Jeffreys
(1961), a Bayes Factor between 1 and 3 is ‘‘worth no
more than a bare mention’’, while Wagenmakers et al.
(2010) interpret it as ‘‘anecdotal evidence.’’ Therefore,
although the Bayesian analysis of the data are consistent
with Dennis et al.’s null-hypothesis significance tests,
their results have a considerable amount of variability
relative to any LLE that may be present, and therefore
they have only a little diagnostic value according to pub-
lished guidelines.
Dennis, Lee, and Kinnell’s Bayesian hierarchical signal
detection analysis

In contrast to these conclusions, Dennis et al. (2008)
expressed a strong preference for models that predict a
null effect derived from their Bayesian mixture model
analysis:

The fact that the Bayesian analysis found evidence for
the absence of a list-length effect for words supports a
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context noise account of recognition memory, chal-
lenges item noise accounts and suggests that
‘‘recall-like’’ processes play no substantive role in
yes/no recognition.

[(p. 373)]

Note that their conclusions were not based on the anal-
yses that we have discussed so far, which indicate that
there is no firm basis for any strong conclusions, especially
about the null LLE. Rather, Dennis et al.’s conclusions were
based on the outcome of a Bayesian mixture model analy-
sis of individual differences. The apparent disagreement
between what our analysis tells us, and what the Dennis
et al. Bayesian mixture-model analysis tells us is bother-
some and important to investigate.

Whereas the analyses that we reported focused on
parameter estimation and hypothesis testing, Dennis
et al. focused on model comparison methods conducted
within a theoretical framework based on a Bayesian hierar-
chical model of signal detection theory (SDT; Green &
Swets, 1966). The formal details of their analyses are pre-
sented in Appendix A. First, Dennis et al. described a model
of the null effect, which they referred to as the error-only
model, and a model of a signal-plus-noise, which they
referred to as the effect-plus-error model. Their goal was
to determine whether the observations from their experi-
ment were characteristic of an error-only model (null
effect) or an effect-plus-error model (positive LLE). To com-
pare the error-only model to the effect-plus-error model, a
set of parameters values was sampled randomly from the
error-only model and a sample of parameters values was
sampled randomly from the effect-plus-error model, the
posterior probabilities of the models were computed, and
the winning model was chosen. This process was carried
out many thousands of times in order to obtain sets of
parameters spanning the parameter spaces of both models,
and this produced the posterior probability distribution
over the rate at which the error-only model was selected
over the effect-plus-error model. Based on their analysis,
Dennis et al. concluded that the null effect model was
strongly preferred over the signal-plus-noise model.

Dennis et al.’s strong conclusions are at odds with every
other analysis of their data, including the ‘‘model free’’
NHST analyses conducted by Dennis et al. (2008) and those
we reported in the earlier sections of the article. This led us
to scrutinize the Bayesian hierarchical mixture model. A
first step was to conduct a standard posterior predictive
check of the models Dennis et al. analyzed. The posterior
obtained from the analyses not only provides the informa-
tion about the rate at which models were preferred, but
also about information about the predictions of the models
they tested. The goal of the posterior predictive analysis is
to determine whether the models on which the Bayesian
hierarchical analysis is based correspond to the data they
attempt to describe. If the models do not provide accurate
accounts of the data they attempt to describe, the relative
abilities of the models to describe the data is not
informative.

For the posterior predictive analysis, we simply
obtained the differences in d0 values from the posterior of
each model and compared them to a resampled set of data
from the filler and no-filler conditions of Dennis et al.’s
experiment. The d0 difference scores represent the change
in discriminability resulting from an increase in the num-
ber of items studied. The resampled set of data was
obtained by sampling the d0 difference scores from normal
distributions with means and standard deviations corre-
sponding to Dennis et al.’s observations many times and
fitting a smoothing function over them. Hence, resampled
data are the d0 difference scores that we would expect to
observe if Dennis et al.’s experiment was conducted many
times or with many subjects.

The result of the posterior predictive check is shown in
Fig. 7. The models analyzed by Dennis et al. fail miserably.
First, neither the error-only nor the effect-plus-error model
predicts the LLE in the no-filler condition. The predicted
means of the posterior distributions are less than the
means of the data by a large margin. Not surprisingly,
the effect-plus-error model is slightly more successful,
but there is still a significant amount of the posterior that
does not overlap with the data. Second, the variability in
the effect-plus-error model is much greater than the vari-
ability in the data, and the error-only model fairs only a lit-
tle better. Hence, Dennis et al.’s conclusion that the
error-only model provides a much better account of their
observations than the effect-plus-error model was based
on a comparison of two models that do not predict their
findings.

The underlying logic of Dennis et al’s. analyses was that
the error-only model is roughly analogous to a
context-noise model and the effect-plus-error model is
roughly analogous to an item-noise model. In fact, Dennis
et al. drew conclusions from their analyses that went
beyond the models that they tested, when they stated that
their findings were consistent with context-noise models
and disconfirmed item-noise models. However, they did
not test models like REM and BCDMEM, and therefore,
their analyses are only anecdotally related to the issue of
whether their data are more characteristic of item-noise
or context-noise models. Furthermore, it is not clear how
useful their approach is for discriminating between such
models. In order for Dennis et al.’s hierarchical analysis
to have anything meaningful to say about the viability of
item-noise and context-noise models, their hierarchical
model must be able to discriminate between data gener-
ated by item-noise models and context-noise models with
some high degree of accuracy. If it cannot, then Dennis
et al.’s conclusion that their analyses support BCDMEM
and disconfirms REM is unjustified.

To determine whether Dennis et al.’s hierarchical anal-
ysis can discriminate between data from BCDMEM from
data from REM we conducted two simulations in order to
generate simulated subjects from REM and BCDMEM.
Each set of data was meant to simulate one subject in
Dennis et al.’s experiment. Since REM and BCDMEM are
stochastic models, each sample of 48 subjects is different.
Here we present three representative simulated data sets
in order to illustrate the robustness of our analyses and
our conclusions. We were careful to judiciously choose
parameters for each model from which to obtain the sim-
ulated data sets. For REM, we mostly used the parameters
values taken from the literature to simulate 48 datasets for



Fig. 7. Posterior predictive check for the error-only and effect-plus-error model.

6 AIC and BIC statistics were also computed and found a similar pattern
of relative goodness of fit. The reason that a single d value is obtained when
BCDMEM is optimized is because BCDMEM is required to, as REM was, fit
the data from both filler conditions, and the mean for the long-list no-filler
condition is nearly equal to the pooled mean of the other conditions. Hence,
when scaling the accuracy of the long-list no-filler condition to the
accuracy of the other conditions the parameter search produced a
compromise for the best fit; there is no effect of list length or the retention
interval.
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Dennis et al.’s experiment. This makes sense because these
parameters are known to account for findings from a wide
variety of experiments, and there is no reason that we
could justify for deviating from prior research. The follow-
ing REM parameters were fixed across all conditions: g = .4,
c = .7, u⁄ = .04, t = 15, and w = 20.

To achieve a good fit of REM to the mean accuracy (d0) of
Dennis et al.’s data, we adjusted how well encoded the
memory traces were by manipulating REM’s t parameter.
This is a standard way of modeling strength of encoding
in REM (Shiffrin & Steyvers, 1997; Xu & Malmberg,
2007). Specifically, we varied t from 10 to 18 in increments
of one, recording the log-likelihood on each run. The abso-
lute goodness of fit obtained was measured with the max-
imum log-likelihood statistic (LL = �235.61). We found the
best fitting value to be t = 15. Hence, the fit is obtained by
using parameters values for REM obtained from the litera-
ture and scaling accuracy in order to achieve the proper
level of overall accuracy. In order to model the difference
in retention intervals, we assumed that five traces per min-
ute were stored during the 8-min. filler activity (as in
Turner et al., 2013). According to both this analysis and
visual inspection of Fig. 4, the fit we obtained was closely
in line with data.

We obtained the same number of datasets of d0 differ-
ence scores corresponding to BCDMEM. Standard
BCDMEM parameter values are s = .02 and v = 200. For
other parameters of BCDMEM, there is less consistency in
the literature. We found r = .8 and p = .1 to provide reason-
able fits. It should be noted that there are many values of r
and p that we considered that resulted in the same fit.
Thus, our choice of r and p was not an influential factor
in the outcome of the fits. We also maintained Turner
et al.’s (2013) assumption that the parameter d varies
between the long-list no-filler condition and the other
three conditions. Accordingly, we first obtained the value
of d that minimized the RMSD by using the
quasi-Newton optimization method in R for the long-list
no-filler condition and then obtained a single value for d
for all other conditions using the same method. We found
the best fitting value for the long-list no-filler condition
and the other conditions to be identical, d = .54
(LL = �237. 91). According to both this analysis and visual
inspection of Fig. 4, the fit we obtained was closely in line
with data.6

With these models, we simulated forty-eight subjects
from each model with the best fitting parameter values
given above. Because both REM and BCDMEM are proba-
bilistic models, each simulated set of 48 subjects will differ
from another. In order to demonstrate the variability
between simulations, we generated three independent sets
of 48 simulated subjects each keeping parameter settings
constant across sets. We then used these simulated data
to test whether Denis et al.’s analyses can discriminate
between data sets known to be generated by item-noise
and context-noise models.

These simulated data were not used to inform the priors
of Dennis et al.’s model. We used the same reasonable uni-
formed priors that Dennis et al. used. We simply asked,
could their signal detection hierarchical model actually
discriminate between data sets generated by an
error-only model versus an error-plus-effect model? In
other words, can conclusions drawn from the SDT hierar-
chical model be used to draw conclusions about REM and
BCDMEM, as Dennis et al. suggest?

To answer this question, the simulated subjects were
used as the data in Dennis et al.’s mixture model of individ-
ual differences. One-hundred and fifty-five thousand
MCMC samples were generated using the JAGS software.
The first 5000 samples were discarded, and after checking
for convergence, the chains were collapsed. We repeated
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this process for each simulated set of data. The important
posterior is over h, the rate at which individuals are
assigned to the effect-plus-error model. When h = 0,
the probability of assigning an individual to the
effect-plus-error model is 0, while the rate of assigning
an individual to the error-only condition is 1.

If Dennis et al.’s model can discriminate between data
generated by REM and BCDMEM, then the model should
assign data generated by REM to the effect-plus-error
model and data generated by BCDMEM to the error-only
model. Each row of Fig. 8 shows the density over h for
those data generated by either REM or BCDMEM for each
simulated set of 48 subjects. There is variability within
each set for both BCDMEM and REM. Panel A shows the
results for the no-filler condition for the first set of simu-
lated data. The surprising result was that most of the den-
sity is concentrated around low values of h for the subjects
obtained from REM simulations indicating a high rate of
assignment to the error-only model. This is because REM
naturally predicts a small LLE, and this is actually more dif-
ficult for the effect-plus-error model to predict. When sim-
ulated subjects generated by BCDMEM are used, the
posterior density is peaked when h is approximately equal
to .60. The individual differences model is about as likely to
assign data from BCDMEM to the error-only model as to
the effect-plus-error model. Panels C and E show the den-
sity over h for the next two simulated data sets. In these
Fig. 8. Shows the density as a function of the rate parameter h. When h = 0, the p
rate of assigning an individual to the error-plus effect model is 1. The different
cases, the posterior is almost evenly distributed over h,
and Dennis et al.’s model is unable to classify
REM-simulated subjects with any degree of certainty. The
mixture model analyses revealed a similar result for the
data generated by BCDMEM, although the posterior is
more tightly centered on h � .60, indicating that the model
is quite uncertain whether the data were generated by an
error-only model. In summary, Dennis et al.’s model is
not able to discriminate between data sets coming from
error-only and error-plus-signal models, and sometimes,
simulated data from REM is more likely to be assigned to
a model predicting a null LLE than simulated data from
BCDMEM.

Panel B of Fig. 8 shows the mixture model analysis of
the simulated subjects generated by BCDMEM and REM
for the filler condition. In this condition, our data analyses
indicated more support for a null LLE than for a positive
LLE. Although the data are different, the same problems
for Dennis et al.’s mixture model that we found in the
no-filler condition are also found here, but they are com-
pounded because BCDMEM and REM make similar predic-
tions for the filler condition. In panel B, an almost
non-existent LLE was observed in the simulated data pro-
duced by REM. However, Dennis et al.’s mixture model
mistakenly categorized the data as coming from an
error-only model. For the simulated data produced by
BCDMEM, the model did not return conclusive evidence
robability of assigning an individual to the error-only model is 0, while the
lines refer to the model used to generate the data.



Fig. 9. Figure from Turner, Dennis, & Van Zandt (2013) showing that BCDMEM predicts that there should considerable variability among subjects, whereas
REM more consistently predicts small LLEs. The prior predictive density under four different list lengths for REM (top panels) and BCDMEM (bottom panels):
10 (left column), 20 (middle left column), 80 (middle right column), and 2000 (right column) items. Darker regions indicate higher density. BCDMEM = bind
cue decide model of episodic memory; REM = retrieving effectively from memory model.
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for either an error-plus effect model or an error-only
model, as indicated by the bimodality of the posterior dis-
tribution. This is again due to the high degree of variability
in BCDMEM predictions that we identified earlier. Panel D
shows the results on the next set of simulated data. The
mixture model assigned BCDMEM to the error-plus-effect
model while assigning REM to the error-only model.
Panel F shows the density over h for REM to be widely dis-
tributed while the density for BCDMEM was centered over
� .50, indicating that mixture model is equally likely to
assign data from a context-noise model to the error-only
as to the error-plus-effect model.

These analyses show that Dennis et al.’s mixture model
cannot reliably discriminate between item-noise and con-
text noise models of memory. It is somewhat surprising that
Dennis et al.’s SDT hierarchical model often misclassifies
BCDMEM data by assigning it to the effect-plus-error
model. This is because there is a considerable amount of
variability in BCDMEM predictions, and when it predicts a
LLE by chance, it is more characteristic of the effect-plus-
error model than the error-only model. Fig. 9 was reported
by Turner et al. (2013). It shows the variability of predic-
tions of REM and BCDMEM. Their plots clearly show that
BCDMEM predicts a wider range of LLEs than REM does,
many of which are positive LLE, which Dennis et al.’s model
misclassifies as coming from an error-plus-effect model.7

This analysis of Dennis et al.’s (2008) Bayesian hierar-
chical mixture model indicates that list-length experi-
ments, like the one purported by Dennis et al. (2008) do
7 It should be noted that Turner et al. (2013) did not model the effect on
the retention interval of the ‘‘puzzle activity’’, and therefore these
predictions over-state REM’s predicted LLE.
not provide critical empirical tests of REM and BCDMEM.
For this reason, Dennis et al.’s conclusion that the results
of their experiment support BCDMEM and disconfirm
REM is erroneous.
General discussion

Dennis et al. claimed they found evidence against a LLE
for recognition memory. Our analyses of their observations
indicate that there may be a small LLE that diminishes with
increases in the retention interval, but we did not find
strong support for either the null or alternative hypothesis.
Hence, Dennis et al.’s conclusions about the presence or
absence of the LLE are at least questionable and quite pos-
sibly incorrect. Moreover, the ambiguous nature of Dennis
et al.’s observations calls into question the utility for test-
ing models of recognition memory using the experimental
designs advocated by Dennis and colleagues. The problem
is that it is very difficult to distinguish between a model
that predicts no effect and a model that predicts a small
effect given data that are somewhat noisy. This problem
is compounded by the fact that their design uses a different
retention interval for each condition of the experiment
making the results uninterpretable (see Fig. 3). Other
experimental designs allow for more precise measure-
ments, such as manipulations of category length, and the
results obtained from them have shown clear positive
LLEs, especially for non-word stimuli (Criss & Shiffrin,
2004a, 2004b). In addition, we discovered that Dennis
et al.’s Bayesian hierarchical mixture model of individual
differences is insufficient for discriminating between data
simulated by BCDMEM and REM. We found no strong evi-
dence that support the conclusion that their observations



8 The supplementary material to Turner et al. (2013) does not specify
what assumptions lead BCDMEM to predict a positive LLE. Neither can we
think of a way for BCDMEM to provide a better fit than REM when positive
LLEs are observed.
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are consistent with context-noise models of recognition
memory and inconsistent with item-noise models.

The list-length effect: Is it theoretically important?

The effect of the number of items studied on recogni-
tion memory has been extensively investigated for over a
decade, and for over a decade some have claimed that
these findings are easy for BCDMEM to predict and difficult
for REM to predict (Dennis & Humphreys, 2001). If so, then
perhaps the LLE is theoretically important. However, our
conclusions are different, and they arise from a systematic
investigation. Here we provided a comprehensive statisti-
cal analysis of the data driving the debate. Several analyses
were reported in order to get the clearest possible picture
of the empirical result in question. Because our statistical
analyses did not support Dennis et al.’s conclusion that
their findings are easy for context-noise models and diffi-
cult for item-noise models to explain, we next investigated
the models they used to form their conclusion. This inves-
tigation identified critical limitations of the Bayesian mix-
ture model to measure what it purported to measure;
namely Dennis et al.’s conclusions were based on a model
that cannot accurately discriminate between data gener-
ated by context-noise models and item-noise models.

Our analyses support two conclusions: First, Dennis
et al.’s (2008) data are not sufficient for competitively test-
ing models of recognition memory because the effects are
small and the predictions of the models are somewhat sim-
ilar. Second, BCDMEM cannot account for Dennis et al.’s
findings showing a positive LLE at short retention intervals
without including a parameter value associated with the
‘‘reinstatement of context.’’ For example, Turner et al.
(2013) modeled these data by assuming one context rein-
statement parameter for the long-list no-filler condition
and another for all other conditions. From that perspective,
the retention interval presents a confound rather than a
control. In addition, we found that BCDMEM has a difficult
time simultaneously predicting the effects of list length
and retention interval. For instance, d0 was lower after
the long retention interval in the filler condition, but
Fig. 4 shows that BCDMEM predicted no effect of the filler
task. It is important to note that we did not pick the model
that BCDMEM claims to provide a superior account of
these data; the account was actually proposed by Turner
et al. (2013). We simply implemented their model.

We also found that when their experiment is modeled
in a manner consistent with what is known about recogni-
tion memory, the results are not problematic for tradi-
tional models of memory, like REM, that predict
interference from representations of the items studied
and tested. Of course, we did not conduct a similar set of
analyses on every set of data reported by Dennis and his
colleagues over the last decade, but the data from Dennis
et al. (2008) are sufficiently representative of the experi-
mental design in question to make useful generalizations.
One specific example of data that is problematic for
context-noise models is the Kinnell and Dennis (2011) data
showing a positive LLE for fractals and faces but not land-
scape pictures. These findings may be deemed important
with replication but there are no inherently obvious ways
to model these stimuli (which are different from words)
with context-noise models. Turner et al. (2013) modeled
these data (see Study 2 in their paper) and concluded that
BCDMEM fits better than REM, but given that 2 of 3 stim-
ulus conditions show a positive LLE and BCDMEM cannot
predict a LLE without additional assumptions8, we must
assume that this is a case where BCDMEM may fit better
in quantitative terms but fails to fit the qualitative pattern
of the data. These so called ‘better’ fits are due to three
things (1) high variability in BCDMEM as we covered already
(2) the ancillary assumption that the puzzle-filler task adds
traces but the puzzle task does not (this is critical for the
Dennis et al. (2008) data), and (3) because they do not fit
the qualitative pattern of the data.

For the data in question here, we did not need to
address the issue of how contextual representations affect
recognition memory within the REM framework. We have,
however, considered how contextual dynamics affect
recognition elsewhere (Criss & Shiffrin, 2004a, 2004b,
2005; Criss, Malmberg et al., 2011; Lehman & Malmberg,
2009; Malmberg & Shiffrin, 2005; Murnane, Phelps, &
Malmberg, 1999), but for present purposes we see no com-
pelling reason why REM’s predictions would change in a
significant way if the additional complexity were added.
And although we considered different ways that
BCDMEM could be modified to better handle the data from
Dennis et al. (2008), we did not go to great pains to imple-
ment these models either. The reason is because the obvi-
ous modification of BCDMEM would be inconsistent with
the model described by Turner et al. (2013), who assumed
that the ability to reinstate the learning context is unaf-
fected by the length of the retention interval. In this sense,
the ability to reinstate context, according to BCDMEM, is
not conceptualized as a general source of forgetting.
Rather, it suggests that once a temporary contextual repre-
sentation is lost, the reinstatement of it is subject to error,
but the amount of error does not increase over time. Such a
model is, for instance, consistent with a multiple store buf-
fer model that assumes once the learning context is
removed from a short-term store that the damage is done
(Atkinson & Shiffrin, 1968; Lehman & Malmberg, 2013).

One unexpected finding in our analyses was that at
times Dennis et al.’s hierarchical model mistaken classified
data generated from the context-noise version of the
error-only model as having been generated by the REM
version of the error-plus-signal model. To see why note
that the BCDMEM does not predict a LLE in principle, but
in reality the model has sufficient noise that it is quite cap-
able of predicting a small positive (or negative) LLE.
BCDMEM while seemingly very constrained in terms of
the verbal theory (e.g., predicts no LLE) is actually mini-
mally constrained in terms of the mathematics (e.g., it pre-
dicts a wide distribution of possible values of HR and FAR,
centered on a null LLE). In contrast, REM is quite con-
strained in both theory and mathematics in that it predicts
a more narrow distribution around a small positive LLE.
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The range of predictions were reported by Turner et al.
(2013) and we reprint their figure in Fig. 9, which shows
that the predictive space of BCDMEM is hugely variable
(the entire V shaped blob) whereas REM is fairly con-
strained. Hence, when the error-only model generates data
in accord with BCDMEM it produces differences in d0 with a
great deal of variability, and when it by chance produces a
positive LLE, the Dennis et al.’s model is likely to assign it
the error-plus-signal model.
Conclusion

Our analyses highlight the interaction between statisti-
cal inference and cognitive modeling and our understand-
ing of data and theory. They indicate that the LLE effect for
single-item recognition is likely to be quite small and
approach nil with increases in retention intervals. Our
analysis of Dennis et al.’s data indicates that they are
unsuitable for testing item-noise models like REM and
context-noise models like BCDMEM. Even though those
data do not strongly favor one model over the other, there
are other findings in the literature that do. How likely are
the models given those data? That is the $64,000 question,
and Bayes factor does not provide the answer. To answer
this question, we need prior probabilities on the models
themselves, which may seem difficult to obtain, and
indeed assigning specific probabilities to these models
with any degree of confidence is foolhardy. But here is
what we do know, and what we know is true may be used
to assign relative probabilities to the models.

BCDMEM is disconfirmed by several findings including
the effects of list composition on the word frequency effect
(Dorfman & Glanzer, 1988; Malmberg & Murnane, 2002),
feature frequency effects (Criss & Malmberg, 2008;
Malmberg, Steyvers, Stephens, & Shiffrin, 2002), word fre-
quency effects (Hemmer & Criss, 2013), output interfer-
ence (Annis et al., 2013; Criss, Malmberg et al., 2011;
Koop, Criss, & Malmberg, 2015; Malmberg et al., 2012),
the interaction between item similarity, word frequency
and repetitions (Criss & Shiffrin, 2004a, 2004b;
Malmberg, Holden, & Shiffrin, 2004), and item interference
in multiple list recognition memory experiments (Criss,
2006; Criss & Shiffrin, 2004a, 2004b). No solutions to these
challenges have been forthcoming; thus, we think it is
unlikely that current versions of BCDMEM can easily be
modified to accommodate them. Moreover, BCDMEM only
accounts for item recognition and does not account for
other memory tasks that are critical to understanding
memory, such as free and cued recall (e.g., Aue, Criss, &
Fischetti, 2012; Criss, Aue, & Smith, 2011; Lehman &
Malmberg, 2013). Hence, even with minimal empirical
constraints, the BCDMEM architecture is strained.

On the other hand, REM provides reasonable accounts for
the findings of Dennis et al. (2008) and many of the
aforementioned findings that BCDMEM cannot account
for. For instance, REM is systematically couched within a
theoretical framework that has been formally shown
over nearly 50 years to account for scores of factors
influencing recall, recognition, lexical decision, perceptual
identification, judgments of frequency, associative
recognition, and source memory, among others (Atkinson
& Shiffrin, 1968; Raaijmakers & Shiffrin, 1981; Gillund &
Shiffrin, 1984; Mensink & Raaijmakers, 1988; Schooler,
Shiffrin, & Raaijmakers, 2001; Shiffrin & Steyvers,
1997; Shiffrin & Steyvers, 1998; Wagenmakers et al., 2004;
Criss & Koop, in press; Criss & Shiffrin, 2005; Lehman &
Malmberg, 2009; Lehman & Malmberg, 2013; Malmberg,
2008; Nelson & Shiffrin, 2013). On these observations, we
feel confident that the prior probability of the REM model
is greater than the prior probability of BCDMEM. If we
combine these priors on the models with the analyses we
report, we find that our beliefs are unchanged.

Appendix A

SDT models commonly assume the evidence, E, that an
item was studied is a continuous, random variable. On each
trial, for instance, E may be drawn from a normal distribu-
tion that corresponds to one of the two stimulus classes:
the foil distribution consists of noise, and the target distri-
bution consists of a signal plus noise. In recognition mem-
ory, the signal represents the prior occurrence of a target
and the noise represents background familiarity with the
items. The standardized difference between these two dis-
tributions is known as d0 and is positively related to accu-
racy. After E is obtained, the subject compares the evidence
that the item was studied to a criterion, c. If E 6 c, then the
subject responds ‘‘New.’’ If E > c, then an ‘‘Old’’ response is
made. If the variances of the target and foil distributions
are equal, both d0 and c can be estimated by calculating
the difference between standardized hit and false-alarm
rates (Macmillan & Creelman, 1991),

d0 ¼ zðHITÞ � zðFAÞ:

The criterion, c, can be estimated as the midpoint between
standardized hit and false-alarm rates.

c ¼ zðHITÞ þ zðFAÞ
2

:

Hence, the hit and false-alarm rates correspond to the fol-
lowing integrals:

PðHITÞ ¼
Z 1

c
pðEjOldÞdE;

PðFAÞ ¼
Z 1

c
pðEjNewÞdE;

where c, is the criterion, and p(E|Old) and p(E|New) are the
probability density functions of the evidence given that the
item was a target or a foil, respectively. These integrals
are equivalent to the normal cumulative distribution
function, U, parameterized in terms of di and ci, where i
corresponds to the ith subject.

hi ¼ U
di

2
� ci

� �

f i ¼ U � di

2
� ci

� �
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To implement a model in which the Old and New distribu-
tions do not have the same variance, the false-alarm rates
are defined as the following:

f i ¼ U � di

2
� ci

� �
s�1

� �

where s corresponds to the ratio of the target and foil vari-
ances, rNew/rOld. When s < 1, the variance of the Old distri-
bution is greater than the variance of the New distribution.
Usually, single-item recognition ROCs indicate that s � .8
(Green & Swets, 1966).

For each subject, i, both di and ci are normally dis-
tributed random variables,

di � Gaussianð0;2Þ;

ci � Gaussianð0;0:5Þ:

Since the data consist of hit and false-alarm rate counts,
the data are assumed to be binomially distributed,

Hi � BinomialðT; hiÞ;

Fi � BinomialðD; f iÞ;

where T, is the number of targets trials, D is the number of
foil trials, and hi and fi are the hit rates and false-alarm
rates for the ith subject, respectively.

Dennis et al.’s error-only model and effect-plus-error model

The signal detection assumptions are fairly straightfor-
ward and conventional. This is not the case concerning
how two different signal detection models were imple-
mented in order to characterize individual differences in
recognition memory performance.

Dennis et al.’s error-only model assumes that any
changes in performance between short- and long-lists for

each subject, Ddi ¼ d A
i � dB

i , were generated by random
error. This corresponds to a null LLE prediction. This is rep-
resented as De and the assumption is that it is distributed
as a 0 mean Gaussian with unknown variance,

De � Gaussianð0; keÞ:

By convention (Spiegelhalter, Thomas, & Best, 1996), ke is
distributed as an inverse gamma with very low rate and
shape parameters,

ke � InverseGammað:001; :001Þ:

This distribution approximates the Jeffrey’s prior (Jaynes,
1968) and is used because of its ‘‘uninformative’’ nature.

Their effect-plus-error model assumes that changes in
performance between the short- and long-lists are due to
both systematic and random error, and therefore, this
model predicts a LLE. The effect component in the graphi-
cal model is represented as ff and is assumed to follow a
gamma distribution with shape, a, and rate, b,

f f � Gammaða;bÞ:

Modeling the effect component as a gamma distribution
ensures that the systematic error will always be positive
since the gamma distribution is supported on the
semi-infinite interval, [0,1). Dennis et al. (2008) assumed
the following distributions for the hyperpriors, a and b,

a � Exponentialð1Þ;

and

b � Gammað0:1;0:1Þ:

The random error component, fe, is modeled in the same
way as in the error-only model – as a 0 mean Gaussian
with unknown variance

f e ¼ Gaussianð0; keÞ;

where again an uninformative prior is assumed for the
variance, kf,

kf � InverseGammað:001; :001Þ:

The random error component allows this model to produce
positive, null, and negative LLEs. According to the
effect-plus-error model just described, the change in per-

formance between short- and long-lists, Ddi ¼ d A
i � dB

i ,
can be modeled as the sum of the systematic and random
error components,

Df ¼ f f þ f e
:

Hence, according to this model each subject, I, has a
propensity to be characterized by the error-only model
and an inverse propensity to be characterized by the
effect-plus-error model. In other words, some subjects pro-
duce a positive LLE and others do not.

Model selection

Having described both models under consideration, we
now turn to model selection, where the goal is to infer
which model is more likely given the data. In the graphical
model, a variable, x, is used to select between each model. x
follows a Bernoulli distribution with rate, h,

x � BernoulliðhÞ:

Thus, x can take on either a value of 1 or a value of 0. When
x = 0, the change in performance between lists, Ddi, is mod-
eled as random error, De. When x = 1, changes in perfor-
mance are assumed to be generated by a combination of
systematic and random error, Df. Thus,

Ddi ¼
De; x ¼ 0
Df ; x ¼ 1

�

Hence, the posterior of interest concerns, h, or the rate at
which the error-only model is preferred over the
effect-plus-error model. This is the measure of the propen-
sity for an individual subject to belong to the error-only
population versus the effect-plus-error population.

Appendix B

Fig. 1B depicts Wagenmakers et al.’s t-test for Bayesian
analysis as a directed acyclic graph. The graph consists of
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plates, nodes and edges. Each plate consists of the observed
data for each subject. In our case, there are 48 subjects, and
each subject has a score, Xi, that is the difference in their d0

between the long- and short-list conditions. Positive differ-
ences indicate that accuracy on the long list is lower than
accuracy on short lists. Each node lying outside of the plate
represents a parameter, and edges denote the conditional
relationships between each. Differences in d0, Xi, are condi-
tional on two parameters. There are several different types
of nodes. Circular nodes represent continuous variables
while square nodes are discrete variables. In this case, all
the parameters are continuous random variables.
Unshaded and shaded nodes represent unobserved and
observed variables, respectively. Here only the differences
in d0 are observed, and the remainder are the parameters
that will be estimated. Variables that are enclosed in con-
centric circles are defined by a deterministic function of
other variables. For the first analysis, our main interest is
in, l, which is the difference in d0 between the long and
short conditions, and it is computed directly from the val-
ues sampled from two distributions: d, which is the effect
size, and r, which measures how variable the observations
are.

In this case, l is the difference in d0 scores that were
obtained from the short-list and long-list conditions. We
represent the current data with a normal distribution
because any difference in two d0 scores may take a real
value between �1 and 1, and because the data reported
by Dennis et al. appear by visual inspection to be approxi-
mately normally distributed.9 Hence, Xi represents a differ-
ence in d0 between the long- and short-list conditions for the
ith subject, and it is distributed normally with mean, l and
variance, r2,

Xi � Normalðl;r2Þ: ð1Þ

Any value, Xi, depends on its parent nodes, l and r2, which
must be estimated. We assumed uninformative priors for r
and d (Gelman and Hill, 2007; Rouder et al., 2009):

r � Cauchyð0;1Þþ ð2Þ
d � Cauchyð0;1Þ:

The Cauchy distribution is a t-distribution with 1 degree of
freedom.10 The ‘‘+’’ indicates the distribution is supported
on the positive semi-infinite interval, [0, 1). As in conven-
tional t-tests, effect size can also be calculated in a
Bayesian t-test. The effect size, d, is the ratio of the mean
and standard deviation:

d ¼ l=r: ð3Þ

l ¼ d� r: ð4Þ
9 We also conducted an analysis that first transformed the differences in
d0 into standardized scores. The results were almost identical with the
reported results that did not initially standardize the scores. We present the
unstandardized analyses because interpreting the posterior of l is more
intuitive than the z scores of l.

10 The reasoning behind placing a prior on d and not l is described by
Wagenmakers et al. (2010) who states that by placing a prior on effect size,
the model can be used in a broader array of situations than if a prior on the
mean were used instead.
References

Annis, J., Malmberg, K. J., Criss, A. H., & Shiffrin, R. M. (2013). Sources of
interference in recognition testing. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 39(5), 1365–1376. http://dx.doi.org/
10.1037/a0032188.

Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system
and its control processes. Oxford, England: Academic Press, pp. xi, 249,
http://dx.doi.org/10.1016/S0079-7421(08)60422-3.

Aue, W. R., Criss, A. H., & Fischetti, N. (2012). Associative information in
memory: Evidence from cued recall. Journal of Memory and Language,
66, 109–122.

Criss, A. H. (2006). The consequences of differentiation in episodic
memory: Similarity and the strength based mirror effect. Journal of
Memory and Language, 55(4), 461–478. http://dx.doi.org/10.1016/
j.jml.2006.08.003.

Criss, A. H. & Koop, G. J. (in press). Differentiation in episodic memory. In
Raaijmakers, J., Criss, A.H., Goldstone, R., Nosofsky, R., & Steyvers, M.
(Eds.), Cognitive Modeling in Perception and Memory: A Festschrift for
Richard M. Shiffrin. Psychology Press.

Criss, A. H., Aue, W., & Smith, L. (2011). The effects of word frequency and
context variability in cued recall. Journal of Memory and Language, 64,
119–132.

Criss, A. H., & Malmberg, K. J. (2008). Evidence in support of the elevated
attention hypothesis of recognition memory. Journal of Memory and
Language, 59, 331–345.

Criss, A. H., Malmberg, K. J., & Shiffrin, R. M. (2011). Output interference in
recognition memory. Journal of Memory and Language, 64(4), 316–326.
http://dx.doi.org/10.1016/j.jml.2011.02.003.

Criss, A. H., & Shiffrin, R. M. (2004a). Context noise and item noise jointly
determine recognition memory: A comment on Dennis and
Humphreys (2001). Psychological Review, 111(3), 800–807. http://
dx.doi.org/10.1037/0033-295X.111.3.800.

Criss, A. H., & Shiffrin, R. M. (2004b). Interactions between study task,
study time, and the low-frequency hit rate advantage in recognition
memory. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 30(4), 778–786. http://dx.doi.org/10.1037/0278-
7393.30.4.778.

Criss, A. H., & Shiffrin, R. M. (2005). List discrimination in associative
recognition and implications for representation. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 31(6),
1199–1212. http://dx.doi.org/10.1037/0278-7393.31.6.1199.

Dennis, S., & Humphreys, M. S. (2001). A context noise model of episodic
word recognition. Psychological Review, 108(2), 452–478. http://
dx.doi.org/10.1037/0033-295X.108.2.452.

http://dx.doi.org/10.1037/a0032188
http://dx.doi.org/10.1037/a0032188
http://dx.doi.org/10.1016/S0079-7421(08)60422-3
http://refhub.elsevier.com/S0749-596X(15)00075-3/h0020
http://refhub.elsevier.com/S0749-596X(15)00075-3/h0020
http://refhub.elsevier.com/S0749-596X(15)00075-3/h0020
http://dx.doi.org/10.1016/j.jml.2006.08.003
http://dx.doi.org/10.1016/j.jml.2006.08.003
http://refhub.elsevier.com/S0749-596X(15)00075-3/h0040
http://refhub.elsevier.com/S0749-596X(15)00075-3/h0040
http://refhub.elsevier.com/S0749-596X(15)00075-3/h0040
http://refhub.elsevier.com/S0749-596X(15)00075-3/h0050
http://refhub.elsevier.com/S0749-596X(15)00075-3/h0050
http://refhub.elsevier.com/S0749-596X(15)00075-3/h0050
http://dx.doi.org/10.1016/j.jml.2011.02.003
http://dx.doi.org/10.1037/0033-295X.111.3.800
http://dx.doi.org/10.1037/0033-295X.111.3.800
http://dx.doi.org/10.1037/0278-7393.30.4.778
http://dx.doi.org/10.1037/0278-7393.30.4.778
http://dx.doi.org/10.1037/0278-7393.31.6.1199
http://dx.doi.org/10.1037/0033-295X.108.2.452
http://dx.doi.org/10.1037/0033-295X.108.2.452


J. Annis et al. / Journal of Memory and Language 85 (2015) 27–41 41
Dennis, S., Lee, M. D., & Kinnell, A. (2008). Bayesian analysis of recognition
memory: The case of the list-length effect. Journal of Memory and
Language, 59(3), 361–376. http://dx.doi.org/10.1016/
j.jml.2008.06.007.

Dickey, J. M. (1971). The weighted likelihood ratio, linear hypotheses on
normal location parameters. The Annals of Mathematical Statistics,
42(1), 204–223. <http://www.jstor.org/stable/2958475>.

Dorfman, D., & Glanzer, M. (1988). List composition effects in lexical
decision and recognition memory. Journal of Memory and Language,
27(6), 633–648. http://dx.doi.org/10.1016/0749-596X(88)90012-5.

Gillund, G., & Shiffrin, R. M. (1984). A retrieval model for both recognition
and recall. Psychological Review, 91(1), 1–67. http://dx.doi.org/
10.1037/0033-295X.91.1.1.

Green, D. M., & Swets, J. A. (1966). Signal detection theory and
psychophysics. Oxford, England: Robert E. Krieger.

Hemmer, P., & Criss, A. H. (2013). The shape of things to come: Evaluating
word frequency as a continuous variable in recognition memory.
Journal of Experimental Psychology: Learning, Memory, and Cognition,
39, 1947–1952. http://dx.doi.org/10.1037/t19791-000.

Jaynes, E. T. (1968). Prior probabilities. IEEE Transactions on Systems
Science and Cybernetics, 4(3), 227–241. http://dx.doi.org/10.1109/
TSSC.1968.300117.

Jeffreys, H. (1961). Theory of probability (2nd ed.). Oxford: Clarendon
Press.

Kinnell, A., & Dennis, S. (2011). The list length effect in recognition
memory: An analysis of potential confounds. Memory & Cognition,
39(2), 348–363. http://dx.doi.org/10.3758/s13421-010-0007-6.

Koop, G. J., Criss, A. H., & Malmberg, K. J. (2015). The dynamic effects of
feedback and test composition over the course of recognition memory
testing. Psychonomic Bulletin & Review, 22, 509–516.

Koppell, S. (1977). Decision latencies in recognition memory: A signal
detection theory analysis. Journal of Experimental Psychology: Human
Learning and Memory, 3, 445–457.

Kruschke, J. K. (2010). What to believe: Bayesian methods for data
analysis. Trends in Cognitive Sciences, 14(7), 293–300. http://
dx.doi.org/10.1016/j.tics.2010.05.001.

Kruschke, J. K. (2011a). Bayesian assessment of null values via parameter
estimation and model comparison. Perspectives on Psychological
Science, 6(3), 299–312. http://dx.doi.org/10.1177/
1745691611406925.

Kruschke, J. K. (2011b). Doing Bayesian data analysis: A tutorial with R and
BUGS. San Diego, CA, US: Elsevier Academic Press.

Kruschke, J. K. (2013). Bayesian estimation supersedes the t test. Journal of
Experimental Psychology: General, 142(2), 573–603. http://dx.doi.org/
10.1037/a0029146.

Lehman, M., & Malmberg, K. J. (2009). A global theory of remembering
and forgetting from multiple lists. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 35(4), 970–988. http://dx.doi.org/
10.1037/a0015728.

Lehman, M., & Malmberg, K. J. (2013). A buffer model of memory
encoding and temporal correlations in retrieval. Psychological Review,
120(1), 155–189. http://dx.doi.org/10.1037/a0030851.

Macmillan, N. A., & Creelman, C. D. (1991). Detection theory: A user’s guide.
New York, NY, US: Cambridge University Press.

Malmberg, K. J. (2008). Recognition memory: A review of the critical
findings and an integrated theory for relating them. Cognitive
Psychology, 57(4), 335–384. http://dx.doi.org/10.1016/
j.cogpsych.2008.02.004.

Malmberg, K. J., Criss, A. H., Gangwani, T. H., & Shiffrin, R. M. (2012).
Overcoming the negative consequences of interference from
recognition memory testing. Psychological Science, 23(2), 115–119.
http://dx.doi.org/10.1177/0956797611430692.

Malmberg, K. J., Holden, J. E., & Shiffrin, R. M. (2004). Modeling the effects
of repetitions, similarity, and normative word frequency on old-new
recognition and judgments of frequency. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 30(2), 319–331. http://
dx.doi.org/10.1037/0278-7393.30.2.319.

Malmberg, K. J., Lehman, M., Annis, J., Criss, A. H., & Shiffrin, R. M. (2014).
Consequences of testing memory. In B. Ross (Ed.). Psychology of learning
& motivation Vol. 61. (pp. 285–313).

Malmberg, K. J., & Murnane, K. (2002). List composition and the word-
frequency effect for recognition memory. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 28(4), 616–630. http://
dx.doi.org/10.1037/0278-7393.28.4.616.

Malmberg, K. J., & Shiffrin, R. M. (2005). The ‘‘one-shot’’ hypothesis for
context storage. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 31(2), 322–336. http://dx.doi.org/10.1037/0278-
7393.31.2.322.

Malmberg, K. J., Steyvers, M., Stephens, J. D., & Shiffrin, R. M. (2002).
Feature frequency effects in recognition memory. Memory &
Cognition, 30(4), 607–613. http://dx.doi.org/10.3758/BF03194962.

Mensink, G., & Raaijmakers, J. G. (1988). A model for interference and
forgetting. Psychological Review, 95(4), 434–455. http://dx.doi.org/
10.1037/0033-295X.95.4.434.

Murnane, K., Phelps, M. P., & Malmberg, K. (1999). Context-dependent
recognition memory: The ICE theory. Journal of Experimental
Psychology: General, 128(4), 403–415. http://dx.doi.org/10.1037/
0096-3445.128.4.403.

Nelson, A. B., & Shiffrin, R. M. (2013). The co-evolution of knowledge and
event memory. Psychological Review, 120(2), 356–394. http://
dx.doi.org/10.1037/a0032020.

Raaijmakers, J. G., & Shiffrin, R. M. (1981). Search of associative memory.
Psychological Review, 88(2), 93–134. http://dx.doi.org/10.1037/0033-
295X.88.2.93.

Rouder, J. N., & Lu, J. (2005). An introduction to Bayesian hierarchical
models with an application in the theory of signal detection.
Psychonomic Bulletin & Review, 12(4), 573–604. http://dx.doi.org/
10.3758/BF03196750.

Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009).
Bayesian t tests for accepting and rejecting the null hypothesis.
Psychonomic Bulletin & Review, 16(2), 225–237. http://dx.doi.org/
10.3758/PBR.16.2.225.

Schooler, L. J., Shiffrin, R. M., & Raaijmakers, J. G. W. (2001). A Bayesian
model for implicit effects in perceptual identification. Psychological
Review, 108(1), 257–272. http://dx.doi.org/10.1037/0033-
295X.108.1.257.

Shiffrin, R. M., & Steyvers, M. (1997). A model for recognition memory:
REM – retrieving effectively from memory. Psychonomic Bulletin &
Review, 4(2), 145–166. http://dx.doi.org/10.3758/BF03209391.

Shiffrin, R. M., & Steyvers, M. (1998). The effectiveness of retrieval from
memory. Rational Models of Cognition, 73–95.

Spiegelhalter, D. J., Thomas, A., & Best, N. (1996). Computation on
Bayesian graphical models. Bayesian Statistics, 5(5), 407–425.

Turner, B. M., Dennis, S., & Van Zandt, T. (2013). Likelihood-free Bayesian
analysis of memory models. Psychological Review, 120(3), 667–678.
http://dx.doi.org/10.1037/a0032458.

Wagenmakers, E., Lodewyckx, T., Kuriyal, H., & Grasman, R. (2010).
Bayesian hypothesis testing for psychologists: A tutorial on the
Savage-Dickey method. Cognitive Psychology, 60(3), 158–189. http://
dx.doi.org/10.1016/j.cogpsych.2009.12.001.

Wagenmakers, E., Steyvers, M., Raaijmakers, J. G. W., Shiffrin, R. M., van
Rijn, H., & Zeelenberg, R. (2004). A model for evidence accumulation
in the lexical decision task. Cognitive Psychology, 48(3), 332–367.
http://dx.doi.org/10.1016/j.cogpsych.2003.08.001.

Xu, J., & Malmberg, K. J. (2007). Moldeing the effects of verbal- and
nonverbal-pair strength on associative recognition. Memory &
Cognition, 35, 526–544.

http://dx.doi.org/10.1016/j.jml.2008.06.007
http://dx.doi.org/10.1016/j.jml.2008.06.007
http://www.jstor.org/stable/2958475
http://dx.doi.org/10.1016/0749-596X(88)90012-5
http://dx.doi.org/10.1037/0033-295X.91.1.1
http://dx.doi.org/10.1037/0033-295X.91.1.1
http://refhub.elsevier.com/S0749-596X(15)00075-3/h0115
http://refhub.elsevier.com/S0749-596X(15)00075-3/h0115
http://dx.doi.org/10.1037/t19791-000
http://dx.doi.org/10.1109/TSSC.1968.300117
http://dx.doi.org/10.1109/TSSC.1968.300117
http://refhub.elsevier.com/S0749-596X(15)00075-3/h0130
http://refhub.elsevier.com/S0749-596X(15)00075-3/h0130
http://dx.doi.org/10.3758/s13421-010-0007-6
http://refhub.elsevier.com/S0749-596X(15)00075-3/h9035
http://refhub.elsevier.com/S0749-596X(15)00075-3/h9035
http://refhub.elsevier.com/S0749-596X(15)00075-3/h9035
http://refhub.elsevier.com/S0749-596X(15)00075-3/h9005
http://refhub.elsevier.com/S0749-596X(15)00075-3/h9005
http://refhub.elsevier.com/S0749-596X(15)00075-3/h9005
http://dx.doi.org/10.1016/j.tics.2010.05.001
http://dx.doi.org/10.1016/j.tics.2010.05.001
http://dx.doi.org/10.1177/1745691611406925
http://dx.doi.org/10.1177/1745691611406925
http://refhub.elsevier.com/S0749-596X(15)00075-3/h0160
http://refhub.elsevier.com/S0749-596X(15)00075-3/h0160
http://dx.doi.org/10.1037/a0029146
http://dx.doi.org/10.1037/a0029146
http://dx.doi.org/10.1037/a0015728
http://dx.doi.org/10.1037/a0015728
http://dx.doi.org/10.1037/a0030851
http://refhub.elsevier.com/S0749-596X(15)00075-3/h0185
http://refhub.elsevier.com/S0749-596X(15)00075-3/h0185
http://dx.doi.org/10.1016/j.cogpsych.2008.02.004
http://dx.doi.org/10.1016/j.cogpsych.2008.02.004
http://dx.doi.org/10.1177/0956797611430692
http://dx.doi.org/10.1037/0278-7393.30.2.319
http://dx.doi.org/10.1037/0278-7393.30.2.319
http://refhub.elsevier.com/S0749-596X(15)00075-3/h3185
http://refhub.elsevier.com/S0749-596X(15)00075-3/h3185
http://refhub.elsevier.com/S0749-596X(15)00075-3/h3185
http://dx.doi.org/10.1037/0278-7393.28.4.616
http://dx.doi.org/10.1037/0278-7393.28.4.616
http://dx.doi.org/10.1037/0278-7393.31.2.322
http://dx.doi.org/10.1037/0278-7393.31.2.322
http://dx.doi.org/10.3758/BF03194962
http://dx.doi.org/10.1037/0033-295X.95.4.434
http://dx.doi.org/10.1037/0033-295X.95.4.434
http://dx.doi.org/10.1037/0096-3445.128.4.403
http://dx.doi.org/10.1037/0096-3445.128.4.403
http://dx.doi.org/10.1037/a0032020
http://dx.doi.org/10.1037/a0032020
http://dx.doi.org/10.1037/0033-295X.88.2.93
http://dx.doi.org/10.1037/0033-295X.88.2.93
http://dx.doi.org/10.3758/BF03196750
http://dx.doi.org/10.3758/BF03196750
http://dx.doi.org/10.3758/PBR.16.2.225
http://dx.doi.org/10.3758/PBR.16.2.225
http://dx.doi.org/10.1037/0033-295X.108.1.257
http://dx.doi.org/10.1037/0033-295X.108.1.257
http://dx.doi.org/10.3758/BF03209391
http://refhub.elsevier.com/S0749-596X(15)00075-3/h0315
http://refhub.elsevier.com/S0749-596X(15)00075-3/h0315
http://refhub.elsevier.com/S0749-596X(15)00075-3/h0320
http://refhub.elsevier.com/S0749-596X(15)00075-3/h0320
http://dx.doi.org/10.1037/a0032458
http://dx.doi.org/10.1016/j.cogpsych.2009.12.001
http://dx.doi.org/10.1016/j.cogpsych.2009.12.001
http://dx.doi.org/10.1016/j.cogpsych.2003.08.001
http://refhub.elsevier.com/S0749-596X(15)00075-3/h9030
http://refhub.elsevier.com/S0749-596X(15)00075-3/h9030
http://refhub.elsevier.com/S0749-596X(15)00075-3/h9030

	The list-length effect does not discriminate between models of recognition memory
	Some history
	Dennis, Lee, & Kinnell’s 2008 Experiment
	Bayesian data analysis
	Bayesian parameter estimation
	Hypothesis testing
	Summary of findings

	Dennis, Lee, and Kinnell’s Bayesian hierarchical signal detection analysis
	General discussion
	The list-length effect: Is it theoretically important?

	Conclusion
	Appendix A
	Dennis et al.’s error-only model and effect-plus-error model
	Model selection

	Appendix B
	References


