CCCC REHABILITATION ENGINEERING + ASSISTIVE TECHNOLOGY

Evaluation

37

SCHOOL OF ENGINEERING

FIRST STUDY: RELEVANT TO REDUCING OVERUSE INJURY RISK Mechanized clothing reduced lumbar loading

Second Study: Relevant to Endurance, Productivity & Retention Question 1: Can mechanized clothing reduce muscle fatigue?

Second Study: Relevant to Endurance, Productivity & Retention Question 1: Can mechanized clothing reduce muscle fatigue?

Second Study: Relevant to Endurance, Productivity & Retention Question 2: Are changes in fatigue consistent across muscles & users?

Second Study: Relevant to Endurance, Productivity & Retention Question 2: Are changes in fatigue consistent across muscles & users?

Ż

Median frequency provides objective indicator of muscle fatigue

Median frequency provides objective indicator of muscle fatigue

Median frequency provides objective indicator of muscle fatigue

S.

Slope of median frequency vs. time = muscle fatigue rate

Slope of median frequency vs. time = muscle fatigue rate

Slope of median frequency vs. time = muscle fatigue rate

Less steep slope = slower rate of muscle fatigue

Key outcome metrics: % change in slope with vs. without exo

Q1: Can mechanized clothing reduce muscle fatigue?

Lamers et al. In Review

Q1: Can mechanized clothing reduce muscle fatigue? YES!

Lamers et al. In Review

Q1: Can mechanized clothing reduce muscle fatigue? YES!

Lamers et al. In Review

Q1: Can mechanized clothing reduce muscle fatigue? YES!

Lamers et al. In Review

Q1: Can mechanized clothing reduce muscle fatigue? YES!

Lamers et al. In Review

Q2: Are changes consistent across muscles & users? NO!

Lamers et al. In Review

57

2 subjects: 5-6 muscles

3 subjects: 2-4 muscles

1 subject: 1 muscle*

For exo evaluation standards which muscles should we test?

Lamers et al. In Review

Pros & cons to group-level (inter-subject mean) results

Pros & cons to group-level (inter-subject mean) results

Measuring muscle fatigue (especially back) can be very difficult

Measuring muscle fatigue (especially back) can be very difficult

Unexpected adaptations: latissumus dorsi

Lamers et al. In Review

Unexpected adaptations: latissumus dorsi kicked into high gear

WHAT'S NEXT? REFINING PROTOTYPE

To improve fit & comfort for males & females, different sizes

WHAT'S NEXT? CONFIRMING COMPATIBILITY To fit comfortably under uniforms

WHAT'S NEXT? INDUSTRY FIELD TESTS

Logistics, Manufacturing, Retail, Nursing, Construction, Military

WHAT'S NEXT? INDUSTRY FIELD TESTS

Working with industry partners to design tests (spring/summer 2019)

WHAT'S NEXT? INTEGRATE SENSING & MACHINE LEARNING Human-in-the-loop optimization of assistive stiffness

Shank Interface

Assistance. Spring

Clutch

etnie

×.

Ankle assistance

Reduced calf muscle activity during walking

Ankle assistance

Conclusions & key takeaways

Science

- small reductions in tissue load = big reductions in tissue damage

Design

- clutchable springs enable full range-of-motion + assistance on demand

Evaluation

- spring-powered exosuits can reduce muscle loading & fatigue
- inter-subject & inter-muscle variability: challenges for evaluation standards *(for all exoskeletons)*

ONE PROBLEM...

"Where is my supersuit?!?!" - Frozone

CREATER FOR REHABILITATION ENGINEERING + ASSISTIVE TECHNOLOGY

Top Gripper **Reset Spring** Slider Bottom Gripper Interface Assistance Spring Clutch

Acknowledgements: Vanderbilt University & NIH

APPENDIX

VANDERBILT® SCHOOL OF ENGINEERING

BIOMECHANICAL EXPLANATION VIA SIMPLE EXAMPLE

Why lumbar forces are primarily from muscles \rightarrow lever system

Lumbar spine

Head Arms Trunk (0.5 BW)

BW = body weight (e.g., 0.5 BW = 50% of body weight)

92

BW = body weight (e.g., 0.5 BW = 50% of body weight)

Muscle Force (0.5 BW) Device Force (0.25 BW) Take-away from this example Muscle force reduced by 50% Spine force reduced by 15% Contact Info

Karl Zelik

Assistant Professor, Vanderbilt University Department of Mechanical Engineering Department of Biomedical Engineering **Department of Physical Medicine & Rehabilitation** Research Center: engineering.vanderbilt.edu/create Research Lab: my.vanderbilt.edu/batlab Email: karl.zelik@vanderbilt.edu Twitter: @KarlZelik

