Is the Foot Working With or Against the Ankle During Human Walking?

Karl E. Zelik Vanderbilt University Mechanical Engineering Physical Medicine & Rehabilitation

Is the <u>Beach</u> Working With or Against the Ankle During Human Walking?

Turks & Caicos

Sand dissipates energy during walking

60-150% more biomechanical work, 110-150% higher metabolic cost

Sand dissipates ankle Push-off

Consensus: Push-off facilitates economical gait

No consensus: primary function of ankle Push-off

Good news: these are not mutually exclusive

Both are equally valid descriptions

Push-off primarily contributes to leg swing & COM kinetics

Consensus: Push-off facilitates economical gait

Consensus: Push-off is good

Corollary: dissipating Push-off is bad (for gait economy)

Is the Foot Working With or Against the Ankle (Push-off) During Human Walking?

Feet are complex, contain 25% of bones in body

Foot kinetics estimated using deformable body model

Foot kinetics estimated using deformable body model

Foot* absorbs energy during push-off, returns little

*everything distal to the ankle joint

Foot* absorbs energy during push-off, returns little

Foot* absorption partly due to negative toe joint work

*everything distal to the ankle joint

EMGs provide supplemental perspective

Negative toe work during active muscle contractions

foot absorption not simply the result of passive deformation

Consensus: Push-off is good

Corollary: dissipating Push-off is bad (for gait economy)

------ Sand (Lejeune, Willems & Heglund 1998)

What is going on with the foot?

3 Possibilities...

Why does it matter?

Example: implications for prosthetic foot design

Possibility 1: Foot is working <u>against</u> the ankle

Foot absorption detrimental to gait economy, perhaps beneficial for other reasons (e.g., adaptability)? Song & Geyer 2011, Song, Collins & Geyer 2013

Possibility 1: Foot is working <u>against</u> the ankle

Foot absorption detrimental to gait economy, perhaps beneficial for other reasons (e.g., adaptability)?

Song & Geyer 2011; Song, Collins & Geyer 2013

Prosthetic Foot Implication 1: Avoid Biomimicry

If goal is to improve amputee walking economy, then don't mimic wasteful foot behavior.

Fatigue & increased metabolic demands are common problems for amputees.

Possibility 1: Foot is working <u>against</u> the ankle

Foot absorption detrimental to gait economy, perhaps beneficial for other reasons (e.g., adaptability)?

Song & Geyer 2011; Song, Collins & Geyer 2013

Prosthetic Foot Implication 1: Avoid Biomimicry

If goal is to improve amputee walking economy, then don't mimic wasteful foot behavior.

Fatigue & increased metabolic demands are common problems for amputees.

Prosthetic Foot Implication 2: Actuation Not Required

Ankle+foot work is <u>not</u> net positive. Powered prostheses may not be needed to emulate ankle+foot function during gait. Takahashi & Stanhope 2013; Zelik, Takahashi & Sawicki 2015

Possibility 2: Foot is working with the ankle

Foot absorption itself is bad, but may enable calf muscles to operate at more favorable length or velocity (e.g., Carrier et al. 1994) or extend time duration of Push-off (e.g., clapskates, Houdijk et al. 2000), etc.

Possibility 2: Foot is working with the ankle

Foot absorption itself is bad, but may enable calf muscles to operate at more favorable length or velocity (e.g., Carrier et al. 1994) or extend time duration of Push-off (e.g., clapskates, Houdijk et al. 2000), etc.

Prosthetic Foot Implication 1: Avoid Biomimicry (probably) If foot behavior enables calf muscles to operate more effectively, then not applicable to amputees/prosthetics.

Prosthetic Foot Implication 2: Actuation Not Required Ankle+foot work is <u>not</u> net positive. Powered prostheses may not be needed to emulate ankle+foot function during gait. Takahashi & Stanhope 2013; Zelik, Takahashi & Sawicki 2015

Relevant (upcoming) talks

- Shreyas Mandre foot stiffness
- Keonyoung Oh toe joint function
- Matt Yandell shod vs. barefoot gait

Possibility 3: Foot is working with the ankle, BUT...

our conventional biomechanical estimates fail to measure it (e.g., due to neglecting multiarticular muscles) Zelik et al. 2015 EJAP; Zelik, Takahashi & Sawicki 2015 JEB

Thought expt: multiarticular muscle acting isometrically

Thought expt: multiarticular muscle acting isometrically

Push-off \rightarrow multiarticular muscle moments

Inverse dynamics \rightarrow apparent negative foot work

Inverse dynamics \rightarrow apparent positive ankle work

Possibility 3: Foot is working with the ankle, BUT...

our conventional biomechanical estimates fail to measure it (e.g., due to neglecting multiarticular muscles) Zelik et al. 2015 EJAP; Zelik, Takahashi & Sawicki 2015 JEB

Possibility 3: Foot is working with the ankle, BUT...

our conventional biomechanical estimates fail to measure it (e.g., due to neglecting multiarticular muscles) Zelik et al. 2015 EJAP; Zelik, Takahashi & Sawicki 2015 JEB

Prosthetic Foot Implication: Avoid Mimicking Current Estimates We need better empirical estimates to understand & restore normal ankle-foot function.

Relevant talks & posters

- Eric Honert (poster 54) accounting for multiarticular ankle-foot muscles
- Ryan Riddick modeling & estimating foot kinetics

Concluding Remarks

1. Thank you DW committee (for session on feet)

- 2. Encourage everyone to think more about feet
 - not to a creepy fetish level, but to a level reflective of foot's importance
 ignoring foot is akin to ignoring knee during gait

Concluding Remarks

1. Thank you DW committee (for session on feet)

- 2. Encourage everyone to think more about feet
 - not to a creepy fetish level, but to a level reflective of foot's importance
 ignoring foot is akin to ignoring knee during gait (Zelik, Takahashi & Sawicki 2015)
- 3. Request feedback, thoughts, new perspectives... Is the foot working with or against the ankle during human walking?

Is the Foot Working With or Against the Ankle During Human Walking?

