The cost of comfort: what's it worth to avoid pain?

Karl E. Zelik and Arthur D. Kuo University of Michigan

Net positive work must be done by muscles

Active Muscles

Net Positive Work

Negative work can be done by muscles

Net Positive Work

Active Muscles

Negative work can also be done passively

People can choose how to distribute neg. work¹

	Net Positive Work	Net Negative Work
Active Muscles		
Passive Soft Tissues		₹

There are costs to both active and passive work

	Net Positive Work	Net Negative Work	Cost
Active Muscles			Metabolic Energy
Passive Soft Tissues		₹	Pain Risk of Injury

Jump-landing

Cost

Preferred landing strategy is a compromise between these costs

Metabolic Energy

Pain Risk of Injury

How can we compare costs quantitatively?

Cost

Preferred landing strategy is a compromise between these costs

Metabolic Energy

Pain Risk of Injury

Distribution of work -> how people value costs

Distribution of work → how people value costs

Jump-Landing Experiment

Estimating
Active vs. Passive
Contributions

People prefer to do more active work than necessary

Jump-landing experiment

N=8 Collected ground reaction forces and full-body kinematics

Range of jump heights

Stiff-legged landing minimizes negative work

Doing work actively increases total work done

Hypothesis: people prefer to perform extra work

Representative mechanical power

Preferred landing style

Theoretical minimum: only negative work

People choose to do more work than necessary

Landing stiff-legged minimizes work

Landing softly increases neg. & pos. work

Landing softly increases neg. & pos. work

Mechanical work performed landing from 40cm

Trade-off between energy and pain

People prefer to do 37% more negative work

Power due to motion of the CoM

Power due to motion relative to the CoM

Center-of-Mass

Peripheral

König's Theorem

Total Mechanical Power

Joint

Soft Tissue

Rotational power due to muscles/tendons

Everything else, notably power due to deformations of non-rigid bodies

$$\sum_{\text{legs}} F_i \cdot v_{\text{COM}}$$

$$\frac{d}{dt} \sum_{\text{segments}} \frac{1}{2} m_s (v_s - v_{\text{COM}})^2 + \frac{1}{2} I_s \cdot \omega_s^2$$

Center-of-Mass

Peripheral*

(inverse dynamics)

Joint*

Soft Tissue

 $\sum_{\text{joints}} M_j \cdot \omega_j$

*rigid-body assumptions

Peripheral

indicator of active contributions

Joint

Soft Tissue

indicator of passive contributions

Soft Tissue Collision work increases with Total

Soft Tissues perform 16% of Collision work

Passive contribution highest for small Collisions

People prefer to distribute work between active & passive tissues, doing 37% more than needed

Collisions could be done for free, but it hurts to land passively,
So people will choose
Mostly muscles to use.
Comfort is worth energy.

Acknowledgements Adrian Choy NSF GRF, DoD, NIH

People prefer to distribute work between active & passive tissues, doing 37% more than needed

Collisions could be done for free, but it hurts to land passively,
So people will choose
Mostly muscles to use.
Comfort is worth energy.

Acknowledgements Adrian Choy NSF GRF, DoD, NIH