Shod vs. Barefoot Walking: Why do humans change their step frequency?
V

VANDERBILT

Matthew B. Yandell & Karl E. Zelik
Mechanical Engineering, Vanderbilt University, Nashville, TN, USA

Background

People seem to:

1) Choose a step frequency that
minimizes metabolic cost
during shod walking [Zarrugh
1974]

2) Increase step frequency
when barefoot as compared to
shod [Grieve 1966, Lythgo
2009]

Open Questions

1) Do people increase their
step frequency when 0
barefoot to reduce/minimize
metabolic cost?
If not, what factor(s)
account for the change in (A 6.2 + 3.9 steps/min)*
step frequency? [P =5e-7]
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Barefoot self-selected step frequency did not
result in reduced metabolic rate compared
to shod self-selected step frequency
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in metabolic rate were observed
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barefoot vs. shod SS step frequencies, using an
ABBA experimental design. Each subject was
also asked to walk while matching the
frequency of a metronome for 6 randomized
conditions, from 85% to 110% of their barefoot
SS step frequency. A metabolic system was N
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Methods Phase II: I= Barefoot
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Discussion and Future Work:
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cost of locomotion on an individual basis.

Similar methods might be applied to Height: The additional height of the shoe accounted
understand and Improve other assistive or for 109% of the observed Step frequency change

rehabilitative devices.
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