Quantifying Physical Interface Dynamics
Human-Prosthesis & Human-Exoskeleton
Power Transmission




PROBLEM

A poor transmission can ruin performance

2008 Smart ForTwo (ranked 34th worst car of all-time)

“Not bad-looking, but unpleasant to drive in every conceivable

way. May have the most annoying transmission ever made.”
— Edmunds.com
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SOME EVIDENCE IN LITERATURE
Human-device power transmission problems

Bionic Prostheses
(Zelik et al. 2011)
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EVIDENCE IN LITERATURE

Human-device power transmission problems
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How CAN BoDY RECEIVE POWER?
Imagine being pushed from behind while walking

Useful Motion

Can reduce metabolic cost, making it easier to walk (Gottschall & Kram 2003)
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How CAN BoDY RECEIVE POWER?
Imagine being pushed from behind while walking

>

Extraneous Motion
(soft tissue deformation)



HUMAN AUGMENTATION DEVICES

Goal: maximize useful power, minimize extraneous

Key Question: How can we measure
effectiveness of power transmission?

/minimize \

>




HUMAN-EXOSKELETON
Estimating power transmission in soft exosuits

SRI SuperFlex

Harvard Exosuit



HUMAN-EXOSKELETON
Estimating power transmission in soft exosuits

SRI SuperFlex

Harvard Exosuit ETHZ MAXX



HUMAN-EXOSKELETON

Power absorbed into soft tissue & interface deformation

actuator (above, out of view)

proximal interface

actuator cable

distal interfaceN




HUMAN-EXOSKELETON

Experiment to quantify power transmission in exosuits

Motion / @
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Yandell, Popov, Quinlivan, Walsh, O’Donnell, Zelik 2016, Dynamic Walking Conference mmas




HUMAN-EXOSKELETON
Simple method to parse power transmission
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HUMAN-EXOSKELETON
Simple method to parse power transmission
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End Effector
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HUMAN-EXOSKELETON
Simple method to parse power transmission
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HUMAN-EXOSKELETON

Simple method to parse power transmission

Load
Cell

Cable

End Effector
Power , Proximal Interface
Power (Extraneous)
Distal Interface
Power (Extraneous)

Ankle Assistance
(Hopefully Useful)

W Yandell, Popov, Quinlivan, Walsh, O’Donnell, Zelik 2016, Dynamic Walking Conference anm




HUMAN-EXOSKELETON

Simple method to parse power transmission

End Effector Power

Yandell, Popov, Quinlivan, Walsh, O’Donnell, Zelik 2016, Dynamic Walking Conference




HUMAN-EXOSKELETON

Simple method to parse power transmission

Ankle Proximal & Distal
Assistance Interface Absorption

Yandell, Popov, Quinlivan, Walsh, O’Donnell, Zelik 2016, Dynamic Walking Conference




HUMAN-EXOSKELETON

Simple method to parse power transmission

Ankle Proximal & Distal
Assistance Interface Absorption

ratios depend on physical interface & device control

v Yandell, Popov, Quinlivan, Walsh, O’Donnell, Zelik 2016, Dynamic Walking Conference




HUMAN-EXOSKELETON

Validation test: method can partition power as theorized

W Yandell, Popov, Quinlivan, Walsh, O’Donnell, Zelik 2016, Dynamic Walking Conference




HUMAN-EXOSKELETON

Validation test: method can partition power as theorized
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HUMAN-EXOSKELETON

Validation test: method can partition power as theorized

- «—end effector

~—proximal interface
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Time
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HUMAN-EXOSKELETON

Validation test: method can partition power as theorized
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HUMAN-EXOSKELETON

Validation test: method can partition power as theorized

«—end effector

ankle assistance

Power

distal interface
~—proximal interface
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Time
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HUMAN-EXOSKELETON

Validation test: interface can absorb substantial energy

«—end effector

0.1 sec

Time
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HUMAN-EXOSKELETON

Walking tests: projected results

«—end effector
50 W ankle assistance
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HUMAN-EXOSKELETON

Key challenge: to understand the physical interface

as part of hybrid human-device system being optimized




HUMAN-EXOSKELETON

Key challenge: to understand the physical interface

as part of hybrid human-device system being optimized

andell & Karl E. Zel
de

...But Current Physical Interfaces Limit Exoskeleton Performance Benefits

> As much as 50% of power may )
be lost during transmission to

Tablet the body [Cherry 2015] due to

deformation of soft tissue and

interface materials, and to

relative motion of Interface

\__ with respect to the body.

> Axial limb loading > skin-tissue
stretch, migration of interface
[Asbeck 2013]

> Orthogonal limb loading > soft

ssue compression [Fons 2010 )

J

Advanced Interfaces could Resolve Force and Power Transmission Issues
:
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my.vanderbilt.edu/batlab
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How CAN BoDY RECEIVE POWER?
Imagine being pushed from behind while walking

> @

e

Neuromotor Response to
Extraneous Motion



How CAN BoDY RECEIVE POWER?
Preemptive adjustments can also alter effect of power




HUMAN-PROSTHESIS

Individuals/groups can respond completely differently

to bionic prosthesis




HUMAN-PROSTHESIS

Prosthesis functioned the same for both groups
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HUMAN-PROSTHESIS

Center-of-mass power was similar for both groups
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HUMAN-PROSTHESIS

“Biological” power was similar for both groups
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HUMAN-PROSTHESIS

What happens to knee & hip joint power?
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200 Center-of-Mass Center-of-Mass—

W)

< 100

Power
o

-100

”Biological’j

”Biological’j

200+

W)

v100’

Power
o

-100!

o 20 40 60 80 100 0 20 40 60 80 100

Stance Phase (%) Stance Phase (%)  zelik et al. 2011



HUMAN-PROSTHESIS

Non-amputees: knee & hip power is small
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HUMAN-PROSTHESIS

Amputees adapt differently, with higher knee & hip power
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HUMAN-PROSTHESIS

Key challenge: quantifying & understanding coordination

how user & device adapt to each other
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ONGOING/ FUTURE WORK

Studying how to physically integrate human & device

& how to quantify human-device interaction

Vanderbilt (Goldfarb) Vanderbilt (Goldfarb) Harvard (Walsh)



ONGOING/FUTURE WORK
Studying how to physically integrate human & device

Post-Doc Opening

my.vanderbilt.edu/batlab
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THIS FALL

New Vanderbilt Rehabilitation Engineering Center

Post-Doc Opening
my.vanderbilt.edu/batlab
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3000 sq. ft. motion analysis lab + 3000 sq. ft. engineering space



SUMMARY

A poor transmission can ruin performance

Human augmentation: we need new methods to
understand human-device power transmission & coordination

2008 Smart ForTwo (ranked 34th worst car of all-time)
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