

BIOMEDICAL

ENGINEERING

Joint Department of

Too Much Work: Revisiting Ultrasound-Based Estimates of Achilles Tendon Energy Storage and Return Jason R. Franz¹ and Karl E. Zelik²

¹UNC-Chapel Hill and NC State University, Chapel Hill, NC ²Vanderbilt University, Nashville, TN

VANDERBILT UNIVERSITY

1. BACKGROUND/SIGNIFICANCE

Longstanding Assumption: We can deduce *in vivo* tendon dynamics *indirectly* from measured muscle fascicle dynamics.

Work Loop "Litmus Test" - Passive, spring-like tendons should behave in passive, spring-like fashion (i.e., perform net negative work).

Dilemma: Indirect estimates fail this litmus test [e.g., 1,2]

2. TAKEAWAYS & IMPLICATIONS^[3]

1. Compared to Indirect estimates, Direct ultrasound estimates of tendon energy storage and return are more plausible, and thus may be preferable for understanding tendon dynamics during human movement

Highly relevant to:

- The degree to which tendon elastic energy storage and return facilitates economical locomotion, including applications in modeling and simulation.
- The bio-inspired design and prescription of assistive devices that seek to

PURPOSES: (1) Compute tendon work loops and apparent hysteresis loss using more Direct ultrasound estimates of tendon kinematics, and **(2)** Compare the results to previously reported values from Indirect estimates.

HYPOTHESIS: Unlike Indirect estimates, Direct estimates yield negative work loops for the human Achilles tendon across a range of walking speeds.

restore/augment human calf muscle-tendon function.

2. Highlights the need to understand the accuracy, precision, benefits, drawbacks, and assumptions of our measurement techniques in order to appropriately interpret the functional role of muscle-tendon dynamics during movement

3. INDIRECT: TENDON WORK LOOPS FROM MEASURED FASCICLE KINEMATICS

1 J Stored \rightarrow 2-5 J Returned: Physiologically Implausible

Potential Sources of Error:

- MTU lengths based on regression equations from cadaver data [4]
- Assumes that the aponeurosis acts longitudinally and in series with muscles and tendons [5]
- 2D imaging may not represent complex 3D behavior
- Assumptions for decomposing ankle moments into tendon force (Shared by all methods)

4. DIRECT MTJ: TENDON WORK LOOPS FROM MEASURED MTJ KINEMATICS

5. DIRECT TENDON: TENDON WORK LOOPS FROM LOCAL TENDON ELONGATIONS

6. METHODS OVERVIEW

Indirect Tendon: From Data Digitization

Outcome measures digitized from prior publications that used the Indirect method: Walking (1.4 m/s, N=8) [1]

Isolated Ankle Exercise ("Bouncing", N=7) [2]

Direct Tendon: 2D Speckle Tracking

Tracked localized tendon tissue displacements at 155 frames/sec

Direct Muscle-Tendon Junction Manual Tracking at 70 frames/sec

Motion Capture Co-Registration Heel marker used as a surrogate for calcaneal insertion

REFERENCES

 Ishikawa et al., J Appl Physiol 2005; 99: 603-8.
Sakuma et al., Eur J Appl Physiol 2012; 112: 887-98.

Zelik and Franz, PLoS One 2017; 12(7).
Hawkins and Hall, J Biomech 1990; 23:487-94.
Epstein et al., J Biomech 2006; 39: 2020-25.

ACKNOWLEDGEMENTS

Supported by funding from the National Institutes of Health: K12HD073945 (awarded to KEZ), F32AG044904 and R01AG051748 (awarded to JRF).