

Biomechanics to bionics:

how scientific insights can unleash our imagination, inspire new tech & broaden use of wearable robots

Prof. Karl Zelik

You're not that smart* relative to complexity of movement

*neither am I

TAKEAWAY 2

Mechanisms underlying movement are often unexpected & non-intuitive

TAKEAWAY 3

Non-intuitive mechanisms are key to wearable robot world domination

Washington University in St. Louis biomedical engineering

implantable cardiac devices

Ann Arbor

UNIVERSITY OF MICHIGAN

biomechanics & prosthetics

FONDAZIONE SANTA LUCIA SCIENTIFIC INSTITUTE FOR RESEARCH, HOSPITALIZATION AND HEALTH CARE Nationally renowned hospital for neuromotor rehabilitation neuromotor control

CREATER FOR REHABILITATION ENGINEERING + ASSISTIVE TECHNOLOGY

You & I are not that smart relative to complexity of movement

1 segment (single pendulum) \rightarrow we've got this one!

2 linked segments (double pendulum) \rightarrow maybe we get it

2 linked segments (double pendulum) \rightarrow maybe we don't

2 linked segments (double inverted pendulum) \rightarrow hmmm...

Passive Dynamic Walking

HUMAN SMARTS VS. MOVEMENT DYNAMICS

3 linked segments (triple pendulum) \rightarrow well #%\$&

3 linked segments (triple pendulum) \rightarrow well #%\$&

Just one of the three equations of motion:

$$\begin{split} \ddot{\theta_1} &= -(2((l_3^2m_3^2\sin(2\theta_1-2\theta_3)(4I_2-l_2^2m_2)+l_2^2\sin(2\theta_1-2\theta_2)(m_2+2m_3)(m_2m_3l_3^2+4I_3(m_2+2m_3))) \\ &+ (I_2(\sin(\theta_1-\theta_2)((m_2m_3(m_2+3m_3)l_3^2+4I_3(m_2^2+6m_2m_3+8m_3^2))l_2^2+4I_2(m_3(m_2+m_3)l_3^2+4I_3(m_2+2m_3))) \\ &+ (I_2(\sin(\theta_1-\theta_2)(m_2m_3(m_2+3m_3))) \\ &+ (I_3(m_2+2m_3)) \\ &+ (I_3(m_2m_3)I_3^2 \\ &+ (I_3(m_2m_3)I_3^2 \\ &+ (I_3(m_2m_3)I_3^2 \\ &+ (I_3(m_2+2m_3)) \\ &+ (I_3(m_2m_3)I_3^2 \\ &+ (I_3(m_2+2m_3)) \\ &+ (I_3(m_2m_3)I_3^2 \\ &+ (I_3(m_2+2m_3)) \\ &+ (I_3(m_2m_3)I_3^2 \\ &+ ($$

CRGIE

Human: multiple linked segments

Human: multiple linked segments x 3-D x muscles x control

Human: multiple linked segments x 3-D x muscles x control

Human: multiple linked segments x 3-D x muscles x control

3-D Wearable Robot Challenge use our smarts & intuition to predict how to best augment human movement smarts = ability to quickly reason, understand or intuit

BONUS CHALLENGE

People are squishy when forces are applied to body

Yandell et al. 2017

Wearable Robot Challenge use our smarts & intuition to predict how to best augment human movement

TAKEAWAY 2

Mechanisms underlying movement are often unexpected & non-intuitive

Speed skating: Push-off power from ankle, knee & hip

Simple modification to traditional skate enhances speed

American skate about 1865

"a rigid blade fixed below a boot"

Passive "toe" joint: seemingly small changes has big impact!

1700

Running shoes

Running shoes: cushioned footwear vs. barefoot?

X

Running shoes: cushioned footwear vs. barefoot?

Results: Lieberman et al. 2010 Image: Popular Science

Running shoes: cushioned footwear vs. barefoot?

Results: Lieberman et al. 2010 Image: Popular Science

Reasonable thought process \rightarrow try barefoot to reduce impacts

Reasonable thought process \rightarrow try barefoot to reduce impacts

How does knee force compare? Shifted left, right, up, down?

Peak ground forces 2-3x BW vs. peak knee loading 6-14x BW

Peak ground forces 2-3x BW vs. peak knee loading 6-14x BW

My own story: repetitive lifting & leaning

Life with small kids

Life with small kids

Life with small kids

Life with small kids & trying to be an adult

Life as a professor

Life as a professor

*

WWW. PHDCOMICS. COM

My own story: repetitive lifting & leaning

POTENTIAL WEARABLE TECH SOLUTIONS

POTENTIAL WEARABLE TECH SOLUTIONS Concept 1: load path to ground

POTENTIAL WEARABLE TECH SOLUTIONS Concept 2: traction device

POTENTIAL WEARABLE TECH SOLUTIONS

Concept 3: torsion/scissor mechanism

POTENTIAL WEARABLE TECH SOLUTIONS

Not aware of any solutions (existing or theorized) that work for me

Stopped thinking about tech, started thinking about science

What causes high forces on the low back? It's all about levers!

Head Arms Trunk (0.5 BW)

<u>Non-Intuitive Insight</u> spine force mostly self-inflicted from your own muscles

HISTORICAL ASIDE

Simple insight so non-intuitive that it took 1500 yrs to realize!

<u>Non-Intuitive Insight</u> spine force mostly self-inflicted from your own muscles

Galen (2nd Century)

Borelli (17th Century)

HISTORICAL ASIDE

Simple insight so non-intuitive that it took 1500 yrs to realize!

HISTORICAL ASIDE

Simple insight so non-intuitive that it took 1500 yrs to realize!

Galen (2nd Century)

"Galen states that a tendon (muscle working on joint) is like a lever... This has been questioned by nobody. Who indeed would be stupid enough to look for a machine [human body] to move a very light weight with a great force ... This seems strange and against commons sense, I agree, but I can convincingly demonstrate that this is what happens..." - Giovanni Borelli

Borelli (17th Century)

TAKEAWAY 3

Non-intuitive mechanisms are key to wearable robot world domination

WEARABLE TECH SOLUTIONS

Spine forces are mostly self-inflicted! (from your own muscles)

WEARABLE TECH SOLUTIONS

Embed spring-like structures into clothing to offload low back

Muscle Force (0.5 BW) Device Force (0.25 BW)

Muscle force reduced by 50% Spine force reduced by 15%

PROTOTYPE

Biomechanically-assistive clothing (passive device)

PROTOTYPE 14-43% reduction in low back muscle activity (*N*=8)

Lamers, Yang & Zelik 2017

IMPLICATIONS

Device can offload my back, fit under my clothes, into my life!

IMPLICATIONS

Started project selfishly... later realized broad applications

new markets & new potential end-users

FINAL THOUGHTS

1900 yrs after Galen, underlying mechanism still non-intuitive

FINAL THOUGHTS: ACADEMIC-INDUSTRY PARTNERSHIP Exploring non-intuitive wearable tech solutions

FINAL THOUGHTS: ACADEMIC-INDUSTRY PARTNERSHIP

Evaluating & optimizing wearable robotic devices

ACKNOWLEDGEMENTS

Students, post-docs, faculty, staff, collaborators & funding sources

Funding Sources: NSF, NIH, NIDILRR, SEC, Vanderbilt, Industry

Thanks. Questions?

- 1. You & I are not that smart (relative to complexity of movement)
- 2. Mechanisms underlying movement are often unexpected & non-intuitive
- 3. Non-intuitive mechanisms are key to wearable robot world domination

