

Biomechanics to bionics:

how scientific insights can unleash our imagination & inspire new design solutions for assistive tech

Prof. Karl Zelik

Biomechanics to bionics:

how scientific insights can unleash our imagination & inspire new design solutions for assistive tech

Prof. Karl Zelik

You're not that smart

You're not that smart*

*neither am I

You're not that smart* relative to complexity of movement

*neither am I

TAKEAWAY 2

Mechanisms underlying movement are often unexpected & non-intuitive

TAKEAWAY 3

Non-intuitive mechanisms are key to innovative new assistive tech & broadening societal impact

CRETER FOR REHABILITATION ENGINEERING + ASSISTIVE TECHNOLOGY

Rehabilitation Engineering restore mobility, independence & health to individuals with disabilities (& prevent future injuries/disabilities)

*

2. Develop assistive technology (prostheses)

2. Develop assistive technology (exoskeletons)

2. Develop assistive technology (smart clothing)

3. Perform experiments to measure benefits & refine devices

3. Perform experiments to measure benefits & refine devices

4. Train next generation of engineers, scientists & innovators

You & I are not that smart relative to complexity of movement

1 segment (single pendulum) \rightarrow we've got this one!

2 linked segments (double pendulum) \rightarrow maybe we get it

2 linked segments (double pendulum) \rightarrow maybe we don't

2 linked segments (double inverted pendulum) \rightarrow hmmm...

Passive Dynamic Walking

HUMAN SMARTS VS. MOVEMENT DYNAMICS

3 linked segments (triple pendulum) \rightarrow well #%\$&

3 linked segments (triple pendulum) \rightarrow well #%\$&

Just one of the three equations of motion:

$$\begin{split} \ddot{\theta_1} &= -(2((l_3^2m_3^2\sin(2\theta_1-2\theta_3)(4I_2-l_2^2m_2)+l_2^2\sin(2\theta_1-2\theta_2)(m_2+2m_3)(m_2m_3l_3^2+4I_3(m_2+2m_3))) \\ &+ (I_2(\sin(\theta_1-\theta_2)((m_2m_3(m_2+3m_3)l_3^2+4I_3(m_2^2+6m_2m_3+8m_3^2))l_2^2+4I_2(m_3(m_2+m_3)l_3^2+4I_3(m_2+2m_3))) \\ &+ (I_2(\sin(\theta_1-\theta_2)(m_2m_3(m_2+3m_3))) \\ &+ (I_3(m_2+2m_3)) \\ &+ (I_3(m_2m_3)I_3^2 \\ &+ (I_3(m_2m_3)I_3^2 \\ &+ (I_3(m_2m_3)I_3^2 \\ &+ (I_3(m_2+2m_3)) \\ &+ (I_3(m_2m_3)I_3^2 \\ &+ (I_3(m_2+2m_3)) \\ &+ (I_3(m_2m_3)I_3^2 \\ &+ (I_3(m_2+2m_3)) \\ &+ (I_3(m_2m_3)I_3^2 \\ &+ ($$

CRGIE

Human: multiple linked segments

Human: multiple linked segments x 3-D x muscles x control

Human: multiple linked segments x 3-D x muscles x control

Human: multiple linked segments x 3-D x muscles x control

3-D **Assistive Device Design Challenge** use our smarts & intuition to predict how to best augment human movement

smarts = ability to quickly reason, understand or intuit

BONUS CHALLENGE

People are squishy when forces are applied to body

Yandell et al. 2017

Questacon www.questacon.e Assistive Device Design Challenge use our smarts & intuition to predict how to best augment human movement

TAKEAWAY 2

Mechanisms underlying movement are often unexpected & non-intuitive

TAKEAWAY 3

Non-intuitive mechanisms are key to innovative new assistive tech & broadening societal impact

NON-INTUITIVE MECHANISMS

Speed skating: Push-off power from ankle, knee & hip

NON-INTUITIVE MECHANISMS

Simple modification to traditional skate enhances speed

American skate about 1865

"a rigid blade fixed below a boot"

NON-INTUITIVE MECHANISMS

Passive "toe" joint: seemingly small change has big impact!

1700
Relevance: lower-limb prosthesis users

Relevance: lower-limb prosthesis users

Mobility

63% back pain (Gailey et al. 2008)

46% residual limb pain (Struyf et al. 2009)

55% hip pain (Gailey et al. 2008)

27% knee osteoarthritis (Struyf et al. 2009)

Relevance: lower-limb prosthesis users

Mobility

63% back pain (Gailey et al. 2008)

46% residual limb pain (Struyf et al. 2009)

55% hip pain (Gailey et al. 2008)

27% knee osteoarthritis (Struyf et al. 2009)

Livelihood

20-30% depression (Rybarczyk et al. 1995)

25-40% anxiety issues (Seidel 2006, Hawamdeh 2008)

34% need help at home (Pohjolainen 1990)

65% fatigue (Hoogendom & Werken 2001)

PREVAILING BELIEF

Reduced ankle push-off is factor underlying impaired mobility

PRESUMED SOLUTION

Powered prostheses can restore push-off, but are \$\$\$

Conventional prosthesis: carbon fiber keel in rubber shell

Leverage toe dynamics to improve push-off capabilities?

Leverage toe dynamics to improve push-off capabilities?

Leverage toe dynamics to improve push-off capabilities?

EXPERIMENTAL PROTOCOL

Systematically assessing effects of toe & ankle joint stiffness

- 10 healthy subjects
- Simulator boots
- Treadmill at 1 m/s
- Randomized order
- Motion capture & ground reaction forces

- Toe stiffness range: zero to ~infinity
- Ankle stiffness range: spanned commercial prosthetic feet

RESULTS

Center-of-Mass (COM) Push-off Work (N=10)

Joint Stiffness (N·m/deg)	AS1 (3.5)	AS2 (6.3)	AS3 (7.7)	AS4(11.8)	AS5 (15.0)
TJS1 (0)	$11.6\pm1.5~\mathrm{J}$	-	$12.6 \pm 1.4 \text{ J}$	-	$11.3 \pm 1.7 \; J$
TJS2 (0.05)	$9.2\pm1.4\;J$	-	$11.6 \pm 1.6 \text{ J}$	-	$10.7\pm1.3~\mathrm{J}$
TJS3 (0.15)	$11.4\pm1.6~J$	-	$13.4\pm1.6\;J$	-	$12.6\pm1.8~\mathrm{J}$
TJS4 (0.25)	$11.3\pm2.1~\mathrm{J}$	$12.1\pm2.7~J$	$13.6 \pm 1.7 \text{ J}$	$13.21 \pm 2.1 \text{ J}$	$13.2\pm2.0~J$
TJS5 (0.61)	$11.5 \pm 2.0 \text{ J}$	-	$14.8\pm1.9~J$	-	$13.8\pm1.9~J$
TJS6 (~∞)	$12.1 \pm 2.3 \text{ J}$	-	$17.7 \pm 2.6 \text{ J}$	-	$17.2 \pm 2.7 \text{ J}$

Center-of-Mass (COM) Push-off Work (N=10)

Joint Stiffness (N·m/deg)	AS1 (3.5)	AS2 (6.3)	AS3 (7.7)	AS4(11.8)	AS5 (15.0)
TJS1 (0)	$11.6\pm1.5~\mathrm{J}$	-	$12.6\pm1.4~\mathrm{J}$	-	$11.3\pm1.7~\mathrm{J}$
TJS2 (0.05)	$9.2\pm1.4~\mathrm{J}$	-	$11.6 \pm 1.6 \text{ J}$	-	$10.7\pm1.3~\mathrm{J}$
TJS3 (0.15)	$11.4\pm1.6~J$	-	$13.4\pm1.6~J$	-	$12.6 \pm 1.8 \text{ J}$
TJS4 (0.25)	$11.3\pm2.1~\mathrm{J}$	$12.1 \pm 2.7 \; J$	$13.6 \pm 1.7 \; J$	$13.21 \pm 2.1 \text{ J}$	$13.2\pm2.0~J$
TJS5 (0.61)	$11.5\pm2.0~\mathrm{J}$	-	$14.8\pm1.9~J$	-	$13.8\pm1.9~J$
TJS6 (~∞)	$12.1 \pm 2.3 \text{ J}$	-	$17.7 \pm 2.6 \text{ J}$	-	$17.2 \pm 2.7 \text{ J}$

2J range due to ankle stiffness

RESULTS @ NOMINAL STIFFNESS

Effect of toe joint stiffness on COM Push-off is greater!

5J range due to toe stiffness

Joint Stiffness (N·m/deg)	AS1 (3.5)	AS2 (6.3)	AS3 (7.7)	AS4(11.8)	AS5 (15.0)
TJS1 (0)	$11.6\pm1.5~\mathrm{J}$	-	$12.6 \pm 1.4 \text{ J}$	-	$11.3 \pm 1.7 \text{ J}$
TJS2 (0.05)	$9.2\pm1.4\;J$	-	$11.6 \pm 1.6 \text{ J}$	-	$10.7\pm1.3~\mathrm{J}$
TJS3 (0.15)	$11.4\pm1.6~J$	-	$13.4\pm1.6~J$	-	$12.6\pm1.8~\mathrm{J}$
TJS4 (0.25)	$11.3 \pm 2.1 \text{ J}$	$12.1 \pm 2.7 \; J$	$13.6\pm1.7~\mathrm{J}$	$13.21 \pm 2.1 \text{ J}$	$13.2\pm2.0~J$
TJS5 (0.61)	$11.5 \pm 2.0 \text{ J}$	-	$14.8\pm1.9~J$	-	$13.8\pm1.9~J$
TJS6 (~∞)	$12.1 \pm 2.3 \text{ J}$	-	$17.7 \pm 2.6 \text{ J}$	-	$17.2 \pm 2.7 \; \text{J}$

2J range due to ankle stiffness

RESULTS @ STIFFEST

Effect of toe joint stiffness on COM Push-off is greater!

6.5J range due to toe stiffness

Joint Stiffness (N·m/deg)	AS1 (3.5)	AS2 (6.3)	AS3 (7.7)	AS4(11.8)	AS5 (15.0)
TJS1 (0)	$11.6\pm1.5~J$	-	$12.6\pm1.4~J$	-	$11.3 \pm 1.7 \text{ J}$
TJS2 (0.05)	$9.2\pm1.4\;J$	-	$11.6 \pm 1.6 \text{ J}$	-	$10.7\pm1.3~\mathrm{J}$
TJS3 (0.15)	$11.4\pm1.6~J$	-	$13.4\pm1.6\;J$	-	$12.6\pm1.8~\mathrm{J}$
TJS4 (0.25)	$11.3\pm2.1~\mathrm{J}$	$12.1\pm2.7~J$	$13.6 \pm 1.7 \text{ J}$	$13.21 \pm 2.1 \text{ J}$	$13.2 \pm 2.0 \text{ J}$
TJS5 (0.61)	$11.5 \pm 2.0 \text{ J}$	_	$14.8\pm1.9~J$	-	$13.8 \pm 1.9 \text{ J}$
TJS6 (~∞)	$12.1 \pm 2.3 \text{ J}$	-	$17.7 \pm 2.6 \text{ J}$	-	$17.2 \pm 2.7 \text{ J}$

5.5J range due to ankle stiffness

HISTORICALLY WITH PROSTHETIC DESIGN

Emphasis on ankle, but foot redesign may also provide benefit

UPCOMING EXPERIMENTS

Tests on prosthetic users performing variety of daily tasks

 $\sum F = ma$ $\sum_{i=1}^{2} M = I\dot{\omega}$ $P_{joint} = M_{joint} \omega_{joint}$ $W_{joint} = \int P_{joint} dt$

QUICK ASIDE FOR GAIT ANALYSIS NERDS

Conventional inverse dynamics ankle power estimates flawed

Zelik & Honert 2018. J Biomech. In Press.

QUICK ASIDE FOR GAIT ANALYSIS NERDS

Analogous misestimation with prosthetic ankle power

due to rigid-body foot assumptions

Running shoes

Running shoes: cushioned footwear vs. barefoot?

X

Running shoes: cushioned footwear vs. barefoot?

Results: Lieberman et al. 2010 Image: Popular Science

Running shoes: cushioned footwear vs. barefoot?

Results: Lieberman et al. 2010 Image: Popular Science

Reasonable thought process \rightarrow try barefoot to reduce impacts

Reasonable thought process \rightarrow try barefoot to reduce impacts

How does knee force compare? Shifted left, right, up, down?

Low back pain: leading cause of disability; >\$200 billion/year

SOCIETAL PROBLEM

High and/or repetitive forces can increase risk of pain or injury

and increase rate of fatigue

Bernard 1997; Coenen et al. 2014; Griffith et al. 2012; Adams & Hutton 1982

*

Back belts? Lack evidence of benefits after decades of testing

Studies repeatedly fail to find evidence that back belts reduce low back injury or pain

Steffens et al. 2016; NIOSH 2014; Dawson et al. 2007

Wearable robots are promising solutions for some jobs

Lots of individuals for whom wearable robots are impractical

or unaffordable, or undesirable

Most importantly me... where's my exo?!?

Life with small kids

Life with small kids

Life with small kids

Life with small kids & trying to be an adult

Life as a professor

Life as a professor

WWW. PHDCOMICS. COM

POTENTIAL WEARABLE TECH SOLUTIONS

Designs that assist lifting/leaning & fit into my daily routine?

POTENTIAL WEARABLE TECH SOLUTIONS

POTENTIAL WEARABLE TECH SOLUTIONS Concept 1: load path to ground

POTENTIAL WEARABLE TECH SOLUTIONS Concept 2: traction device

POTENTIAL WEARABLE TECH SOLUTIONS

Concept 3: torsion/scissor mechanism

POTENTIAL WEARABLE TECH SOLUTIONS

Not aware of any solutions (existing or theorized) that work for me

NON-INTUITIVE MECHANISMS

Stopped thinking about tech, started thinking about science

NON-INTUITIVE MECHANISMS

What causes high forces on the low back? It's all about levers!

Head Arms Trunk (0.5 BW)

<u>Non-Intuitive Insight</u> spine force mostly self-inflicted from your own muscles

HISTORICAL ASIDE

Simple insight so non-intuitive that it took 1500 yrs to realize!

<u>Non-Intuitive Insight</u> spine force mostly self-inflicted from your own muscles

Galen (2nd Century)

Borelli (17th Century)

HISTORICAL ASIDE

Simple insight so non-intuitive that it took 1500 yrs to realize!

HISTORICAL ASIDE

Simple insight so non-intuitive that it took 1500 yrs to realize!

Galen (2nd Century)

"Galen states that a tendon (muscle working on joint) is like a lever... This has been questioned by nobody. Who indeed would be stupid enough to look for a machine [human body] to move a very light weight with a great force ... This seems strange and against commons sense, I agree, but I can convincingly demonstrate that this is what happens..." - Giovanni Borelli

Borelli (17th Century)

WEARABLE TECH SOLUTIONS

Spine forces are mostly self-inflicted! (from your own muscles)

WEARABLE TECH SOLUTIONS

Embed spring-like structures into clothing to offload low back

Muscle Force (0.5 BW) Device Force (0.25 BW)

Muscle force reduced by 50% Spine force reduced by 15%

Biomechanically-assistive clothing (passive device)

Smart underwear (quasi-passive clothing-like device)

Lamers, Yang & Zelik 2017

Reduced low back EMG (indicator of muscle force) during lifting

Reduced low back EMG (indicator of muscle force) when leaning

NON-INTUITIVE DESIGN (TO ME ANYHOW)

14-43% reductions in low back muscle activity (N=8)

IMPLICATIONS

Device can offload my back, fit under my clothes, into my life!

IMPLICATIONS

Started project selfishly... later realized broad applications

new markets & new potential end-users

ACKNOWLEDGEMENTS

Students, post-docs, faculty, staff, collaborators & funding sources

Funding Sources: NSF, NIH, NIDILRR, SEC, Vanderbilt, Industry

CONCLUSIONS

From biomechanics to new assistive tech

- 1. You & I are not that smart (relative to complexity of movement)
- 2. Mechanisms underlying movement are often unexpected & non-intuitive
- 3. Non-intuitive mechanisms are key to innovative new assistive tech & broadening societal impact

