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Abstract

This paper characterizes the growth sulfur dioxide emissions among Chinese manufacturers during
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intensity, while undervaluing the role of resource reallocation across firms. We derive an unbiased
decomposition of aggregate emissions and find that emissions increased nearly one-for-one with
the scale of the Chinese manufacturing sector. Although improved technology mitigated emissions
growth by 14 percent between 2000 and 2005, these gains were completely offset by resource real-
location towards dirty producers over the same time frame.
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1 Introduction

China’s accession to the WTO is perhaps the most significant shock to the global economy in recent

history. The environmental consequences of rapid, trade-induced economic growth have concurrently

generated consternation both at home and abroad; Chinese policymakers are increasingly concerned that

becoming “the factory of the world” has come at the cost of bearing a disproportionate share of global

environmental degradation, while the impact of rising Chinese pollution has made headlines across the

globe.

Indeed, standard estimates of aggregate Chinese manufacturing production suggest that it rose by

nearly 150 percent between 2000 and 2006. Exports grew even faster; real exports rose by more than 250

percent over the same five-year period. Given these stark changes to the global manufacturing landscape,

we would naturally expect that Chinese manufacturing pollution would also rise rapidly. Surprisingly,

we find that emissions, and particularly those tied to the trade intensive manufacturing sector, did not

grow nearly as fast.

This is not to say that China did not experience a large rise in pollution. Rather, aggregate measures

of sulfur dioxide (SO2) grew by roughly 20 percent between 2000 and 2005, while manufacturing driven

emissions increased by just over 75 percent. The observed growth in air pollution is a significant, and a

justified, cause for concern both in China and abroad. Nonetheless, the stark difference in the observed

rates of growth begs the question: why didn’t Chinese emissions grow more?

To answer this question we appeal to a unique data set which tracks firm-level sulfur dioxide (SO2)

emissions in China. Mapping this data to corresponding production surveys and balance-sheet data we

investigate the seemingly muted response of Chinese emissions to the expansion of the manufacturing

sector. Following a rich literature in environmental economics (Antweiler et al, 2001; Levinson, 2009;

Shapiro and Walker, 2018) we adapt workhorse environmental emission-growth decomposition methods

to identify key determinants of Chinese manufacturing emissions growth.

One possible answer, rooted in economic theory, is simply that the manufacturing sector has inherent

economies of scale. If scale economies allow firms to produce greater amounts of output for a fixed

amount of (energy) input, we might expect that firm-level expansions induce differential growth rates

between production and emissions. However, the observed difference between the growth of the Chinese

manufacturing sector and the growth of Chinese manufacturing emissions is too large to be explained

by economies of scale alone. For economies of scale to explain emissions growth, a given bundle of

inputs would need to produce nearly twice as much output in 2005 than it did in 2000. While numerous

empirical studies confirm that a range manufacturing industries benefit from modest increasing returns

to scale, standard estimates suggest that firm-level scale economies are nearly an order of magnitude too

small (De Loecker, 2011).

A second potential solution is that green (emissions-unintensive) industries grew relatively quickly

during the WTO-accession period. The conventional decomposition suggests the exact opposite. Dirty

industries, supported by notoriously weak regulation and enforcement during this period, arguably form
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a non-trivial source of China’s comparative advantage on world markets (Jia, 2012; Wu et al, 2013). Not

surprising, these emissions-intensive industries also grew at a disproportionately rapid rate after China’s

WTO accession.

A third explanation for the missing emissions is that sector-specific emissions-intensity declined at

precisely the same time that China grew into world markets. The so-called ‘technique effect,’ turns out

to explain the large majority of the decline in measured emissions-intensity in China, much like previous

studies of the US manufacturing. In this US context, the adoption of stringent air quality standards has

been found to be the key determinant of increased abatement efforts, reductions in observed emissions-

intensity and lower aggregate emissions despite a growing manufacturing sector (Shapiro and Walker,

2018). Could this possibly be the case in China? It seems unlikely. If modest regulation helps explain

the disproportionate growth of dirty industries, it would be surprising to find it simultaneously inducing

substantial within-firm environmental upgrading.

Alternatively, declines in emissions-intensity could be driven by rapid technological improvement.

To investigate this possibility we consider a production setting which nests a wide set of standard environ-

mental production frameworks (e.g. Antweiler et al., 2001; Forslid et al, 2018; Shapiro and Walker, 2018)

to broadly characterize the production, efficiency and emissions of individual manufacturing firms. We

show that standard measures of the technique effect, and the presumptive source of emissions-reductions

in previous literature, potentially suffers from severe mismeasurement. In particular, we argue that vari-

ation in measured firm-level emissions-intensity can be completely explained by changes in (a) pro-

duction technology, (b) market structure, and (c) regulation. We demonstrate that omitting changes in

market structure (markups) or imposing strong technological assumptions can significantly bias standard

conclusions.

Building on the literature studying the estimation of production functions and firm productivity (Ol-

ley and Pakes, 1996; Levinsohn and Petrin, 2003; Wooldridge, 2009; De Loecker, 2011; De Loecker and

Warzynski, 2012; Ackerberg et al., 2015; De Loecker et al., 2016, Gandhi et al., 2019), we construct

measures of emissions-technology and markups which vary across industries, ownership, location, size,

and time. In fact, our analysis more generally argues that the ‘conventional decomposition’ (Levinson,

2009) may be particularly biased in a setting where market structure, and markups, are changing over

time. By treating deflated revenues as a measure of production the conventional decomposition mis-

measures technological changes by conflating systematic variation in markups with improvements in

environmental efficiency.1

Accounting for the difference in markups across firms leads us to consider an alternative approach

based on the firm’s optimal pricing condition. After correcting for firm-level markup variation we find

that there are no more ‘missing’ emissions from Chinese manufacturing; rather aggregate emissions grow

roughly one-for-one with our corrected measure of economic scale.

This is not to suggest that there were not large, underlying changes to the Chinese manufacturing
1This difference analogous to the argument made in regards differences between physical and revenue based measures of

total factor productivity (Foster et al, 2008).
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sector. Indeed, our corrected decomposition indicates that technology improvement in the nature of

production, as measured by the elasticity of output with respect to emissions, or increased efficiency, as

captured by changes in marginal costs, mitigated observed emissions growth by as much as 15 percent.

Consistent with the finding of rapid Chinese productivity growth throughout the 2000-2005 period, it is

the latter effect, firm-and-product specific efficiency gains, that account for nearly all of the emissions-

intensity declines among individual manufacturers.

These gains, however, are entirely offset by the disproportionate growth of emissions-intensive Chi-

nese manufacturers. Unlike preceding approaches, we start with firm-and-product specific optimality

conditions as the basis for our decomposition. As such, our reallocation term benefits from having theo-

retically grounded weights for specific firm and product specific bundles and allows us to conclude that,

in aggregate, resource reallocation increased aggregate emissions growth by 16-23 percent. Moreover,

we find that 92-93 percent of the emissions-encouraging reallocation occurs between incumbent firms

rather than across products within firms or due to the rapid entry of new producers.

Last, we argue that distinguishing between revenue and physical emissions-intensity provides a natu-

ral metric for the implied degree of regulation faced by any firm in any year even in the absense of direct

regulartory information. We construct a firm-specific measure of its regulatory burden and characterize

the implied changes in Chinese regulation over the 2000-2005 period. Consistent with the historical

record, a large degree of variation across firms, industries, regions and ownership structure. In particu-

lar, our estimates are consistent with the notion that foreign firms face the greatest degree of regulatory

scrutiny, while state-owned enterprises face the least.2 In aggregate, increased regulation mitigated at

4-8 percent of Chinese emissions gorwth.

These findings have direct policy implications. The standard decomposition exercise is often moti-

vated by a perfectly-competitive economic environment (Antweiler et al, 2001; Levinson, 2009) or one

with constant markups (Forslid et al, 2018; Shapiro and Walker, 2018). Conventional assumptions of

slow (or invariant) production technology along with a fixed market structure imply that the only possi-

ble determinant of emissions-intensity variation is regulation. In this sense we argue that biased measures

of emissions-intensity are likely to give changes in environmental regulation outsized importance in de-

termination of firm-level environmental performance.

Our research is closely tied to the literature studying the relationship between aggregate, industry and

firm-level emissions (Grossman and Krueger, 1993; Levinson, 2009), and particularly those in an open-

economy context (Antweiler, Copeland and Taylor, 2001; Copeland and Taylor, 2003; Cherniwchan,

2017; Forslid et al, 2018; Shapiro and Walker, 2018). We build on this rich literature to characterize the

determinants of emissions growth in China.

We also contribute to the growing number of studies at the intersection of trade, growth, and pollu-

tion in the Chinese context. Like Yan and Yang (2010), who analyze carbon dioxide emissions growth

through the lens of input-output tables, we are also interested in characterizing sources of aggregate emis-
2Other intuitive empirical patterns emerge from our cross-ownership findings: foreign producers are most productive and

the most profitable, state-owned are the least efficient, and private enterprises produce with the smallest margins.
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sions growth. In contrast, we focus on sulfur dioxide growth among individual Chinese manufacturers.

Similarly, our findings map into the literature aimed at quantifying the impact of domestic environmental

regulation on aggregate (Nam et al 2013, 2014; Qi et al 2014; Zhang et al 2014, 2016a, 2016b), regional

(Zhang et al 2013, Springmann et al 2015, Kishimoto et al 2017, Wong et al 2017) or firm-level (Cao

and Karplus, 2014 and Karplus and Zhang, 2017) emissions in China.3 Given that there is little data

capturing the degree to which environmental regulation was enforced over our sample, all of the above

studies focus on a time subsequent to our analysis. By recovering changes in implicit emissions taxes we

are able to link our sample period to more recent studies of Chinese environmental policy.

We build on the rich literature studying the impact of globalization, and trade liberalization in par-

ticular, on environmental outcomes.4 Existing work by Copeland and Taylor (1994, 1995), Ederington

et al. (2005) and Levinson and Taylor (2008) argues that trade liberalization may increase pollution in

countries that have a (potentially regulation driven) comparative advantage in pollution-intensive indus-

tries. We study whether emissions-intensive firms and industries grew disproportionately fast duing the

WTO-accession period. Our new decomposition approach allows us to quantify the degree to which

technological improvement mitigated Chinese environmental degradation, as highlighted in Grossman

and Krueger (1995), Antweiler et al. (2001) and Frankel and Rose (2005) among others.

Last, our work sheds new light on the abundance of papers quantifying the differential impact of re-

gional emissions growth on consequent health and economic outcomes across Chinese provinces (Dean

2002; Ebenstein et al. 2015, de Sousa et al. 2015, and Bombardini and Li 2019, Callaway et al. 2020).5

While we do not characterize health or economic impacts of emissions growth per se, our proposed

decomposition quantifies key sources of emissions growth, components of which are arguably exoge-

nous to firm-level decisions and can be used to better understand the mechanisms driving environmental

outcomes across time and space.

The next section documents the institutional background during our period of study, particularly as it

pertains to environmental policy. Section 3 documents key patterns in our data and formally defines the

mystery of missing emissions through the lens of the standard emissions decomposition. Section 4 links

the standard decomposition to firm-level pricing behavior and characterizes the nature of markup-induced

bias in the conventional environmental decomposition. Section 5 provides an alternative approach and

describes our estimation methodology. Section 6 presents our empirical results. Section 7 concludes.
3Cao and Karplus (2014) study the drivers of energy, electricity and carbon intensity among a sample of 800 Chinese firms

between 2005 and 2009. Although we observe similar trends, the Cao and Karplus (2014) study differs from ours in the
outcome variables under consideration, the mechanisms evaluated in the paper, the sample of firms, and the strigency of of
environmental regulation during the time period under study.

4See Copeland and Taylor (2004) and Cherniwchan et al (2017) for reviews of the literature studying trade, growth and the
environment.

5A large literature studies the health costs of industrial pollution in China. See, for example, Hao et al (2007), Cropper
(2012), Chen et al (2013), Tanaka (2015), or He (2016). Lin et al (2014) quantifies the impact of US-China trade on US air
quality.
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2 Institutional Background

China’s economic tranformation, dating back to the mid-1970s, stands as one of longest sustained periods

of rapid economic growth in recorded history. Since the mid 1990s, China’s continued transition to a

market-oriented economy is punctuated by the expansion of the energy-intensive and export-oriented

manufacturing sector (Zhu, 2012). Already one of the world’s leading producers of manufactured goods,

China’s accession to the WTO in December 2001 lead to even greater output and export growth. As

evidenced in Figure 1, China’s real GDP and real industrial production grew by 55 and 63 percent over the

2000-2005 period, respectively. As widely reported, much of the increase in aggregate output was driven

by the rapid rise of the manufacturing sector which grew by nearly 150 percent over the same time period.
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Notes: Figure 1a plots real Chinese GDP and aggregate SO2 emissions over the 2000-2005 period, Figure 1b plots real Chinese industrial
production and industrial SO2 emissions, Figure 3 plots real manufacturing production (deflated revenue), real manufacturing exports, and
aggregate manufacturing SO2 emissions. All values in 2000 are normalized to 1. Sources: NBS (GDP, Manufacturing Production, Exports),
World Bank (Real Industrial Production), MEE (Emissions).

Figure 1: Production and Emissions

It is no surprise the aggregate emissions and aggregate manufacturing emissions also rose quickly over

same period or that these stark changes produced significant social, health, and environmental concern

among domestic policymakers (see CCINED 2003, 2004 for examples). The difference in the rate of

growth between emissions and standard measures of production is surprising; by 2005 aggregate and

industrial SO2 emissions are estimated to be only 21 and 30 percent greater than that in 2000 despite the

fact that comparable measures of output grew twice as fast over the same time period.

The gap between standard measures of production and emissions is particularly curious due to the

regulatory framework during our sample period (or the lack thereof).6 Chinese air quality standards were

broadly outlined in 1979, while the first legislative document outlining penalties for excessive emissions,
6China has had an agency dedicated to addressing domestic environmental quality since 1973. In 1998 the Chinese govern-

ment upgraded the state environmental agency to a ministry-level agency, which then became the State Environmental Protec-
tion Administration (SEPA). In 2008, SEPA was promoted to the level of a national ministry, The Ministry of Environmental
Protection (MEP), which in turn renamed The Ministry of Ecology and Environment (MEE) in 2018. MEE is responsible for
setting pollution standards and regulation, organizes environmental quality monitoring, mandates the collection of regional and
establishment-specific pollution information, and is the primary source of firm-level data for this study.

5



was implemented 1989 (Jin et al, 2016).7 Despite the existing regulation Chinese air pollution grew

rapidly thereafter and there was little evidence of policy enforcement.8

Across all environmental programs, a key feature of the institutional setting is that national state

agencies had little role in local implementation, verification or enforcment. Rather, over our 2000-2005

sample period, determining compliance to environmental legislation and the enforcement of penalties

for violations to existing policies were primarily local responsibilities. Across China there were roughly

3060 Environmental Protection Bureau (EPBs) which were responsible for the enforcement of enviro-

mental standards and the administration of penalties for policy violations. Under the discharge permit

system (DPS), local EPBs are mandated to issue permits that limit both the quantities and concentrations

of pollutants to regulate the air emissions and wastewater discharge for every establishment in their ju-

risdiction. However, the EPBs do not directly report to higher state ministries, but rather are typically

administered by the local township, district or prefecture government.9

Despite the clear environmental mandate for local EPBs there is an equally apparent conflict across

governmental objectives: during this time period local administrators were typically promoted based

on the rate of local economic development (Jia, 2012; Wu et al, 2013), not the enforcment of national

environmental policy. As a result, EPBs were often lenient toward polluters which generated fiscal

revenues for local authorities and firms which were responsible for substantial local employment (OECD,

2009). For example, state-owned firms were known to have received special treatment, lower emissions

penalties, or advantageous lines of credit to install and implement abatement technology.

This should not suggest, however, that EPBs, when empowerd by the local government, are without

the means to influence firm behavior. Once non-compliance is established, EPB inspectors usually issue

warning letters and then, if the firm continues not to comply with environmental policy, the EPB can

impose fines on the establishment, fine the manager directly, and/or withdraw the firm’s operating permit

altogether. In practice, fines are the most common form of non-compliance penalty and are enforced in

nearly 60 percent of all recorded instances of non-compliance. In 2004, the EPBs imposed sanctions

in approximately 80,000 cases across China with aggregate monetary penalties of 460 million RMB

(56 million US dollars). While this may be relatively modest in aggregate, they do not imply that the

individual penalties were insigificant for firms which were found to be non-compliant.10

7It was later revised in 1995, with specific emphasis on sulfur dioxide emissions.
8In 2006, China introduced significant new regulation of SO2 emissions in the national government’s 11th Five-Year Plan.

We do not extend our sample beyond 2006 as we lack key variables for the measurement of technology and markups after
2006. Callaway et al. (2020) study the impact of the 11th Five-Year plan on firm-level emissions responses over the 2006-2010
period.

9On occasion, the EPB may also be administered at the provincial level.
10In 2003 EPBs also started publishing the names of non-compliant firms to induce greater public pressure on polluters. In

conjunction with state-owned banks the EPB can penalize non-compliant polluters by affecting their loan conditions. More
recently, EPBs have been granted the ability to ban firms from exporting (2007) or access capital among publically held firms
(2008).
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3 Data

Our primary data source is an annual survey of Chinese enterprises collected by Ministry of Ecology

and Environment (MEE) over the 2000-2005 period. This data includes information capturing the total

weight of SO2 emitted by a firm over the course of a calendar year.11 The data reports pollution at

the firm-level rather than the plant or establishment level. If a firm has multiple plants, our data reports

aggregated total pollution across plants in the same firm.

MEE also provides data on a limited number of firm characteristics including: the location of each

firm (city/province), domestic revenues, and energy consumption by energy type (coal, natural gas, diesel

fuel, heavy oil). Following a methodology pioneered by the US EPA, it also reports the amount of

pollution generated by the firm given its input consumption and the emission factor assigned to each

input by the EPA. Using observed variation in pollution generation and emissions, the data allows us to

characterize the variation in abatement across the distribution of heterogeneous firms.

There are three sample features of our data which are important to state at the outset. First, our firm-

level data does not include all industrial polluters, but nonetheless tracks aggregate changes in pollutants

very closely. Although MEE surveys the universe of polluting establishments, our sample only includes

firms from the top 80 percentiles of the firm-level pollution distribution in each year. To check the

accuracy of the our data we aggregate all of the firm-specific emissions data and compare it to the

aggregate statistics produced by the Chinese Ministry of Ecology and the Environment.12 In panel (a) of

Figure 2 it is clear that the aggregated firm-level SO2 emissions tracks the officical aggregate emissions

statistics closely. The survey captures 79 percent of total industrial SO2 emissions in 2000, 85-86 percent

between 2001-2003, and 91-92 percent of total industrial emissions over the last two years of our sample.

As a second check of our data, we also examine the degree to which it captures the spatial distribution

of pollutants. Specifically, we aggregate our firm-level data for each province and calculate the provincial

average level of pollution over our sample period. We then compare the computed average provincial

pollution levels to provincial averages reported by MEE over the same time frame. Panel (b) of Figure 2

plots aggregate SO2 emissions for each Chinese province from both data sources. Not only do both data

sources track each other closely, but we also find significant variation across provinces in the aggregate

level of pollution.

The environmental data set does not record numerous key variables for our analysis: we are missing

measures of physical output, employment, capital use, intermediate material purchases, and any measure

of firm-efficiency. Given that technology and scale have long been associated with improvements in firm-
11A detailed description of emission measurement is provided in the appendix.
12Aggregate industrial statistics are published regularly by the Ministry of Ecology and Environment in Annual Reports

available at http://english.mee.gov.cn/Resources/Reports/. We crosschecked the accuracy of the SO2 data from the Ministry of
Ecology and the Environment with US Satellite Data and find that they exhibit similar patterns over time and space. Although
independent estimates of SO2 emissions have previously been found to be higher than those reported in official statistics
(Streets and Waldhoff 2000; Streets et al. 2000; Ohara et al. 2007; Cao et al. 2009), our primary concerns are systematic
discrepancies across locations or over time. We do not find any significant evidence of systematic reporting bias. A description
of this exercise and our results can be found in the appendix.
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Notes: Panel (a) plots annual emissions of SO2. The solid red represents the value reported by MEE in annual reports, while the dashed
blue line represents the aggregated value from our firm-level survey. Panel (b) plots the average provincial emissions of SO2 over our sample
period. The red line with circles represents the value reported by MEE, while the blue line with squares represents the aggregated value from
our firm-level survey.

Figure 2: Aggregate vs Firm-Level Data

level emissions intensity, these are particularly significant omissions. Moreover, the pollution dataset

does not distinguish between domestic, state or foreign-owned firms and does not report any indication

of industrial affiliation. It is well-known that access to export markets, size, technological capacity, and

the incentive to escape environmental regulation varied significantly with firm-ownership, firm-location,

and industry in China.

To fill in these missing dimensions of our data set, we match the firm-level pollution data with balance

sheet information from annual manufacturing surveys and production data from the Annual Survey of

Industrial Firms. Matching these data sets inherently restricts attention to the Chinese manufacturing

sector.

The manufacturing survey only covers firms with revenues of at least 5 million RMB and not all

large manufacturing firms are necessarily large polluters. As such, not all of the manufacturing firms are

contained in the pollution data set. Despite these caveats, we are able to match 49 percent of the firms in

the manufacturing survey to corresponding data in the pollution survey.

3.1 The Mystery Defined

To characterize the sources of emissions growth we follow a standard decomposition of aggregate emis-

sions (Grossman and Krueger (1993), Copeland and Taylor (2003, 2004), Levinson (2009), Shapiro and

Walker (2018)) which breaks the growth of aggregate air emissions E into three components: scale,
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composition and technique. This is typically written as

E =
∑
s

es =
∑
s

vsιs = V
∑
s

wsιs (1)

where V is total output, traditionally measured as deflated revenue (or value-added), vs is the revenue of

sector s, ws is the revenue share of sector s and ιs is the emission coefficient of sector s, measured as the

amount of pollution per dollar of revenue, ιs = es/vs. Writing this relationship in vector notation and

computing the total differential yields the benchmark decomposition equation:

dE

E
=
dV

V
+
dw

w
+
dι

ι
. (2)

The first term in equation (2) captures the change in aggregate emissions which can be explained by

the increase in the size of Chinese manufacturing industry (the ‘scale’ effect). As in previous studies

we use aggregate (deflated) revenue, V , as a benchmark measure of total production. The second term

measures the contribution to aggregate emissions from changes in the composition of industries which

comprise manufacturing (the ‘composition’ effect). To the extent that China had a comparative advantage

in dirtier industries, perhaps due to less stringent environmental regulation, we would expect that the

disproportionate growth of these industries would also cause aggregate emissions to rise. The third term,

typically named the ‘technique’ effect, captures systematic changes in average emissions-intensity or

emissions per dollar of deflated revenue.

We illustrate the relative importance of each channel through two thought experiments. First, we ask

how much would Chinese manufacturing emissions have grown if industrial composition and emissions

intensity remained unchanged from 2000 onwards? Given that the Chinese economy grew rapidly over

the WTO accession period, we would expect aggregate emissions to exhibit similar growth. Second,

if we allow industrial composition to change, but hold emissions-intensity fixed at its 2000 value, how

much would aggregate emissions have grown? Figure 3 plots the results where we have normalized

aggregate SO2 emissions in 2000 to one.

The solid blue line captures actual pollution growth and documents that aggregate SO2 emissions

grew by 77 percent. Moreover, almost all of the growth in pollution has occured since China’s accession

to the WTO in 2002. The two counterfactual paths for emissions reveal puzzling results. The dotted

green line captures the impact of holding emissions-intensity, or a broad-sense of industrial technology,

fixed at its 2000 value. By 2005 aggregate emissions are predicted to be roughly 32 percentage points

greater than the already strong increases we observe in the data. It is in this sense that the standard

framework suggests that emissions are ‘missing’ from the Chinese manufacturing sector; while standard

measures of aggregate production grew by 150 between 2000 and 2005, emissions rose by less than 75

percent. Typically, this finding is interpreted as broadly capturing changes in the nature of production

over the same time.

The concurrent change in industrial composition makes the observed pattern of emissions even more
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at its value in 2000 (hold emissions-intensity and industrial composition fixed at their values in 2000).

Figure 3: Decompositing Aggregate Emissions
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surprising. The red dashed line holds emissions-intensity fixed at 2000 levels, but also requires that

industrial composition does not change over time. We observe that the red dashed line lies between

the solid blue line and the dottted green line throughout the entire sample period. In this sense WTO-

accession is strongly associated with the growth of dirtier industries in China and is broadly consistent

with the pollution haven hypothesis (Eskeland and Harrison, 2003; Ederington et al., 2005; Levinson and

Taylor, 2008): as trade with Western countries grew after 2002, pollution-intensive industries escaped

Western regulation by relocating to China.

In practice, the decline in emission-intensity may reflect various underlying changes. Improvements

in technology or firm-level productive efficiency, changes in the mix of products produced by multi-

product firms, increasing firm-level returns to scale, changes in market power and/or the reallocation

of market share towards cleaner firms are all possible explanations for falling emissions-intensity. To

shed light on the possible sources of emissions-intensity improvements, we follow Melitz and Polanec

(2015) to decompose changes in average emissions-intensity into components originating from within-

firm improvements in emissions intensity, the reallocation of market share towards dirtier firms, and the

entry and exit of firms into the Chinese manufacturing industry.13

Specifically, we define weighted average emissions-intensity as ιwst ≡
∑

i∈switιit and decompose

the change in average emissions-intensity as

∆ιwst =
∑
i∈Cs

(ιi,05 − ιi,00)w̄i︸ ︷︷ ︸
Within-Firm

+
∑
i∈Cs

(wi,05 − wi,00)ῑi︸ ︷︷ ︸
Across-Firm︸ ︷︷ ︸

Continuing Firms

+ (ῑCs,00 − ῑXs,00)
∑
i∈Xs

wit︸ ︷︷ ︸
Exiting Firms

+ (ῑEs,05 − ῑCs,05)
∑
i∈Es

wit︸ ︷︷ ︸
Entrants

(3)

where eit and wit represent the emission-intensity and revenue share of firm i, in sector s, in year t. The

variables ῑi and w̄i are firm i’s average emissions-intensity and average revenue-share, and C, E and X
capture the set of continuing firms, new entrants and exiting firms, respectively, over our sample period.

Table 1 documents the decomposition of the average change in emissions-intensity. Column (1)

reports the average firm-level of emission intensity in the initial year of the data, while column (2) records

the change in average emissions intensity, the outcome variable of equation (3). Average manufacturing

emissions-intensity fell by 24.5 percentage points across industries. These are remarkably large changes;

the observed decline in emission-intensity represents 18 percent of its initial value.

We break down the total percentage point change (column 2) into the total contribution from contin-

uing firms (column 3), the contributions from new entrants (column 6) and the contribution from exiting

firms (column 7). It is clear that despite the rapid entry of new Chinese manufacturers over our sample

period, the decline in average emissions-intensity was almost exclusively driven by continuing firms.

Columns (3) and (4) further decompose the total impact of continuing firms into a term which cap-
13Barrows and Ollivier (2018) consider an industry decomposition based on Foster et al. (2008). As argued in Melitz and

Polanec (2015) these methods can potentially bias the importance of firm entry and exit, an issue of particular relevance over
our sample period.
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Table 1: Decomposition of Aggregate Manufacturing SO2 Intensity, 2000-2005

Initial Total Continuing New Exiting
Avg. Pol. % Point Firms Entrants Firms
Intensity Change Total Within Across

(1) (2) (3) (4) (5) (6) (7)
24.50 -4.48 -6.94 -6.44 -0.54 -0.45 2.90

Notes: This table documents the percentage point change in average SO2

emissions-intensity. Column (1) reports the weighted average emissions-intensity
in the initial year. Column (2) documents the total percentage point change.
Columns (3), (6) and (7) document the contribution from continuing firms, new
entrants and exiting firms, respectively. Columns (4) and (5) decompose the con-
tribution from continuing firms (column 3) into within-firm (column 4) and real-
location components (column 5).

tures within-firm emissions-intensity changes, given the firm’s market share, (‘Within’) and a term cap-

turing the reallocation of firm-level market share towards (or away from) emissions-intensive firms, given

its emissions-intensity (‘Across’). The former term captures the degree to which large firms were induced

to reduce their emissions-intensity over the sample period, while the latter term measures the degree to

which relatively clean firms were more likely to grow faster than their emissions-intensive counterparts.

Examining these two columns we observe that the reduction in emissions-intensity among continuing

firms appears to be almost exclusively driven by within-firm changes. A typical interpretation of this

result is that firms improved environmental performance through fundamental changes in the nature of

production: upgrading production technology, purchasing cleaner inputs, directly investing in abatement,

or changing their product mix towards less emissions-intensive products. In contrast, column (5) sug-

gests that firms with relatively clean production over the 2000-2005 period do not appear to grow much

faster than those firms which are systematically more emissions-intensive.

Both of these findings are surprising, particularly in light of the conventional industry-level decom-

position. On one hand, the industry-level decomposition finds that relatively dirty industries in equation

(2) grew rapidly, while relative firm-level growth does not appear to vary significantly across firm-level

emissions-intensity in equation (3).

On the other hand, firm-level emissions-intensity dropped rapidly. The observed declines in average

emissions intensity are consistent with the notion that improved production techniques are the primary

driver of firm-level or industry-level environmental performance. In the US context, it is argued lower

emissions-intensity has primarily been achieved through greater abatement; that is, greater investment

in the technology associated with reducing emissions (Shapiro and Walker, 2018). Could that be the

case in China? This seems unlikely: there is little evidence of stringent environmental enforcement

over our sample period and, if anything, existing evidence suggests local incentives were clearly tilted

towards encouraging rapid economic growth at the expense of environmental concerns (Jia, 2012; Wu et

al, 2013).

Nonetheless, we again turn to our firm-level sample to examine if this is a likely source of changes

12
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Notes: The blue solild lines in panels (a)-(b) respectively plot the average (revenue-weighted) firm-level SO2 emissions and abatement
among Chinese manufacturing firms (normalized to 1 in 2002). The red dashed lines plot average emissions-intensity and abatement-
intensity over the same time period. The average fraction of generated emissions which are abated over the sample period is roughly 10
percent.

Figure 4: Firm-Level Emissions and Abatement

in Chinese firm-level environmental performance. We first compute the change in average firm-level

emissions and emissions-intensity over our sample period and plot these series in Figure 4.

While average firm-level emissions grew rapidly after 2002, average emissions-intensity declined

throughout the 2000-2005 period. If firm-level abatement is to explain the divergence in average emis-

sions and emissions-intensity, we would expect that both the total firm-level of abatement and the inten-

sity of firm-level abatement to rise concurrently. To investigate this possibility, we use a unique measure

of abatement as provided by the MEE data set. Specifically, the data records a consumption-based mea-

sure of pollution generated by the firm (e.g. the amount of sulfur-based fuel directly consumed plus

expected emissions generated during production) and the amount of pollution removed prior to emis-

sions. To get a sense of the changes over time we plot both the average level of abatement along with

abatement-intensity, defined as total abatement per unit of deflated revenue, in panel (b) of Figure 4.

Average firm-level abatement rises continuously over the 2000-2005 period and the rate of growth is

particularly sharp after 2002. Despite this, rather than rising, average firm-level abatement-intensity dis-

tinctly declines after WTO accession. While this pattern suggests that it is unlikely that rising abatement

can explain the observed changes in emissions-intensity alone, it is consistent with the established view

that there was little increase in environmental regulation or enforcement prior to 2006.

4 Accusation: Markup Bias

We propose that emissions-intensity, as traditionally measured, mischaracterizes the relationship between

production and emissions. Revenue-based emissions-intensity can be expressed as a multiplicative func-
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tion of firm-level markups, unobserved emissions regulation, and an underlying technological compo-

nent governing the fundamental emissions-intensity of production. Employing cost-weighted measures

of emission growth, we find that observed declines in average emissions-intensity suggest that the ‘miss-

ing Chinese emissions’ are much smaller than that implied revenue-based decomposition. A cost-based

analysis reduces the contribution of improved production techniques by one half .

4.1 Technology, Markups and Emissions: A Second Look

To illustrate the relationship between markups, production technology and emissions, we describe an

economic environment consistent with a large class of models examining production and emissions in

an open economy setting (Antweiler et al, 2001; Shapiro and Walker, 2018; Forslid et al., 2018). Denote

the production function for a given firm i in year t as

xit = fp(ait,m
1
it, ...,m

K
it , ωit) (4)

where output x is a function of K productive inputs, firm-specific productivity ωit and the firm’s in-

vestment in abatement, ait. The only restrictions imposed on fp() is that it is continuous and twice

differentiable with respect to its arguments and at least one input is variable in the current period. Fol-

lowing the above literature we also assume that ait is flexibly chosen by the firm every period and is a

continuous function of productive inputs and productivity:

ait = a(m1
it, ...,m

K
it , ωit).

We then model firm-level emissions eit as an increasing function of output xit but a decreasing function

of abatement ait,

eit = e(ait, xit). (5)

To make our case we introduce two assumptions, commonly satisfied in the literature.

Assumption 1 The emissions function (5) is invertable in any of its arguments. That is,

ajit = e−1a (xit, eit) and xjit = e−1x (ait, eit)

Assumption 2 The production function (4) is invertable in any of its variable inputs. That is,

mk
it = x−1k (ait,m

1
it, ...,m

k
it,m

k+1
it , ...,mK

it , ωit, xit)

Using assumption 1 we invert the emissions function (5) and insert it into the production function. Using

assumption 2 we then isolate production as a function of productive inputs (m1
it, ...,m

K
it ), firm-specific
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productivity (ωit), and emissions (eit):

xit = fe(eit,m
1
it, ...,m

K
it , ωit) (6)

where we refer to fe(·) as the emissions augmented production function. We treat the price of emissions

as the implicit emissions tax, ts, on production in sector s.

4.1.1 Output Elasticities and Markups

De Loecker and Warzynski (2012) demonstrate that standard profit maximization implies

γmkit = µit
wmkt mk

it

pitxit

where γmkit is the output elasticity of productive input k, µit is the firm’s markup, and wmkt is the price

of variable input mk. The same logic holds for our emissions-augmented production function under

assumptions (1) and (2). That is, letting γeit denote the output elasticity of emissions from equation (6),

we can write

γeit = µit
tseit
pitxit

Rearranging terms we can use the above equation to write the firm’s optimal emissions-intensity as

eit
rit

=
γeit
µit
t−1st (7)

This equation relates emissions-intensity to output-elasticities, markups, and regulation. Notice that firm-

level costs or efficiency are completely absent from the RHS of above equation, except for their potential

influence on the firm’s markup.

Alternatively, variation in emissions-intensity could reflect changes in the elasticity of output with

respect to emissions, γeit, or changes in regulation. In practice, common modelling assumptions imply

constant markups and time-invariant constant returns to scale in production (as in Antweiler et al, 2001;

Levinson, 2009; Shapiro and Walker, 2018).14 Failing to account for the role of heterogeneous markups

may have particularly pronounced implications for environmental policy evaluation.

Letting r̃it represent deflated revenue and imposing the assumptions of constant markups and com-

mon constant production technology, we write the conventional measure firm-level environmental per-

formance, eit/r̃it, in terms of the firm’s first order condition

∆ log

(
eit
r̃it

)
= ∆ log

(
eit
rit

)
+ ∆ ln(P̃t) = ∆ ln(P̃t)−∆ ln(tst) (8)

14With perfect competition and constant technology equation (7) reduces to eit/rit = γe/tst since µ = 1. Under CES
demand µ = (σ)/(σ − 1) where σ is the constant elasticity of substitution.
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where P̃t is an industry price deflator. In the absence of significant policy change, equation (8) suggests

variation in emissions-intensity should largely be driven by increases in the average industrial price level.

To the extent that China had a comparative advantage in ‘dirty’ industries, we might expect that prices

in these industries grew relatively rapidly after WTO accession. As such, even without variation in

markups we might expect standard measures of emissions-intensity growth to be biased upwards among

high growth industries.

Allowing markups to vary across firms and time, equation (8) can be expressed as

∆ log

(
eit
r̃it

)
= ∆ ln(P̃t)−∆ ln(µit)−∆ ln(tst)

If markups grew relatively rapidly among the dirtiest producers within individual industries, standard

emissions-intensity measures, and the consequent policy conclusions, may be biased in the exact opposite

direction.

We would not generally expect that emissions-intensity measured in physical units of output would

share the same properties. Rearranging the firm’s first order condition we write physical emissions-

intensity as
eit
xit

= mcit
γeit
tst

(9)

where mcit is the marginal cost of firm i in year t. Any argument of marginal costs should also affect

emissions-intensity in quantities. Thus, improvements in technical efficiency, access to cheaper inputs,

quality upgrading or even changes in product mix might influence the evolution of physical emissions-

intensity even though these will only be correlated with the changes in revenue-based emissions-intensity

to the degree that they indirectly influence firm-level markups.

4.2 Cost-Based Decomposition Analysis

How important is the difference between costs and revenues for the interpretation of the conventional

emissions decomposition? While it may be desirable to draw conclusions based on equation (9), aggre-

gating units of output across different products, firms, and industries, poses a complementary challenge.

A straightforward way to get a sense of the scope of the difference between these approaches is to re-

turn to the benchmark decomposition analysis, but use an alternative measure of economic activity for

decomposition weights.

In this case rather than using deflated revenue to construct industry or firm-level weights, we mea-

sure real variable cost expenditures to distinguish growth in input-use and contemporaneous changes in

markups.15 For instance, we again employ equation (2) but measure V by total variable cost expendi-

tures, while vs is now the variable costs of production in sector s, ws is the variable cost share of sector

s and ιs is the cost-based emission-intensity coefficient of sector s, measured as the amount of pollution
15In practice, we use the sum of materials expenditures and the wage bill as a measure of total firm-level variable costs. We

adjust firm-level wages following Hsieh and Klenow (2009) to account for missing compensation in the firm-level survey.
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The blue solild line plots the aggregate SO2 emissions among Chinese manufacturing firms (normalized to 1 in 2000). The red (green)
lines plot the counterfactual path of aggregate emissions when we hold emissions-intensity fixed at its value in 2000 (hold emissions-
intensity and industrial composition fixed at their values in 2000). The counterfactual lines with circles use variable cost weights, while
the counterfactual lines without circles employ revenue weights.

Figure 5: Decomposing Aggregate SO2 Emissions

per unit of expenditure on variable inputs.

As in our benchmark analysis, the variable cost-based decomposition again captures changes in scale,

industrial composition and technique. It should also mitigate the impact of markup variation under

the assumptions that firms produce under roughly constant returns to scale, there is little change in

product mix or quality, and markups do not vary significantly over time. We relax these admittedly

strong assumptions in Section 5.

Figure 5 illustrates substantial differences between the revenue and cost based decompositions,

particularly after WTO accession. In the first exercise, we hold technology, as proxied by emissions-

intensity, constant at its level in 2000. The revenue-based counterfactual is plotted by the green dotted

line, while its variable cost based counterpart is represented by the green dotted line with circles. Clearly,

the cost-based line is always significantly closer to the observed path of emissions than the revenue based

line. While the revenue-based counterfactual emissions are 20 percent greater than observed emissions in

2005, the cost-based counterfactual implies roughly half the additional emissions growth (10.6 percent).

This also has implications for counterfactual industrial composition. The dashed red line represents
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the revenue-based counterfactual emissions path when we hold both technology and industrial composi-

tion fixed at their 2000 values, while the dashed red line with circles documents corresponding cost-based

counterfactual emissions. After accounting for changes in industrial composition, revenue-based coun-

terfactual emissions remain 18 percent greater than observed emissions. The small difference with the

first counterfactual is reflective of the dominant role that changes in technique are estimated to have

on the path of emissions growth. In contrast, the corresponding cost-based exercise implies differential

growth which is only 5 percent greater in 2005 than the observed data. Not only does it appear that the

revenue-based decomposition potentially overstates the overall impact of technological change, but it

may also lead to misleading conclusions regarding the relative importance of compositional changes in

the greater economy.

Turning to the firm-level decomposition of average emissions-intensity we again find significant

differences when we quantify equation (3) using revenue or variable cost measures. Table 2 reports both

the cost-based decomposition alongside the original revenue-based decomposition for comparison. As

expected, the average firm-level measure of emissions-intensity is 5 percentage points higher when it is

constructed using variable costs since revenues reflect both costs and markups. Nonetheless, the average

percentage change in emissions-intensity is even greater when we use the variable cost-based measure.

The total decline in average emissions-intensity falls by 31 percent when we employ the cost-based

measure, but only 18 percent in revenue-based exercise.16

At first glance, this result appears inconsistent with our characterization of aggregate emissions

growth. However, again, the variation across exercises reflect subtle but important differences in mea-

surement between industrial emissions-intensity, ιst =
∑
i∈s eit∑
i∈s vit

, and the weighted average emissions-

intensity, ιwst =
∑
i∈s viteit∑
i∈s vit

. Stronger correlation between the changes in weights and emissions can

explain the larger decline the cost-based decomposition. The differences across exercises also highlights

the importance of choosing appropriate weights since they appear to offer contradictory implications.

We return to this issue in Section 5.

Table 2: Decomposition of Aggregate Manufacturing SO2 Intensity, 2000-2005

Initial Total Continuing New Exiting
Decomposition Avg. Pol. % Point Firms Entrants Firms

Type Intensity Change Total Within Across
(1) (2) (3) (4) (5) (6) (7)

Revenue 24.50 -4.48 -6.94 -6.44 -0.54 -0.45 2.90
Cost 29.53 -9.17 -11.64 -9.42 -2.24 -1.81 4.28

Notes: This table documents the percentage point change in weighted average SO2 emissions intensity.
Column (1) reports the average emissions-intensity in the initial year. Column (2) documents the total
percentage point change. Columns (3), (6) and (7) document the contribution from continuing firms,
new entrants and exiting firms, respectively. Columns (4) and (5) decompose the contribution from con-
tinuing firms (column 3) into within-firm (column 4) and reallocation components (column 5). The first
row measures average emissions-intensity using revenue weights, while the second row uses variable
cost weights.

16We compute these figures by dividing column (2) by column (1) in Table 2.
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Although both exercises confirm a significant role for within-firm changes, the cost-based decompo-

sition suggests a significantly larger role for cross-firm reallocation. Still, the reallocation term in both

exercises suggest that cleaner firms grew faster than their counterparts, which contradicts the notion that

Chinese growth was fueled by regulation driven comparative advantage. More precisely, it again rein-

forces the fact that decomposition weights mask a host of firm-level changes that have potential emissions

implications. Changes in product mix, product quality, or returns to scale - on top of changes in markups

- are all potential confounding explanations in either approach to decomposition analysis.

5 Firm-Level Sources of Aggregate Emissions Growth

Although the cost-based decomposition provides substantially different implications than that based on

deflated revenue, it raises nearly as many concerns as the former. Did emissions rise due to changing

returns to scale or was it induced by increasingly strict policy enforcement? Were the large number of

new producers an important source of aggregate emissions growth even if, on average, they are typically

quite small? Was Chinese resource reallocation biased towards clean or dirty producers or products? If

so, what weights should be applied to within or across firm reallcation? To address these questions we

develop a decomposition of aggregate emissions based on the firm’s optimal emissions and production

decisions.

Unlike conventional approaches (whether cost or revenue based) our decomposition has four impor-

tant virtues:

1. Microfoundations: Each decomposition component is directly linked to the determinants of the

firm’s optimal level of emissions. This is true of both the underlying firm-level changes and the

weights placed on each source of emissions growth.

2. Policy: Rather than having policy implicitly affect scale, reallocation or technique, our decompo-

sition specifies a direct impact of policy on emissions (as mediated through the firm’s abatement

decisions).

3. Entry and Exit: We distinguish the role of net entry, at the firm or product-level, as it reflects

growth in the scale of the economy from firm/product-churning which instead captures systematic

differences in the nature of production across entrants, exiting firms and incumbents.

4. Quantification: Each subcomponent can be estimated from a straightforward extension of standard

product-level estimation of production functions, markups and marginal costs (De Loecker et al.,

2016).

Bridging the gap between optimal firm-level emissions and the structure of our data requires extending

our argument to the firm-product level since multi-product firms account for the large majority of total

Chinese manufacturing production (Tan et al., 2015). While equation (9) directly links production to
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emissions, it implicitly assumes that each firm only produces one product. Barrows and Ollivier (2018)

highlight that within-firm product churning was an important determinant of Indian emissions growth.

This is likely to also be the case in China where product scope is reported to have grown rapidly over the

WTO accession period (Kee and Tang, 2016). Extending condition (9) to the firm-product level yields

eijt =
mcijtxijtγ

e
ijt

tst
. (10)

where j indexes firm i’s products, j ∈ Ii. Summing over individual firms and products we directly link

the firm’s optimal emissions choices in a given year to aggregate manufacturing emissions

Et ≡
∑
i

eit =
∑
i

τitfit (11)

where τit ≡ 1/weit is a measure of the emissions policy faced by each firm in each year and fit ≡ γeitcit =

γeit
∑

jmcijtxijt is a measure of firm-level primitives: technology, marginal costs, scale, product-mix,

etc. We proceed to decompose aggregate emissions growth, ∆E5 = E5 − E0, as the sum of five

components

∆Et = St + Pt + Tt +Rt + Ct (12)

where

1. S: Scale (Extensive and Intensive Margins)

2. P : Policy (Implied Emissions Taxes)

3. T : Technology (Emission-Biased Technological Change and Efficiency)

4. R: Reallocation (Across Firms and Products)

5. C: Churning (Net Entry of Firms and Products)

We discuss each of the above categories and their interpretation below.17 For transperancy, we focus

on the end points of our sample, 2000 (t = 0) and 2005 (t = 5) and characterize three types of firms

or products: entrants (E), exiters (X ), or continuing firms/products (C). For a given variable v, we

denote the average value for a particular group G ∈ {C, E ,X} in a particular year as vGt . Similarly,

let v̄ represent the simple average of v over the sample period, v̄ = 0.5v5 + 0.5v0 and, analogously,

v̄G is v̄G = 0.5vG0 + 0.5vG5 .18 Last, unless otherwise noted, ∆v represents the long difference in any

particular variable, ∆v = v5−v0. While the discussion below focuses on the interpretation of individual
17Arguably, many of the above categories could be combined. For instance, distinguishing churning and scale are largely

matters of taste. Nonetheless, because each component is directly tied to the firms first order conditon, each underlying com-
ponent has an intuitive economic interpretation.

18We use simple averages between the two end points of our sample when constructing averages in our decomposition
exercise. However, as in Melitz and Polanec (2015), similar results could be found for any particular intertemporal weight on
the beginning or end period.
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components of the aggregation exercise, a detailed derivation of each term from equation (12) can be

found in the appendix.

Scale

Aggregate emissions, holding all features of production constant, increase with the size of an economy

by construction. Nonetheless, it is not obvious whether increases in emissions present themselves as

increases in the output of existing producers, the expansion of firm product scope or a rise in the number

of producers themselves. Letting N̄ = 0.5N5 + 0.5N0 represent the average total number of firms in

each year, each of these sources of economic expansion can be aggregated as

St = ēC(NE5 −NX0 )︸ ︷︷ ︸
No. of firms

+
N̄

NC

∑
i∈C

τ̄ic̄iγ̄
e
i (n
E
i − nXi )︸ ︷︷ ︸

No. of products

+
N̄

NC

∑
i∈C

τ̄iγ̄
e
i

∑
j∈ICi

mcij∆xj

︸ ︷︷ ︸
Average output growth

where ∆xj = 1
NCj

∑
i∈C(xij5 − xij0) captures average output growth, ci =

∑
jmcijtxijt measures firm

costs, γeit =
∑

j(eijtγ
e
ijt)/eit is the average firm-level output elasticity of emissions, and ICi is the set of

products produced by firm i continuously over the 2000-2005 period.

The first term captures the growth in the number of Chinese producers over 2000-2005 period eval-

uated at the average emissions-level among continuing firms, while the second captures increases in

product-scope, holding firm-level taxes, costs and technology constant over time. Note that it is inflated

by the fraction N̄/NC since the average number of firms is greater than the number of continuing firms.

The last term captures the growth in the intensive margin of output. The growth of each product is evalu-

ated at the average marginal cost for each firm in over the sample, but average growth is not firm-specific.

In this sense, we consider this term an increase in economic ‘scale.’ Deviations from this average will be

associated with reallocation across heterogenous producers below.

Policy

Changes in environmental policy are likely to have both direct and indirect impacts on firm-level emis-

sions. For instance, if greater Chinese enforcement of environmental policy were to induce firms to

increase abatement efforts we would expect firm-level emissions to fall. This type of action would be

captured by our policy component. In contrast, if greater enforcement caused firms to invest in new,

cleaner technology this type of indirect policy effect is not captured by Pt but is instead implicitly part of

the technological change component below. We write the contribution from changes in effective policy

as

Pt =
N̄

NC

∑
i∈C

γei ci∆τi
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Again, we hold technology, efficiency and production constant when evaluating the policy contribution.19

We allow, however, the implied emission tax to vary firm-by-firm in our decomposition. Although leg-

islated environmental penalties are common to firms in the same location and year, it is plausible that

individual firms faced different levels of regulatory enforcement during this time frame.

Technology

The output elasticity of emissions evolves as firms grow. This, in turn, affects the degree to which

technological change is biased towards emissions (EBTC). We are capturing only the contribution from

the change in technological parameter on emissions, γeit, holding input shares for product j in firm i, %ijt,

fixed over the sample period.

Tt =
N̄

NC

∑
i∈C

τ̄ic̄i
∑
j∈ICi

%̄ij∆γ
e
ij︸ ︷︷ ︸

EBTC

+
N̄

NC

∑
i∈C

τ̄iγ̄
e
i

∑
j∈ICi

x̄ij∆mcij

︸ ︷︷ ︸
Efficiency

At the same time, it is widely reported that Chinese productivity grew rapidly over the WTO accession

period which, in turn, reduced marginal costs. Holding production fixed, a reduction in marginal costs is

equivalent to a decline in input demand and a potential source of emissions savings.

Reallocation

We distinguish two types of reallocation which contribute to emissions growth. The first term captures

traditional across firm reallocation. In particular, we measure whether output growth, ∆xij , grew rel-

atively rapidly among firms facing lower emissions taxes (higher τ ), higher input demand (higher mc)

and/or greater technological dependence on emissions (higher γe). Rather, than arbitrarily assigning a

weighting variable, these weights originate from the optimal emissions condition itself.

Rt =
N̄

NC

∑
i∈C

τ̄iγ̄
e
i

∑
j∈ICi

mcij(∆xij −∆xj)

︸ ︷︷ ︸
Across Firms

+
N̄

NC

∑
i∈C

τ̄ic̄i
∑
j∈ICi

γ̄eij∆%ij︸ ︷︷ ︸
Across Products (Within-firm)

The second reallocation term captures the degree to which changes in product shares, ∆ρij , are similarly

correlated with firm-level variation in emissions taxes, costs, and technology. We distinguish this type

of reallocation from product churning, or the entry and exit of new products. Although it is computed

only for products which were produced continuously over the sample period, it nonetheless captures the

degree to which continuing products were increasingly (or decreasingly) important over time. Indeed,
19A subtle difference here is that we are holding the combination of technology γei and costs ci constant, γici = 0.5γi5ci5 +

0.5γi0ci0. Above, c̄i and γ̄i independently entered the firm-level weight for product growth. As demonstrated in the appendix
the origin for this difference is the inherent nesting structure of our decomposition approach.
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the across-products term can be can be expressed as the sum of a term capturing reallocation among

continuing products and a term measuring the change in the importance of continuing products.20

Churning

The accelerated rate of firm and product churning is one of the most distinctive features of China’s WTO

accession. To the extent that entering or exiting firms (products) systematically differ from incumbent

firms (continuing products) in their resource demand or emissions-intensity, we might also suspect that

they are a potential source of emissions growth. We compute the contribution from firm and product

churning as

Ct = NE(eE5 − eC5) +NX (eC0 − eX0 )︸ ︷︷ ︸
Firm-Level Churning

+
N̄

NC

∑
i∈C

τ̄ic̄i[n
E
i (γEi5 − γCi5) + nXi (γCi0 − γXi0)]︸ ︷︷ ︸

Product-Level Emissions Churning

+
N̄

NC

∑
i∈C

τ̄iγ̄
e
i [n
E
i (cEi5 − cCi5) + nXi (cCi0 − cXi0)]︸ ︷︷ ︸

Product-Level Cost Churning

where the average output elasctity of emissions and the average cost of production in a particular group

of firms are respectively γGit = 1
nGi

∑
j∈IGi

%ijtγijt, G ∈ {C, E ,X}, and cGit = 1
nGi

∑
j∈IGi

mcijtxijt.

The first component of Ct captures the contribution of firm-level net entry analogously to that in

Melitz and Polanec (2015). It computes average emissions among entrants (or exiting firms) relative to

their incumbent contemporaries and weights each of these by the number of firms in each group. The

second component captures systematic differences in the emissions intensity of production among new

and obsolete products firm-by-firm, while the last term measures product-level changes in the cost of

production. Notably, this last term includes variation in input demand driven by differences in marginal

costs and total production as these both enter the firm-level cost term ci.

5.1 Quantifying the Determinants of Emissions

In this section, we describe our (straightforward) adaptation of De Loecker et al. (2016) to recover

firm-level markups, marginal costs, emissions output elasticities, and the effective price of emissions
20In particular, we can rewrite the second term as

N̄

NC

∑
i∈C

τ̄ic̄i
∑
j∈ICi

γ̄eij∆ρij

︸ ︷︷ ︸
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=
N̄
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∑
i∈C

τ̄ic̄i

Ψ̄i

∑
j∈ICi

γ̄eij∆s
ρ
ij + ∆Ψi

∑
j∈ICi

γ̄eij s̄
ρ
ij



where Ψi captures the importance of continuing products in resource demand for firm i, Ψit =
∑
j∈ICi

ρijt, while sρijt is the
normalized share of resource demand among continuing products, sρijt = ρijt/Ψit. The first subterm across products captures
reallocation across continuing products, after normalizing their importance to the firm, while the second term captures the rising
or declining importance of resource reallocation towards (or away from) continuing products within individual firms.
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regulation in China. We assume that firm i produces product j in year t according to the augmented

production function

xijt = fe(lijt, kijt,mijt, eijt)e
ωit (13)

where xijt is physical production of good j. Relative to production function (6) we maintain the standard

assumption in De Loecker et al. (2016) that firm productivity is log additive to total production.21 We

restrict attention to traditional productive inputs including labor, capital and materials along with firm-

level SO2 emissions in our augmented production setting.

We write the log emissions-augmented production function as

lnxijt = ln fe(lijt, kijt,mijt, eijt;β) + ωit + εijt (14)

where β is the vector or parameters governing fe(·) and εijt captures measurement error in firm-level

output of product j. To make a minimal assumption on the structure of our augmented production

function we assume that fe takes a translog form.

We do not generally observe productive inputs; capital (kijt), labor (lijt) and intermediate ma-

terials (mijt) are quite possibly measured with bias. More productive firms are likely to hire more

skilled workers, have newer and more efficient capital, or use higher quality inputs. Likewise, we ob-

serve neither the share of productive inputs allocated to any particular product or the emissions gen-

erated by any production process. Following De Loecker et al. (2016) we write the log value of

any particular (unobserved) input mijt used in production of any of firm i’s j = 1, ..., Ji products,

νijt ∈ {ln lijt, ln kijt, lnmijt, ln eijt} as νijt = ρijt + νit − wijt where νit is the firm-level input (e.g.

deflated materials expenditures, emissions), ρijt is the (unobserved) allocation of the input to a given

product within the firm, and wijt is the (unobserved) firm-specific input price. We then write the log

production function as

lnxijt = fe(νijt;β) +A(ρijt,νijt;β) +B(wijt, ρijt,νijt;β) + ωit + εijt. (15)

The first unobserved term, A(·), arises from the unobserved input allocation parameters ρijt, while the

second, B(·), is due to unobserved input prices wijt.22

De Loecker et al. (2016) propose an approach to estimate the production function parameters β while

addressing both sources of potential bias. To address the first source of bias, multi-product production,

we estimate product-specific augmented production functions using data from single-product producers

alone. Dropping all multiproduct firms potentially induces sample-selection bias since single-product

firms are expected to be systematically less productive than multi-product producers. We follow their

approach to correct for this potential source of bias by introducing a control variable which captures the
21Note that this would be the case in workhorse models of trade and the environment such as Shapiro and Walker (2018).
22The functional form of A(·) and B(·) follow directly from the assumption of an augmented translog production function.

We report these in the appendix.
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probability of exiting the estimation sample because of multiproduct production.23

Bias arising from unobserved input prices, B(·), is approximated by a control of variables which

correlate with unobserved product quality. These include firm-level measures of market share and their

interactions with firm-level state variables. Under the assumption that the proxy variables can entirely

capture the variation in unobserved input prices, we recover unbiased estimates of the parameters β from

augmented production function (15).24

After correcting for potential endogeneity arising from selection biasA(·) or unobserved input prices

B(·), the vector of augmented production function parameters is estimated using a control function ap-

proach (Olley and Pakes, 1996). In particular, we follow the approach proposed by Levinsohn and Petrin

(2003), where we assume that unobserved productivity, ωit, follows a first-order Markov process and

that we can proxy for its absence with the inverted material demand function. To estimate the production

function parameters, we implement the Wooldridge (2009) GMM estimation procedure industry-by-

industry where moment conditions are formed on the joint error term of shocks to productivity and the

measurement error in output, εijt. That is, for each of the 24 2-digit industries in our data, we separately

recover a product-specific production function for each 5-digit product classification within the 2-digit

industries.25

The procedure also returns estimates of the parameters which govern the input price function, B(·),

and thereby estimates of unobserved input prices, wijt. Perhaps the most important input price in this

context is the unobserved effective price of emissions. The recovered vector of prices for emissions

provides a measure of effective emissions regulation in the Chinese manufacturing sector. In particular,

the implied emissions tax captures all constraints on emissions and production and provides a summary

of the regulatory environment as it pertains to firm-level emissions.

Using the implied input prices, we then recover the input allocation shares, ρijt, and unobserved

firm-level productivity, ωit, among multiproduct producers. For the firm with J products we construct

a system of J + 1 equations in J + 1 unknowns: the first J equations are the production functions as

described in equation (15), while the last is simply the restriction that all input allocations must sum to

one,
∑

j ρijt = 1. We solve this system of equations for each individual firm-year pair.

Input prices, wijt, and input allocations, ρijt, in turn allow us to estimate the physical quantity of

any specific input, including SO2 emissions, allocated to any particular product within a particular firm-

year pair. The input allocations imply firm, year and product-specific output-elasticities. The output

elasticity for emissions, γeijt, measures the emissions-intensity Chinese production as governed by the

structure of production. Systematic changes in γeijt capture the degree to which changes in the nature of

manufacturing production, conditional on firm productivity, influenced the evolution of emissions over
23The sample selection correction in De Loecker et al. (2016) closely resembles the correction for endogenous firm exit in

Olley and Pakes (1996).
24As noted in De Loecker et al. (2016) this approach requires that input prices are not a function of the level of the input

itself.
25We note that there are more than 24 2-digit industries in the raw data, but not all are sufficiently large to use as an estimation

sample. Thus, we merge small related industries into a final sample of 24 2-digit industries.
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time.

Finally, output elasticities combined with expenditure shares allow us to recover markups and marginal

costs. As argued in section 4.1, the former may be primary source of bias in conventional decomposition

analysis should they vary significantly across firms and time. Declines in marginal costs, highlighted

among Chinese manufacturers during the WTO accession period, are a potential source of real environ-

mental gains.

6 Results

We present results in two steps. First, we document the estimated markups, marginal costs, emissions-

elasticities, and the implied emissions taxes. Second, we measure the contribution from each source of

emissions growth according to our proposed decomposition of aggregate emissions.

6.1 Markups, Marginal Costs, Technology & Taxes

Table 3 documents emissions output elasticities for all of the 2-digit industries in our data. The first two

columns report the mean and median firm-and-product specific elasticities, γeijt, while columns 3 and 4

compute long differences over the 2000-2005 period, ∆γeij = γeij,05 − γeij,00. Our benchmark exercise

restricts attention to firms for which the estimated emissions elasticity was positive. Negative emissions-

elasticities may reflect a number of different sources of unmodeled and unobserved heterogeneity which

we address below.

Our benchmark single-technology, emissions output elasticities are estimated to be quite large; across

industries the median firm-level elasticity ranges from 0.071 to 0.859. Roughly two thirds of the median

output elasticities lie between 0.1 and 0.3. Among firms in this range, a 10 percent increase in emissions

is associated with a 1-3 percent increase in output, ceteris paribus. Rapid firm-level growth will likely

lead to large increases in emissions unless there are signficant changes in the structure of production or

in the price of emitting pollution.

The long difference in the output elasticities of emissions over 2000 to 2005 period are reported

in columns (3) and (4) for the benchmark sample. Median (average) output elasticity declined signifi-

cantly in 17 (16) of 24 sectors and increased modestly in nearly all other industries. Weighting firms by

measures of economic activity (e.g. cost or revenue shares) further reinforces the notion that emissions-

intensity did in fact decline over time. In this sense, we do find that the environmental performance

Chinese production did improve throughout the WTO accession period. Whether it significantly miti-

gated aggregate emissions growth, depends on its comovement with the other determinants of emissions

growth. However, ignoring the evolution of output elasticity of emissions would lead standard decompo-

sition analysis to underestimate the impact of technological improvement on the evolution of aggregate

emissions.

As noted above, our benchmark results drop all observations where firm-product pairs report negative
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Table 3: Emissions Output Elasticities

Single-Technology Multiple-Technology
Levels ∆’s 2000-5005 Levels ∆’s 2000-5005

Sector Mean Median Mean Median Mean Median Mean Median
(1) (2) (3) (4) (5) (6) (7) (8)

mineral products 0.324 0.270 -0.435 -0.110 0.328 0.239 -0.345 -0.440
electricity generation 0.283 0.212 -0.149 0.014 0.240 0.139 -0.064 -0.157
food products 0.141 0.124 0.023 -0.049 0.188 0.136 0.022 -0.066
alcoholic beverages 0.092 0.071 0.066 0.038
cloth 0.212 0.171 -0.176 -0.183 0.218 0.175 -0.019 -0.186
clothing and apparel 0.395 0.361 -0.185 -0.147 0.299 0.202 -0.041 -0.124
wooden furniture 0.496 0.517 -0.285 -0.451 0.524 0.464 -0.194 -0.345
paper products 0.613 0.859 0.241 0.099 0.862 0.852 -0.056 -0.245
fuel, diesel & gas 0.329 0.299 -0.042 -0.180 0.331 0.294 -0.072 -0.176
chemical products 0.197 0.147 0.114 -0.028 0.588 0.505 -0.094 -0.238
rubber products 0.255 0.184 0.452 0.670 0.517 0.351 -0.118 -0.256
tires & conveyor belts 0.508 0.535 -0.121 -0.121 0.564 0.590 -0.148 -0.202
plastic products 0.111 0.075 -0.561 -0.503 0.134 0.113 0.261 0.203
glass & ceramic products 0.186 0.156 -0.264 -0.101 0.415 0.266 0.012 -0.031
crude steel 0.230 0.223 0.122 0.052 0.954 1.536 0.612 0.677
high quality steel & steel plates 0.196 0.190 -0.306 -0.187 1.100 1.611 0.436 0.238
heavy metal products 0.344 0.304 0.157 0.136 0.412 0.354 0.349 0.274
light metal products 0.393 0.396 0.340 0.488 0.614 0.497 -0.006 -0.006
auto parts 0.146 0.093 -0.086 -0.104 0.476 0.320 -0.328 -0.331
wheels, gears, & mining equip. 0.249 0.211 -0.826 -0.423 0.538 0.392 0.171 -0.001
transportation equipment 0.221 0.191 -0.643 -0.714 0.709 1.953 0.094 -0.549
abatement equip. & heavy mach. 0.189 0.128 -0.318 -0.105 0.876 2.403 0.158 -0.064
comm. cables & elec. wires 0.270 0.225 -0.241 -0.112 0.224 0.186 -0.010 -0.119
measuring tech., printers, etc 0.616 0.839 -0.075 -0.191 0.682 0.635 -0.521 -0.268

Notes: Columns (1) and (2) report the estimated mean and median emissions output elasticities, while columns (3) and (4)
report the mean and median change in output elasticity over the 2000-2005 period for the single-technology approach. Columns
(5)-(8) report the same information for the multiple-technology approach. Each calculation is performed separately for 24 2-
digit manufacturing sectors. There are insufficient observations to recover estimates for the alcoholic beverage industry when
employing the multiple-technology approach.
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emissions elasticities. This occurs in a non-trival part of our sample: for roughly 30 percent of the firm-

product pairs the benchmark estimates indicate that the overall level of emissions will decline as output

rises.26 We consider a number of possible explanations for this result. First, we examine the degree to

which these firms are concentrated in a particular industry. Although they are largely concentrated in a

handful of industries, they do appear in most of our 24 industries. We also check whether these estimates

are capturing differences in technology across foreign, state-owned or domestic firms. In general, the

negative emissions elasticities are equally present across all three types of ownership.

We study the robustness of our benchmark, single-technology results by allowing for greater tech-

nological heterogeneity across firms. First, we estimate the augmented production function under the

assumption that a single-technology is sufficient to capture the production function for each of the 360

(5-digit) products in the data set. Upon recovering the estimates, we break each 5-digit product clas-

sification into two groups: firm-product pairs which have positive estimated emissions elasticities and

firm-product pairs with negative emissions elasticities. We then repeat the production function estima-

tion routine for each product classification and each group under the assumption that the two groups of

firms produce the same product with different production technologies.27 That is, we estimate 2 produc-

tion functions for each product (or 720 separate production functions total). After accounting for this

potential source of unobserved (technological) heterogeneity over 90 percent of all firm-product pairs

are estimated to have positive emissions elasticities.28

Columns (5)-(8) of Table 3 report complementarity emissions-elasticities and their changes for our

multiple technology approach to production function estimation. For most industries the multiple-

technology approach yields very similar estimates of the output elasticity of emissions. However, in

at least seven industries it is clear that allowing for multiple technologies significantly increased the

mean and median output elasticity of emissions. The largest changes occur in the production of abate-

ment equipment29, transportation equipment, crude steel, high quality steel, chemical products, mining

equipment and rubber products. After allowing for multiple technologies, we observe that the estimated

elasiticites in these industries are substanially higher than those from the benchmark exercise and, in two

cases, are greater than one. Inaccurate measures of emissions elasticities will clearly bias any character-

ization of the contribution of technological change on emissions growth. As we document below, they

also have the potential to generate misleading estimates of marginal costs, markups and the incidence of

the regulatory environment.

The augmented production function estimates provide a second, and equally important, measure of

technological progress: changes in marginal costs. Table 4 displays significant variation in marginal costs
26It is not uncommon for the De Loecker et al. (2016) method to produce negative output elasticities for a small number of

observations. The large fraction of negative estimates is rather more concerning.
27The intuition here is similar to that exposited in Kasahara, Schrimpf and Suzuki (2017).
28We could, in principle, continue to repeat this process until we had eliminated all negative emissions elasticities. In practice,

the vast majority of industries have too few negative emissions elasticities to reliably use in a further round of estimation.
29The abatement equipment and heavy machinery industry captures the production of concrete machinery, compaction ma-

chinery, air pollution prevention and control equipment, water pollution prevention and control equipment, and noise and
vibration control equipment among other related products.
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Table 4: Marginal Costs

Single-Technology Multiple-Technology
Levels ∆’s 2000-5005 Levels ∆’s 2000-5005

Sector Mean Median Mean Median Mean Median Mean Median
(1) (2) (3) (4) (5) (6) (7) (8)

mineral products 19.575 0.175 5.842 2.468 10.431 0.384 3.623 1.980
electricity generation 69.321 4.153 2.597 0.223 325.221 6.161 1.041 0.109
food products 27.178 4.017 0.649 -0.140 23.434 7.323 0.553 0.046
alcoholic beverages 68.523 11.188 1.984 0.074
cloth 194.705 55.592 2.605 0.046 510.310 80.520 1.367 0.079
clothing and apparel 167.261 55.393 0.837 -0.067 855.899 133.451 0.816 0.165
wooden furniture 7.366 1.061 1.334 0.082 3.594 1.941 0.493 0.124
paper products 116.807 2.716 1.622 0.194 239.122 4.146 0.745 -0.261
fuel, diesel & gas 13.376 1.418 2.936 0.540 13.771 2.640 1.679 0.467
chemical products 47.938 6.361 2.049 0.078 42.779 9.553 -0.243 -0.333
rubber products 98.065 8.049 0.965 0.273 66.985 9.881 -0.122 -0.247
tires & conveyor belts 286.760 34.888 -0.001 -0.001 496.765 35.987 -0.224 -0.672
plastic products 786.656 520.394 -0.192 -0.999 1215.611 701.992 -0.549 -1.000
glass & ceramic products 43.547 1.761 0.948 0.001 26.453 1.154 0.709 0.018
crude steel 27.055 2.630 2.876 0.413 18.275 0.860 0.855 1.406
high quality steel & steel plates 36.220 1.994 3.718 1.645 3.085 0.127 3.172 5.189
heavy metal products 116.354 14.258 1.047 0.013 85.735 11.388 0.847 0.032
light metal products 110.974 7.740 0.626 0.152 56.375 6.395 1.470 1.470
auto parts 218.282 44.334 4.902 1.061 396.784 34.365 1.410 0.374
wheels, gears, & mining equip. 105.104 13.684 2.141 0.140 117.360 16.339 0.172 -0.145
transportation equipment 114.267 13.857 3.774 1.857 73.764 6.265 0.096 0.123
abatement equip. & heavy mach. 467.731 82.306 6.302 3.892 697.576 30.205 3.226 6.882
comm. cables & elec. wires 86.528 4.731 2.384 0.254 93.041 7.551 0.959 0.379
measuring tech., printers, etc 46.296 0.991 1.294 0.768 25.887 1.030 1.159 0.140

Notes: Columns (1) and (2) report the estimated mean and median marginal costs, while columns (3) and (4) report the mean and median
change in marginal costs over the 2000-2005 period for the single-technology approach. Columns (5)-(8) report the same information for
the multiple-technology approach. Each calculation is performed separately for 24 2-digit manufacturing sectors. There are insufficient
observations to recover estimates for the alcoholic beverage industry when employing the multiple-technology approach.

across industries and time. In particular, we find that the (simple) average of the change in marginal costs

grew over the WTO accession period. As demonstrated in the next section, these changes are somewhat

misleading: changes in marginal costs are negatively correlated with the firm-and-product level weights.

That is, firms with declining marginal costs account for a much larger share of production in a majority

of industries. Accordingly they also receive a greater weight in the decomposition analysis.

Table 5 documents firm-level markups for each 2-digit industry in our data. Formally, the first-order

condition holds at the firm-product level

rijt = µijt
mijtw

m
ijt

γmijt
(16)

and our estimation procedure returns estimates of mijt, γmijt, and wmijt. Because we only observe firm-

level revenues, rit, not firm-product revenues, rijt, we cannot identify firm-and-product specific markups
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with our data.30 Summing over products in equation (16) and dividing both sides by
∑

j
mijtw

m
it

γmijt
provides

us with an input-weighted measure of firm-level markups

µit ≡
∑
j

λijtµijt =
rit∑

j

mijtwmijt
γmijt

where λijt =

mijtw
m
ijt

γmijt∑
j

mijtwmijt
γmijt

(17)

Using intermediate materials as a variable input, we recover firm-level markups according to equation

(17).

Our estimated markups generally fall into a similar range to those reported in Lu and Yu (2015). In

general, we estimate fewer industries where the median firm-level markup is negative; in our estimation

exercise this only occurs in the fuel industry. The difference in findings across papers may plausibly be

driven by differences in the sample period or firm-level coverage. The sample period in Lu and Yu (2015)

begins in 1998, when markups were potentially smaller prior to WTO accession, while our sample begins

in 2000. Similarly, we include both small, single-product firms along with large, multi-product firms in

our estimation sample while Lu and Yu (2015) focus exclusively on single-product producers.

De Loecker et al. (2016), which estimates markups among Indian manufacturers during a period

of trade liberalization, provides another benchmark to which we can compare our markup estimates.

Across 11 sectors they report median markups which range from 15 to 127 percent. Excluding the one or

two industries with negative median markups, we estimate median markups which range from 4 to 162

percent in the single-technology exercise and 2 to 108 percent in the multiple-technology approach.

In both experiments, we consistently observe significant increases in Chinese markups over time.

On one hand, we find that average markups increase in 17 (14) of the 24 (23) industries in the single-

technology (multiple-technology) exercise. If we weight firms by a measure of firm size we find that

average markups increase in almost all industries over time. Rising markups suggest that the revenue-

based measures emissions-intensity would almost surely bias the standard decomposition analysis and

lead researchers to overestimate the role of technological improvement on the path of aggregate emis-

sions. On the other hand, median markups increase in roughly half of the industries in either exercise.

Whether, markups matter for our overall decomposition conclusions crucially depend on the weight on

an individual firm’s contribution to aggregate emissions growth.

Finally, given our estimates of firm-level markups, marginal costs and emissions elasticities, we

recover the implied price of emissions, under the assumption that each unit (kilogram) of emissions

has the same price regardless of which product the firm is producing. The implied prices, along with

their changes over time are reported in Table 6 and are measured in units of 1000 RMB (or $120.77

USD) per kilogram of SO2 emissions. To interpret this value we must recall that it reflects the full

implied price of increasing emissions across all regulatory and non-regulatory margins even if they are

not necessarily intended to restrict emissions per se. That is, it reflects the full cost of quotas, taxes, fines,

loan conditions, restricted export market access and public pressure, among other regulatory conditions.
30Recall, we are able to identify mijt, wmijt, and γmijt because we observe firm and product specific production, xijt.
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Table 5: Markups

Single-Technology Multiple-Technology
Levels ∆’s 2000-5005 Levels ∆’s 2000-5005

Sector Mean Median Mean Median Mean Median Mean Median
(1) (2) (3) (4) (5) (6) (7) (8)

mineral products 1.463 1.358 0.016 -0.094 1.075 0.985 0.083 -0.084
electricity generation 1.385 1.292 0.172 0.137 1.117 1.021 -0.029 -0.106
food products 1.136 1.091 0.193 0.161 1.145 1.056 0.164 0.161
alcoholic beverages 1.132 1.057 0.052 0.014
cloth 1.120 1.062 0.005 -0.076 1.187 1.152 -0.013 -0.061
clothing and apparel 2.544 2.628 0.176 0.139 1.757 1.424 0.055 -0.003
wooden furniture 1.445 1.304 0.056 -0.052 1.308 1.261 0.051 -0.026
paper products 1.620 1.469 0.040 -0.027 1.524 1.392 0.000 0.060
fuel, diesel & gas 0.795 0.704 -0.052 -0.136 0.832 0.674 -0.045 -0.117
chemical products 1.239 1.193 0.056 -0.022 1.329 1.196 0.255 0.301
rubber products 1.237 1.100 0.204 0.138 1.516 1.382 0.203 0.241
tires & conveyor belts 1.232 1.078 0.004 0.004 1.418 1.073 0.092 0.340
plastic products 1.037 1.005 0.097 0.036 1.074 1.029 0.111 0.095
glass & ceramic products 1.251 1.217 -0.036 -0.092 1.242 1.311 -0.044 -0.092
crude steel 1.381 1.346 0.027 -0.013 1.466 1.394 -0.181 -0.145
high quality steel & steel plates 1.282 1.251 -0.260 -0.324 0.564 0.570 -0.552 -0.552
heavy metal products 1.859 1.811 0.082 0.025 1.916 1.896 0.168 0.128
light metal products 1.334 1.219 0.123 0.091 1.175 1.198 0.345 0.345
auto parts 1.080 1.037 -0.187 -0.335 1.348 1.280 -0.015 -0.062
wheels, gears, & mining equipment 1.559 1.516 -0.031 -0.126 1.532 1.517 0.088 0.212
transportation equipment 2.075 2.133 0.134 0.110 2.023 1.977 0.213 -0.450
abatement equip. & heavy mach. 1.842 1.816 0.193 0.061 1.783 1.894 0.074 0.261
comm. cables & elec. wires 1.400 1.315 -0.133 -0.156 1.218 1.117 -0.112 -0.124
measuring tech., printers, etc 1.713 1.672 -0.024 0.038 1.473 1.486 -0.075 -0.027

Notes: Columns (1) and (2) report the estimated mean and median markups, while columns (3) and (4) report the mean and median
change in markups over the 2000-2005 period for the single-technology approach. Columns (5)-(8) report the same information
for the multiple-technology approach. Each calculation is performed separately for 24 2-digit manufacturing sectors. There are
insufficient observations to recover estimates for the alcoholic beverage industry when employing the multiple-technology approach.

It also reflects all unmeasured costs associated with increasing production which would lead to greater

emissions. For instance, shortages in skilled-labor, increasing costs of upgrading capital, or higher tariffs

in export markets are all implicit taxes on production. If they are fully incorporated into current markups

and prices, then the implied emissions-tax will not reflect these characteristics of production. However,

should prices and markups adjust slowly over time to changing market conditions, the implied emissions-

taxes will capture the full cost of increasing production including costs which are not directly aimed at

reducing emissions themselves.

Columns (2) and (6) display large differences in the implied emissions taxes across the single and

multiple-technology estimation approaches. For instance, in the first row the median emission tax in the

mineral products industry is 211 RMB (25.48 USD) per kilogram. In comparison, the median implied

emissions-tax in the multiple-technology approach is only 54 RMB (6.25 USD) per kilogram. This

pattern is consistent across industries: in all but one case (three cases) the median (average) emissions

tax is lower in the multiple-technology exercise. Moreover, the multiple-technology implied emission

taxes are often an order of magnitude smaller.
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Table 6: Implied Emissions Taxes

Single-Technology Multiple-Technology
Levels ∆’s 2000-5005 Levels ∆’s 2000-5005

Sector Mean Median Mean Median Mean Median Mean Median
(1) (2) (3) (4) (5) (6) (7) (8)

mineral products 0.607 0.211 2.361 2.340 0.653 0.054 2.774 1.065
electricity generation 5.535 1.597 1.294 0.413 0.647 0.028 2.044 0.250
food products 5.485 1.611 1.992 0.625 1.355 0.330 1.902 0.219
alcoholic beverages 6.456 2.925 2.176 0.527
cloth 2.789 1.088 2.552 0.317 1.004 0.334 1.597 0.247
clothing & apparel 5.080 2.143 1.973 0.222 1.108 0.273 1.386 0.042
wooden furniture 0.787 0.390 2.088 0.640 0.213 0.170 0.497 0.191
paper products 1.652 0.677 1.447 0.310 0.719 0.320 1.463 0.404
fuel, diesel & gas 1.204 0.369 3.074 0.594 0.451 0.232 2.317 0.764
chemical products 1.737 0.488 2.119 0.304 1.438 0.110 0.226 0.040
rubber products 5.016 1.937 2.579 0.510 1.307 0.352 6.483 0.460
tires & conveyor belts 5.122 1.975 0.617 0.617 3.547 1.751 -0.329 -0.076
plastic products 0.686 0.127 1.583 0.241 0.883 0.029 2.005 0.724
glass & ceramic products 1.031 0.289 3.475 1.323 0.316 0.055 4.446 -0.118
crude steel 3.726 0.901 4.080 1.543 1.493 0.076 4.483 1.972
high quality steel & steel plates 4.502 1.321 3.091 0.721 2.272 0.043 0.397 -0.989
heavy metal products 10.331 5.988 3.728 1.709 2.714 1.302 6.593 1.533
light metal products 6.527 3.298 2.280 2.656 3.309 2.272 0.092 0.092
auto parts 8.293 4.306 3.416 1.293 0.251 0.015 5.991 1.583
wheels, gears, & mining equip. 7.595 3.620 4.715 1.426 2.508 0.675 5.173 2.107
transportation equipment 1.937 0.792 1.287 -0.122 4.526 5.430 0.815 0.282
abatement equip. & heavy mach. 11.474 9.262 4.302 1.451 6.543 7.889 1.830 0.996
comm. cables & elec. wires 17.266 21.361 2.499 0.875 2.312 0.838 3.793 0.982
measuring tech., printers, etc 6.376 2.971 -0.066 -0.761 2.590 1.524 0.415 -0.526

Notes: Columns (1) and (2) report the mean and median implied emissions taxes, while columns (3) and (4) report the mean
and median change in the implied emissions taxes over the 2000-2005 period for the single-technology approach. Columns
(5)-(8) report the same information for the multiple-technology sample. Each calculation is performed separately for 24 2-digit
manufacturing sectors. There are insufficient observations to recover estimates for the alcoholic beverage industry when employing
the multiple-technology approach.
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It is less clear whether the estimated price of emissions are high or low relative to international stan-

dards. Our estimated prices are an order of magnitude larger than average US prices for spot sulfur

dioxide emissions allowances over the same period.31 This is not particularly surprising, the frictions as-

sociated with increasing production, and thus emissions, are manifold. What is perhaps more interesting

is that while it is widely cited that production distortions declined over the WTO accession period, our

estimates suggest that the cost of emitting SO2 rose. The rise in mean and median emissions taxes in Ta-

ble 6 are consistent with rise in SO2 taxation, policy enforcement or both. The degree to which this was

a quantitatively important determinant of emissions growth depends both on the size of the individual

changes but also their correlation with other firm-level attributes. For instance, even if many small, pri-

vate firms experience increases in implied emissions taxation, this mechanism will not necessarily play a

large role in mitigating emissions growth if large, emissions-intensive producers are left unchecked. Our

decomposition approach provides theoretically consistent weights to capture the impact of regulatory

change.

6.1.1 Ownership Differences

Tables 10-14 (in the appendix) document differences in emissions elasticities, markups, marginal costs

and implied emissions taxes across foreign-owned, state-owned and domestic (privately-held) firms.32

In general, the estimated differences across industries correspond to our prior expectations. For instance,

consider the set of industries where each type of ownership is present over the entire sample period. In 9

of the 16 industries foreign firms are estimated to have the lowest median marginal costs and the largest

markups. In contrast, state-owned firms are estimated to have the largest median marginal costs in 11

of the same 16 industries. The lowest median markups are found among domestic firms in 8 industries,

state-owned firms in 6 industries and foreign firms in 2 industries. In this sense, our findings confirm that

foreign owned enterprises are the most efficient and profitable, while the state-owned are least efficient

and domestic firms often operate with smallest margins.

Turning to implied emissions taxes we again observe the highest level of taxation among foreign

firms in 12 out of 16 industries. Private and state-owned firms faced the weakest (median) regulatory

burden in 4 and 9 industries, respectively. Collectively this suggests that foreign producers faced dispro-

portionately strict regulation relative to their domestic counterparts. Finally, there is no obvious pattern

across ownership with respect to emissions elasticities. On one hand, privately-owned domestic firms

have the largest median emissions-intensities in 8 of 16 industries, while the same is true among state-

owned firms in only 3 industries. On the other hand, the lowest median elasticities are found among

privately-owned firms in 5 industries, state-owned firms in 6 industries and foreign-owned firms in 7
31See the EIA website for historical spot price data: https://www.eia.gov/todayinenergy/detail.php?id=1330# (accessed

March 5, 2020). At their height over the 2003-2008, US spot prices reached nearly $2,000 USD per ton of SO2 emissions.
This is nonetheless smaller than the implied prices from our estimation exercise.

32Tables 10-14 restrict attention to the multiple-technology approach. The same qualitative patterns are found using the
single-technology approach.
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industries.33

6.2 Decomposition Results

Tables 7 and 8 document our benchmark decomposition findings. Table 7 breaks down aggregate emis-

sions growth into its five primary components (scale, policy, technology, reallocation and churning) while

Table 8 examines the underlying determinants of each component. We provide decomposition results for

both single and multiple-technology estimation routines, but note that they are generally quite similar.34

Table 7: Sources of Aggregate SO2 Emissions Growth

Percentage Contribution
Approach Scale Policy Technology Reallocation Churning
Single-Technology 101.08 -4.22 -14.03 15.49 1.68
Multiple-Technology 97.53 -8.19 -13.69 23.41 0.94

Notes: Table 7 documents the contribution from each source of emissions growth according
to the decomposition equation (12).

It is clear that there are two key drivers of emissions growth in China: the rapid expansion in the scale

of China’s economy and the reallocation of economic activity towards relatively emissions-intensive

activities. Neither source of emissions growth is particularly surprising, but their relative magnitudes

are revealing. Indeed, after correcting for measurement bias, we find that the increased scale of Chinese

manufacturing accounts for 98-101 percent of total emissions growth. Although previous analysis also

emphasizes economic scale (e.g. Levinson 2009, Shapiro and Walker 2018), emissions growth has not

generally been found to move one-for-one with economic growth in contexts outside of China.

The second key driver of emissions growth is the reallocation of economic activity towards dirtier

production. In fact, reallocation of resources towards dirtier production increased aggregate emissions

growth by 16-23 percent. This is broadly consistent with the notion that China’s economic growth has

come at the cost of becoming a global pollution haven. Moreover, because the reallocation term only

captures changes within pre-existing firms and products, it also suggests that the largest changes are not

due to the rapid entry of new firms and products. In fact, despite rapid entry and exit among of new firms

and products, marginal firms and products represent a sufficiently small amount of economic activity that

their collective contribution of emissions growth is below two percent.

The scale, reallocation and churning terms sum to more than 100 percent because implied policy

change and improved technology act to offset aggregate emissions growth. We find that, in aggregate,

implied changes in emissions regulation mitigated 4-8 percent of aggregate emissions growth. Although

modest, this result is line with existing research which highlights that, at the time, the prevailing regula-

tion was ineffective even if SO2 emissions were an increasing domestic concern (Shi and Xu, 2018).
33The median elasticity was nearly identical for foreign and domestic firms in two industries.
34Tables 7 and 8 report decomposition results after trimming outliers. Starting with the full sample, we consistently trimmed

one percentile from the top and bottom of the distribution of firm-level contributions of each subcomponent in Table 8. We then
collected the remaining firms and recomputed the entire decomposition.
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In contrast, technological improvement is estimated to have reduced emissions by 14 percent which

is substantial given China’s rate of economic growth. For our aggregated sample of manufacturing

firms this would suggest that technological improvement has reduced China’s annual SO2 emissions

by 1.5 million tons. On one hand, this effect is remarkable, particularly given the scope of China’s

emissions growth during the WTO accession period. On the other hand, it stands in sharp contrast to

existing results which suggest that improved production techniques may be sufficient to mitigate the

environmental consequences of economic growth (e.g. Antweiler et al., 2001).

Table 8: Subcomponents of SO2 Emissions Growth

Approach Component Share Subcomponent Share
Scale

Number of firms Number of Products Average Output Growth
Single-Technology 101.38 0.01 -21.92 121.92
Multiple-Technology 98.32 0.03 -5.10 105.07

Technology
EBTC Efficiency

Single-Technology -14.05 4.65 95.35
Multiple-Technology -13.68 8.61 91.39

Reallocation
Across-Firm Reallocation Across-Product (Within-Firm) Reallocation

Single-Technology 15.52 92.67 7.33
Multiple-Technology 23.40 92.16 7.84

Churning
Firm-Level Product-Level Emissions Product-Level Cost

Single-Technology 1.68 -0.77 22.81 77.96
Multiple-Technology 0.94 2.77 57.11 40.12

Notes: Table 8 documents the contribution from each subcomponent of emissions growth in the decomposition equation (12).

Table 8 identifies the underlying determinants for each of the four multi-faceted primary components

of emissions growth: scale, reallocation, technology and churning. It is striking that each primary com-

ponent is largely driven by one key economic subcomponent. For economic scale, is it clearly the average

growth of existing firm-product pairs. This is not to say that there wasn’t significant net entry. Rather,

even in our sample of large manufacturers the number of new establishments increasesd by over 10 per-

cent. The small contribution of entry is instead driven by the fact that, on average, firm-level emissions

are small relative to the aggregate cost-weighted output growth. Likewise, we find that average firm-level

product scope declined. This, in turn, has a mitigating impact of economic scale on emissions.35

Turning to the technological component, we observe that changes in emissions output-elastiticities

accounts 5-9 percent of the total technological contribution to emissions growth. Although modest, our

decomposition suggests EBTC alone reduced the path of aggregate emissions by one percent alone.

In contrast, lower marginal costs and improved firm-level productivity, mitigated aggregate emissions-

growth to a much greater extent. Indeed, the reduction marginal costs accounts for over 90 percent of
35The decline in firm-level product scope is consistent with various models of multiproduct firms during periods of trade

liberalization. See Bernard et al. (2011) or Mayer et al. (2014) for examples. Our decomposition findings do not imply that
export scope declined.
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the technological contribution to aggregate emissions and reduced the total growth of manufacturing

emissions by at least 13 percent. In a companion paper, Rodrigue, Sheng and Tan (2020), we study the

degree to which WTO accession induced changes in Chinese firm-level production technology which

were complementary to within-firm improvements in environmental performance. We find evidence that

the technological improvements in firm-level environmental performance are manifest through new in-

vestment in physical capital, a reduction in the dependence on coal-based energy, and underlying changes

in product mix.

The third panel of Table 8 studies the reallocation term and is the most important determinant of

Chinese emissions growth outside of the rapid expansion of economic scale. Notably, the lion’s share

of reallocation occurs at the firm-level rather than the product-level. This feature is consistent with the

notion that although energy-intensity may vary across products within-firms, energy sources are likely to

be relatively firm-specific. Moreover, the large firm-level reallocation term suggests that large firms with

access to cheap, but dirty, energy sources grew particularly quickly relative to their industry averages in

the aftermath of WTO accession.

The bottom panel of Table 8 decomposes the modest contribution from firm and product churn-

ing. Although both the single and multiple-technology suggest that churning accounts for little overall

emissions growth, the underlying sources vary significantly across exercises. For instance, in the single-

technology case most of the churning component arises from within-firm changes in average product

production cost. This finding is consistent with the notion that the total production cost of continuing

products, which typically represent the firm’s chief output, is significantly larger than that of dropped

products. In contrast, the multiple-technology exercise suggests a larger role for product-level emissions

churning. As China grew into world markets, new products were most likely to appear in industries

in line with China’s comparative advantage and the least emissions-intensive goods were likely to be

dropped from the firm’s production set.

7 Conclusion

This paper documents the growth of firm-level emissions among Chinese manufacturers during the WTO

accession period (2000-2005). We demonstate that heterogeneous markups bias standard emissions

growth analysis and may potentially lead to a misleading relationship between firm-level measures of

emissions-intensity and emissions-regulation.

After correcting for sources of measurement bias, we find that aggregate manufacturing emissions

rose one-for-one with the scale of the Chinese manufacturing sector. This does not imply that there were

not important technological, compositional and regulatory changes during this time frame. Rather, in-

creased regulation appears to have restrained emissions growth 4-8 percent, while technological advances

further mitigated the advance of aggregate emissions by 14 percent. These environmental gains were off-

set by the disproportionate growth of emissions-intensive firms. Indeed, we find resource reallocation

towards the dirtiest producers exacerabated emissions growth by 16-23 percent.
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A Decomposition Derivation

As in the main text, we focus on the end points of our sample, 2000 (t = 0) and 2005 (t = 5) and

characterize three types of firms or products: entrants (E), exiters (X ), or continuing firms/products

(C). For variable v, we denote the average value for a particular group G ∈ {C, E ,X} in a particular

year as vGt , while v̄ represents the simple average of v over the sample period, v̄ = 0.5v5 + 0.5v0 and,

analogously, v̄G is v̄G = 0.5vG0 + 0.5vG5 . Finally, ∆v generally represents the long difference in any

particular variable, ∆v = v5 − v0.

We note that aggregate emissions can always be represented as the sum of emissions from individual

producers, Et =
∑

i eit, or equivalently,

E0 =
∑
i

ei0 =
∑
i∈C

ei0 +
∑
i∈X

ei0

= NCeC0 +NX eX0 = N0e
C
0 +NX (eX0 − eC0)

and we analogously write E5 = N5e
C
5 +NE(eE5 − eC5). The changes in aggregate emissions can then be

expressed as

∆Et ≡ E5 − E0

= N̄∆eC + ēC(NE −NX )︸ ︷︷ ︸
S: No. of firms

+NE(eE5 − eC5) +NX (eC0 − eX0 )︸ ︷︷ ︸
C: Firm-Level Churning

where N̄ = 0.5N5 + 0.5N0 represents the average total number of firms in each year. The first term

captures the growth in average emissions among continuing firms. The second and third terms form

components of the ‘scale’ and ‘churning’ components of our decomposition. Following the approach in

Melitz and Polanec (2015), we further decompose the first term as follows.

N̄∆eC =
N̄

NC

∑
i∈C

γei ci∆τi +
N̄

NC

∑
i∈C

τ̄i(γ
e
i5ci5 − γei0ci0)

=
N̄

NC

∑
i∈C

γei ci∆τi︸ ︷︷ ︸
P: Policy

+
N̄

NC

∑
i∈C

τ̄iγ̄
e
i ∆ci +

N̄

NC

∑
i∈C

τ̄ic̄i∆γ
e
i (18)

The first term captures changes in the price of emissions and forms the second component of our decom-

position. In contrast to existing decomposition approaches the ‘weights’ in any term are not chosen but

are determined by the underlying first order optimality conditions. For example, in the first term ∆τi

is weighted by the relevant firm size measure, γei ci, instead of an adhoc weight (e.g. revenue weights).

The second and third terms reflect changes in technology, reallocation across of production, and changes

product mix. We clarify the contribution of each of these margins below.
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Expanding the last term in equation (18) we have

N̄

NC

∑
i∈C

τ̄ic̄i∆γ
e
i =

N̄

NC

∑
i∈C

τ̄ic̄i

∑
j

%ij5γ
e
ij5 −

∑
j

%ij0γ
e
ij0


=

N̄

NC

∑
i∈C

τ̄ic̄i

∑
j∈IC

(
γ̄eij∆%ij + %̄ij∆γ

e
ij

)+
∑
j∈IE

%ij5γ
e
ij5 −

∑
j∈IX

%ij0γ
e
ij0


=

N̄

NC

∑
i∈C

τ̄ic̄i
∑
j∈IC

γ̄eij∆%ij︸ ︷︷ ︸
R: Across Products (Within-Firm)

+
N̄

NC

∑
i∈C

τ̄ic̄i
∑
j∈IC

%̄ij∆γ
e
ij︸ ︷︷ ︸

T: EBTC

+
N̄

NC

∑
i∈C

τ̄ic̄iγ̄
e
i (n
E
i − nXi )︸ ︷︷ ︸

S: No. of products

+
N̄

NC

∑
i∈C

τ̄ic̄i[n
E
i (γEi5 − γCi5) + nXi (γCi0 − γXi0)]︸ ︷︷ ︸

C: Product-Level Emissions Churning

(19)

Following the same steps for the second term of equation (18) yields

N̄

NC

∑
i∈C

τ̄iγ̄
e
i ∆ci =

N̄

NC

∑
i∈C

τ̄iγ̄
e
i

∑
j∈ICi

mcij∆xj

︸ ︷︷ ︸
S: Average output growth

+
N̄

NC

∑
i∈C

τ̄iγ̄
e
i

∑
j∈ICi

mcij(∆xij −∆xj)

︸ ︷︷ ︸
R: Across Firms

(20)

+
N̄

NC

∑
i∈C

τ̄iγ̄
e
i

∑
j∈ICi

x̄ij∆mcij

︸ ︷︷ ︸
T: Efficiency

+
N̄

NC

∑
i∈C

τ̄iγ̄
e
i [n
E
i (cEi5 − cCi5) + nXi (cCi0 − cXi0)]︸ ︷︷ ︸

C: Product-Level Cost Churning

B Augmented Translog Production Function

Let the variable ṽit = ln(vit). The emissions augmented production function we estimate is

x̃it = βl l̃it + βll l̃
2
it + βkk̃it + βkkk̃

2
it + βmm̃it + βmmm̃

2
it + βeẽit + βeeẽe

2
it + βlk l̃itk̃it + βlm l̃itm̃it + βle l̃itẽit

+βkmk̃itm̃it + βkek̃itẽit + βmem̃itẽit + βklmk̃it l̃itm̃it + βklek̃it l̃itẽit + βkmek̃itm̃itẽit + βlme l̃itm̃itẽit + ωit

where kit, lit, mit and eit are the capital, labor, materials and emissions among single-product firms.

C Summary Statistics

Table 9 documents summary statistics for key variables across our two primary data sources and the

matched sample.
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Table 9: Summary Statistics

Sample Environmental Survey Manufacturing Survey Matched Sample Survey
Mean Median Std. Dev. Mean Median Std. Dev. Mean

Revenue 73407.16 16748 651642.6 457797 41255 2553178
Export Rev. 13950.34 0 216466.1 43522.3 0 446968.5
Capital 38808.53 4397.178 577368 357577 20868,39 2499673
Labor 290.553 113 1293.149 1542.931 306 6726.919
Materials 54562.19 12350 481086.1 342659 30216 1906517
SO2 Emis. 221975 7398 230851 252386.5 8000 2453999

Notes: The above table reports summary statistics for three samples. The leftmost panel reports summary statistics for the environmental
survey collected by MEE, the middle panel reports summary statistics for the manufacturing survey collected by NBS, and the rightmost
panel reports summary statistics for the matched sample (using the environmental, manufacturing and production surveys) used in our
empirical exercises.

D Data Quality

We verify the external validity of the aggregate SO2 data from the Ministry of Ecology and the Envi-

ronment (MEE) with US Satellite Data (GMAO, 2015). We find that they exhibit similar patterns over

time and space. Although independent estimates of SO2 emissions have been previously found to be

higher than those reported in official statistics (Streets and Waldhoff 2000; Streets et al. 2000; Ohara et

al. 2007; Cao et al. 2009), we are interested in determining if there are systematic discrepancies across

locations or over time. We do not find any significant evidence of systematic reporting bias.

Specifically, our first measure is the (aggregated) quantity of total SO2 emissions produced in each

province as reported in the Chinese yearbook. To get a normalized emissions level we divide each

observation by the average amount of SO2 emitted from given a province. The second measure of SO2

emissions are US satellite reports of the average density of SO2 emissions for each Chinese province.

To construct a comparable measure of aggregate emissions, we multiply this density measure by the

total area of each province and again normalize by average provincial emissions. In panel (a) of Figure

6 each data point represents a province-year combination. We observe very strong correlation across

data sources; the correlation coefficient for each province-year combination is 0.88. In panel (b) we

repeat this exercise for 2005 alone, but we normalize the total quantify of emissions by the province with

the smallest amount of emissions (Qinghai). In panel (b) the red line with circles represents the value

reported by MEE, while the blue line with squares represents the aggregated value constructed from US

satellite data. Shanghai is a clear outlier in panel (b); one natural explanation for this discrepancy is a

difference in the ‘area’ of Shanghai we use to compute our aggregate value from the US satellite data

and the greater Shanghai area as classified in the firm-level survey.
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Correlation = 0.88
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Figure 6: SO2 Emissions Across Provinces, Chinese Data vs US Satellite Data

Notes: The above figures plot total SO2 emissions from two different data sources. In panel (a) each data point
represents a province-year combination of (normalized) SO2 emissions from US satellite data and the Chinese
annual reports. In panel (a) we normalize the data by average provincial emissions. In panel (b) we repeat this
exercise for 2005 alone, but we normalize the total quantity of emissions by the province with the smallest amount
of emissions (Qinghai). In panel (b) the red line with circles represents the value reported by MEE, while the blue
line with squares represents the aggregated value constructed from US satellite data.

To provide a sense of intertemporal consistency we also aggregate both the US Satellite SO2 data

and the comparable data from Chinese Statistical Yearbook. We find that the two series follow each other

very closely, though there is a somewhat larger discrepancy in 2004.

2000 2001 2002 2003 2004 2005

-10

-5

0

5

10

15

20

Notes: The above figure computes the aggregate annual growth
rate of total SO2 emissions from the Chinese Statistical Year-
book (red dashed line) and that computed from US Satellite
data (solid blue line).

Figure 7: SO2 Aggregate Growth Rates, Chinese Data vs US Satellite Data
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E Measuring Firm-Level Emissions

The approach and formulue for calcuating emissions and generation were retrieved from technical doc-

uments produced by the Ministry of Ecology and Environment (2007a,b).

E.1 General description of SO2 emissions

Industrial SO2 emissions refer to the volume of sulphur dioxide emissions from fuel consumption and

the production process on the premises of an enterprise during a given period of time. It is calculated

using the following formula:

SO2 emissions = SO2 emissions from fuel consumption + SO2 emissions from production

E.2 Computation of Annual Emissions

Equation (21) is used to calculate the aggregate emitted kilograms of SO2 during over a period of time

when the enterprise is monitored:

P = C ×Q× F−1 × T ×G× 10−6 (21)

where

• P : the emitted kilograms of SO2;

• C: the average density of the pollutant over each hour (milligrams/cubic metre);

• Q: the volume of wasted gas emissions (cubic metre/hour);

• F : the production load;

• T : the number of emission hours;

• G: the average production load of the monitored enterprise.

Annual SO2 emissions in kilograms, P , are calculated as

E =

k∑
j=1

Pj (22)

where k is the number of monitoring periods.
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E.3 SO2 Generation

The process to estimate SO2 generation by the Ministry of Ecology and the Environment (MEE) was

adopted directly from the US Environmental Protection agency. Specifically, equation (23) is used to

calculate the aggregate pollution generated, G, by a particular firm:

G =
∑
j=1

EFij ×mj (23)

where

• mj : the aggregate volume/kilograms of the jth input material;

• EFij : the emission factor for the particular pollutant from input j in industry i.

The emissions factors, EFij , varies along numerous dimensions. In particular, the EFij coefficients are

specific to (1) a given pollutant (SO2), (2) a given industry, (3) the materials used in production (e.g.

cleaner energy sources are associated with smaller emissions factors).

F Additional Tables

F.1 Ownership Differences

45



Ta
bl

e
10

:D
iff

er
en

ce
s

A
cr

os
s

O
w

ne
rs

hi
p

an
d

E
m

is
si

on
s

O
ut

pu
tE

la
st

ic
iti

es
(M

ul
tip

le
-T

ec
hn

ol
og

y
A

pp
ro

ac
h)

D
om

es
tic

,P
riv

at
e

St
at

e-
O

w
ne

d
Fo

re
ig

n
L

ev
el

s
∆

’s
20

00
-5

00
5

L
ev

el
s

∆
’s

20
00

-5
00

5
L

ev
el

s
∆

’s
20

00
-5

00
5

Se
ct

or
M

ea
n

M
ed

ia
n

M
ea

n
M

ed
ia

n
M

ea
n

M
ed

ia
n

M
ea

n
M

ed
ia

n
M

ea
n

M
ed

ia
n

M
ea

n
M

ed
ia

n
(1

)
(2

)
(3

)
(4

)
(5

)
(6

)
(7

)
(8

)
(9

)
(1

0)
(1

1)
(1

2)
m

in
er

al
pr

od
uc

ts
0.

39
7

0.
33

5
-0

.4
38

-0
.2

32
0.

29
8

0.
22

5
-0

.5
34

-0
.3

96
0.

42
6

0.
38

5
0.

10
2

0.
11

7
el

ec
tr

ic
ity

ge
ne

ra
tio

n
0.

29
8

0.
16

9
-0

.0
51

-0
.1

57
0.

23
3

0.
13

8
-0

.0
95

-0
.2

20
0.

27
9

0.
09

5
-0

.0
67

-0
.1

72
fo

od
pr

od
uc

ts
0.

18
9

0.
13

2
0.

05
2

-0
.0

49
0.

22
8

0.
13

8
0.

01
8

-0
.1

09
0.

27
7

0.
13

2
0.

19
8

-0
.0

07
cl

ot
h

0.
24

5
0.

23
7

-0
.3

43
-0

.3
36

0.
21

7
0.

14
0

-0
.3

49
-0

.2
14

0.
19

5
0.

17
0

0.
24

7
-0

.1
16

cl
ot

hi
ng

an
d

ap
pa

re
l

0.
24

5
0.

17
8

0.
06

0
-0

.1
23

0.
29

5
0.

20
3

-0
.0

78
-0

.2
00

0.
35

4
0.

23
6

0.
12

8
-0

.0
41

w
oo

de
n

fu
rn

itu
re

0.
52

6
0.

48
1

-0
.0

86
-0

.4
42

0.
53

6
0.

47
3

-0
.1

93
-0

.2
59

0.
42

7
0.

35
5

-0
.2

12
-0

.1
39

pa
pe

rp
ro

du
ct

s
0.

91
6

0.
91

8
0.

28
9

0.
13

2
0.

89
4

0.
85

7
0.

19
8

-0
.1

64
0.

72
1

0.
69

1
-0

.4
70

-0
.3

54
fu

el
,d

ie
se

la
nd

ga
s

0.
39

7
0.

38
4

-0
.2

82
-0

.2
15

0.
29

9
0.

26
5

-0
.0

68
-0

.0
96

0.
46

7
0.

33
3

0.
66

9
0.

20
2

ch
em

ic
al

pr
od

uc
ts

0.
61

8
0.

72
1

-0
.9

12
-0

.7
16

0.
61

0
0.

62
1

0.
37

0
0.

13
8

0.
67

5
0.

62
5

0.
03

4
0.

12
4

ru
bb

er
pr

od
uc

ts
0.

55
5

0.
35

3
.

.
0.

54
5

0.
37

5
-0

.6
47

-0
.7

64
0.

37
6

0.
20

4
0.

65
8

0.
65

8
tir

es
an

d
co

nv
ey

or
be

lts
0.

54
3

0.
57

6
-0

.1
21

-0
.1

21
0.

69
3

0.
56

1
-0

.0
71

-0
.1

60
1.

40
6

0.
70

9
-0

.2
02

-0
.2

02
pl

as
tic

pr
od

uc
ts

0.
13

7
0.

12
1

0.
33

8
0.

17
3

0.
13

1
0.

10
8

0.
34

7
0.

20
6

0.
13

8
0.

10
2

0.
17

2
0.

03
3

gl
as

s
an

d
ce

ra
m

ic
pr

od
uc

ts
0.

36
5

0.
23

0
0.

14
6

-0
.1

02
0.

47
6

0.
28

8
-0

.2
07

-0
.2

60
0.

46
7

0.
32

2
0.

08
9

0.
06

1
cr

ud
e

st
ee

l
1.

07
1

2.
02

3
1.

66
0

1.
66

0
0.

98
8

1.
37

9
-0

.1
16

0.
08

6
1.

95
3

1.
70

5
.

.
hi

gh
qu

al
ity

st
ee

la
nd

st
ee

lp
la

te
s

1.
19

0
1.

72
4

0.
28

2
0.

40
7

1.
23

8
1.

47
0

0.
27

0
0.

14
5

1.
74

0
1.

92
4

.
.

he
av

y
m

et
al

pr
od

uc
ts

0.
39

0
0.

35
6

0.
19

2
0.

27
4

0.
42

5
0.

32
3

0.
98

0
0.

52
7

0.
48

9
0.

42
5

0.
31

0
0.

05
6

lig
ht

m
et

al
pr

od
uc

ts
0.

58
3

0.
47

0
.

.
0.

55
0

0.
45

7
.

.
0.

84
3

0.
59

3
-0

.0
06

0.
06

6
au

to
pa

rt
s

0.
41

4
0.

29
7

-0
.4

23
-0

.5
48

0.
48

7
0.

35
9

-0
.4

30
-0

.2
55

0.
54

1
0.

29
7

-0
.1

51
-0

.6
03

w
he

el
s,

ge
ar

s,
an

d
m

in
in

g
eq

ui
pm

en
t

0.
41

1
0.

27
5

-0
.4

13
-0

.3
61

0.
58

7
0.

54
5

-0
.1

36
-0

.1
07

0.
63

0
0.

34
2

0.
39

3
0.

18
9

tr
an

sp
or

ta
tio

n
eq

ui
pm

en
t

0.
93

0
2.

11
6

.
.

1.
06

7
2.

25
7

-0
.8

62
-0

.7
95

0.
66

4
0.

61
8

3.
18

2
3.

18
2

ab
at

em
en

te
qu

ip
.&

he
av

y
m

ac
h.

1.
29

5
2.

72
8

0.
07

9
0.

07
9

1.
05

7
2.

37
4

0.
17

0
-0

.1
44

.
.

.
.

co
m

m
un

ic
at

io
n

ca
bl

es
an

d
el

ec
tr

ic
w

ir
es

0.
20

7
0.

19
2

0.
71

3
0.

06
6

0.
23

6
0.

18
5

-0
.0

38
0.

07
4

0.
20

6
0.

18
1

-0
.2

69
-0

.2
81

m
ea

su
ri

ng
im

pl
em

en
ts

,p
ri

nt
er

s,
et

c
0.

58
8

0.
58

4
.

.
0.

64
6

0.
59

8
-0

.0
05

-0
.1

66
1.

05
7

1.
10

2
-0

.1
14

-0
.1

14
N

ot
es

:
C

ol
um

ns
(1

)-
(4

)
re

po
rt

st
at

is
tic

s
fo

r
do

m
es

tic
,p

riv
at

el
y-

he
ld

en
te

rp
ri

se
s.

C
ol

um
ns

(5
)-

(8
)

an
d

co
lu

m
ns

(9
)-

(1
2)

re
po

rt
an

al
og

ou
s

st
at

is
tic

s
fo

r
st

at
e-

ow
ne

d
an

d
fo

re
ig

n-
ow

ne
d

fir
m

s,
re

sp
ec

tiv
el

y.
C

ol
um

ns
(1

)
an

d
(2

)
re

po
rt

m
ea

n
an

d
m

ed
ia

n
em

is
si

on
s

ou
tp

ut
el

as
tit

ic
ie

s,
w

hi
le

co
lu

m
ns

(3
)

an
d

(4
)

re
po

rt
th

e
m

ea
n

an
d

m
ed

ia
n

ch
an

ge
in

em
is

si
on

s
ou

tp
ut

el
as

tic
iti

es
ov

er
th

e
20

00
-2

00
5

pe
ri

od
fo

r
th

e
m

ul
tip

le
-t

ec
hn

ol
og

y
ap

pr
oa

ch
.

E
ac

h
ca

lc
ul

at
io

n
is

pe
rf

or
m

ed
se

pa
ra

te
ly

fo
r

24
2-

di
gi

t
m

an
uf

ac
tu

ri
ng

se
ct

or
s.

T
he

re
ar

e
in

su
ffi

ci
en

t
ob

se
rv

at
io

ns
to

re
co

ve
re

st
im

at
es

fo
rt

he
al

co
ho

lic
be

ve
ra

ge
in

du
st

ry
w

he
n

em
pl

oy
in

g
th

e
m

ul
tip

le
-t

ec
hn

ol
og

y
ap

pr
oa

ch
.

46



Ta
bl

e
11

:D
iff

er
en

ce
s

A
cr

os
s

O
w

ne
rs

hi
p

an
d

M
ar

gi
na

lC
os

ts
(M

ul
tip

le
-T

ec
hn

ol
og

y
A

pp
ro

ac
h)

D
om

es
tic

,P
riv

at
e

St
at

e-
O

w
ne

d
Fo

re
ig

n
L

ev
el

s
∆

’s
20

00
-5

00
5

L
ev

el
s

∆
’s

20
00

-5
00

5
L

ev
el

s
∆

’s
20

00
-5

00
5

Se
ct

or
M

ea
n

M
ed

ia
n

M
ea

n
M

ed
ia

n
M

ea
n

M
ed

ia
n

M
ea

n
M

ed
ia

n
M

ea
n

M
ed

ia
n

M
ea

n
M

ed
ia

n
(1

)
(2

)
(3

)
(4

)
(5

)
(6

)
(7

)
(8

)
(9

)
(1

0)
(1

1)
(1

2)
m

in
er

al
pr

od
uc

ts
10

.5
27

0.
53

9
4.

84
7

1.
77

3
10

.3
41

0.
34

8
6.

41
8

1.
93

8
13

.2
97

1.
57

5
8.

12
0

6.
15

0
el

ec
tr

ic
ity

ge
ne

ra
tio

n
40

9.
04

0
11

.0
12

0.
90

0
0.

38
4

31
4.

96
1

5.
60

9
0.

97
2

0.
00

5
30

1.
97

4
5.

06
8

0.
89

8
0.

29
2

fo
od

pr
od

uc
ts

18
.9

06
6.

91
7

0.
33

7
0.

03
6

25
.4

28
7.

97
6

2.
75

1
0.

03
3

23
.1

90
5.

87
6

0.
24

0
-0

.0
01

cl
ot

h
32

3.
17

3
54

.2
99

3.
64

3
2.

79
6

67
8.

96
7

13
4.

49
8

0.
84

0
-0

.2
57

36
1.

46
2

74
.7

32
0.

65
2

0.
02

7
cl

ot
hi

ng
&

ap
pa

re
l

48
9.

68
1

10
9.

78
2

1.
42

4
0.

12
8

10
95

.6
63

15
8.

81
1

-2
.1

43
0.

16
2

68
5.

42
7

10
2.

77
9

0.
72

7
0.

12
9

w
oo

de
n

fu
rn

itu
re

3.
36

1
2.

03
4

0.
42

9
0.

10
5

3.
84

5
2.

11
1

0.
42

5
0.

02
6

2.
91

0
1.

30
6

0.
28

0
0.

13
3

pa
pe

rp
ro

du
ct

s
96

.8
81

2.
64

4
-0

.1
25

-0
.2

30
30

0.
26

3
31

.5
20

2.
00

6
0.

58
1

25
4.

23
6

6.
11

2
-0

.5
90

-0
.5

63
fu

el
,d

ie
se

l&
ga

s
6.

64
3

1.
50

5
2.

40
0

0.
42

1
16

.2
08

4.
86

3
1.

44
6

0.
53

3
18

.8
14

1.
41

7
2.

07
8

0.
20

4
ch

em
ic

al
pr

od
uc

ts
26

.2
29

6.
61

0
-0

.1
96

-0
.3

97
46

.7
29

10
.2

77
3.

95
9

-0
.4

12
44

.4
35

16
.9

99
-0

.1
76

-0
.2

33
ru

bb
er

pr
od

uc
ts

41
.1

06
9.

83
2

.
.

79
.9

53
12

.2
01

0.
09

3
-0

.2
47

18
.3

59
4.

88
6

0.
14

6
0.

14
6

tir
es

&
co

nv
ey

or
be

lts
14

9.
29

1
1.

37
9

-0
.0

01
-0

.0
01

68
4.

92
8

12
8.

76
9

0.
40

1
0.

40
1

13
9.

22
4

9.
76

8
0.

79
4

0.
79

4
pl

as
tic

pr
od

uc
ts

11
98

.5
18

66
5.

58
2

-0
.6

76
-0

.9
99

12
94

.8
08

94
1.

85
8

-0
.3

39
-0

.9
99

72
3.

72
1

35
.1

71
-0

.0
44

-0
.7

89
gl

as
s

&
ce

ra
m

ic
pr

od
uc

ts
34

.2
23

1.
38

7
0.

86
3

-0
.4

83
22

.2
14

1.
11

3
3.

33
9

-0
.1

56
22

.7
82

0.
64

1
0.

23
0

-0
.0

59
cr

ud
e

st
ee

l
1.

07
7

0.
48

9
0.

68
3

-1
.0

65
21

.8
47

1.
94

7
10

.2
05

2.
91

5
42

.5
07

90
.3

86
.

.
hi

gh
qu

al
ity

st
ee

l&
st

ee
lp

la
te

s
0.

48
2

2.
73

1
-0

.2
17

-1
.0

04
4.

27
2

0.
34

2
0.

50
5

-1
.2

57
3.

78
8

3.
72

1
.

.
he

av
y

m
et

al
pr

od
uc

ts
51

.2
58

10
.8

08
0.

16
9

-0
.1

14
10

1.
74

4
16

.0
65

1.
94

8
0.

71
1

54
.8

69
8.

29
5

0.
01

2
0.

08
6

lig
ht

m
et

al
pr

od
uc

ts
30

.5
23

4.
37

0
.

.
59

.0
74

5.
95

7
.

.
93

.1
37

9.
57

5
1.

47
0

2.
26

9
au

to
pa

rt
s

27
9.

72
9

14
.9

74
0.

65
7

0.
25

7
40

0.
71

5
35

.2
16

2.
00

8
0.

42
1

52
0.

20
7

91
.6

15
0.

77
3

0.
66

9
w

he
el

s,
ge

ar
s,

&
m

in
in

g
eq

ui
pm

en
t

61
.1

48
6.

38
3

5.
77

0
5.

77
0

13
2.

25
0

22
.9

19
0.

21
4

-0
.1

53
82

.2
36

7.
22

5
-0

.1
02

-0
.0

98
tr

an
sp

or
ta

tio
n

eq
ui

pm
en

t
55

.7
04

1.
92

7
.

.
75

.3
09

7.
50

9
-5

.6
45

-3
.3

27
72

.7
98

7.
46

6
1.

59
9

1.
59

9
ab

at
em

en
te

qu
ip

.&
he

av
y

m
ac

h.
52

.1
49

51
.0

08
-0

.3
26

-0
.3

26
79

7.
73

3
31

.8
89

2.
94

8
0.

80
3

.
.

.
.

co
m

m
.c

ab
le

s
&

el
ec

.w
ir

es
87

.3
00

10
.8

35
0.

22
9

-0
.1

09
88

.4
19

8.
93

5
1.

09
0

0.
54

0
11

4.
21

8
10

.7
14

1.
00

0
0.

20
4

m
ea

su
ri

ng
te

ch
.,

pr
in

te
rs

,e
tc

18
.6

64
4.

60
4

.
.

24
.2

70
1.

34
8

0.
32

2
0.

05
4

46
.0

67
0.

18
1

7.
02

2
7.

02
2

N
ot

es
:

C
ol

um
ns

(1
)-

(4
)

re
po

rt
st

at
is

tic
s

fo
r

do
m

es
tic

,p
riv

at
el

y-
he

ld
en

te
rp

ri
se

s.
C

ol
um

ns
(5

)-
(8

)
an

d
co

lu
m

ns
(9

)-
(1

2)
re

po
rt

an
al

og
ou

s
st

at
is

tic
s

fo
r

st
at

e-
ow

ne
d

an
d

fo
re

ig
n-

ow
ne

d
fir

m
s,

re
sp

ec
tiv

el
y.

C
ol

um
ns

(1
)

an
d

(2
)

re
po

rt
m

ea
n

an
d

m
ed

ia
n

m
ar

gi
na

lc
os

ts
,w

hi
le

co
lu

m
ns

(3
)

an
d

(4
)

re
po

rt
th

e
m

ea
n

an
d

m
ed

ia
n

ch
an

ge
in

m
ar

gi
na

lc
os

ts
ov

er
th

e
20

00
-2

00
5

pe
ri

od
fo

r
th

e
m

ul
tip

le
-t

ec
hn

ol
og

y
ap

pr
oa

ch
.

E
ac

h
ca

lc
ul

at
io

n
is

pe
rf

or
m

ed
se

pa
ra

te
ly

fo
r

24
2-

di
gi

tm
an

uf
ac

tu
ri

ng
se

ct
or

s.
T

he
re

ar
e

in
su

ffi
ci

en
to

bs
er

va
tio

ns
to

re
co

ve
r

es
tim

at
es

fo
r

th
e

al
co

ho
lic

be
ve

ra
ge

in
du

st
ry

w
he

n
em

pl
oy

in
g

th
e

m
ul

tip
le

-t
ec

hn
ol

og
y

ap
pr

oa
ch

.

47



Ta
bl

e
12

:D
iff

er
en

ce
s

A
cr

os
s

O
w

ne
rs

hi
p

an
d

M
ar

ku
ps

(M
ul

tip
le

-T
ec

hn
ol

og
y

A
pp

ro
ac

h)

D
om

es
tic

,P
riv

at
e

St
at

e-
O

w
ne

d
Fo

re
ig

n
L

ev
el

s
∆

’s
20

00
-5

00
5

L
ev

el
s

∆
’s

20
00

-5
00

5
L

ev
el

s
∆

’s
20

00
-5

00
5

Se
ct

or
M

ea
n

M
ed

ia
n

M
ea

n
M

ed
ia

n
M

ea
n

M
ed

ia
n

M
ea

n
M

ed
ia

n
M

ea
n

M
ed

ia
n

M
ea

n
M

ed
ia

n
(1

)
(2

)
(3

)
(4

)
(5

)
(6

)
(7

)
(8

)
(9

)
(1

0)
(1

1)
(1

2)
m

in
er

al
pr

od
uc

ts
0.

99
4

0.
88

4
-0

.0
37

-0
.0

95
1.

12
9

1.
03

3
0.

00
0

-0
.0

23
1.

09
8

0.
90

3
0.

33
1

0.
32

5
el

ec
tr

ic
ity

ge
ne

ra
tio

n
1.

23
0

1.
13

1
0.

02
5

-0
.0

31
1.

10
2

1.
00

2
-0

.0
73

-0
.1

49
1.

12
3

1.
02

6
-0

.0
59

-0
.1

30
fo

od
pr

od
uc

ts
1.

24
4

1.
14

3
0.

20
9

0.
14

9
1.

08
3

0.
96

1
0.

24
7

0.
22

1
1.

38
5

1.
30

0
0.

19
0

0.
07

7
cl

ot
h

1.
00

4
0.

92
1

-0
.0

53
-0

.1
80

1.
39

7
1.

33
1

-0
.0

15
0.

03
9

1.
17

0
0.

99
6

1.
12

5
-0

.0
93

cl
ot

hi
ng

&
ap

pa
re

l
1.

71
5

1.
24

7
0.

06
5

-0
.0

04
1.

65
2

1.
39

6
0.

05
0

0.
00

7
1.

97
1

1.
91

0
0.

09
2

0.
04

2
w

oo
de

n
fu

rn
itu

re
1.

24
1

1.
19

1
0.

05
7

-0
.0

28
1.

32
5

1.
26

8
0.

08
1

-0
.0

11
1.

43
5

1.
43

2
-0

.0
74

-0
.0

65
pa

pe
rp

ro
du

ct
s

1.
37

6
1.

26
4

0.
07

4
0.

07
2

1.
66

1
1.

55
3

0.
05

5
-0

.1
99

1.
36

8
1.

18
1

0.
84

7
1.

25
6

fu
el

,d
ie

se
l&

ga
s

0.
73

3
0.

60
3

-0
.0

07
-0

.1
13

0.
94

4
0.

74
5

-0
.0

66
-0

.1
69

0.
77

3
0.

60
9

-0
.1

46
-0

.0
50

ch
em

ic
al

pr
od

uc
ts

1.
68

2
1.

53
7

0.
38

2
0.

30
1

1.
30

2
1.

18
1

0.
61

8
0.

61
0

1.
46

9
1.

29
3

0.
15

5
0.

14
2

ru
bb

er
pr

od
uc

ts
1.

39
5

1.
24

1
.

.
1.

74
6

1.
52

8
0.

33
4

0.
36

8
1.

97
2

1.
90

3
0.

14
0

0.
14

0
tir

es
&

co
nv

ey
or

be
lts

1.
49

7
1.

11
2

0.
00

4
0.

00
4

1.
39

5
1.

02
0

0.
01

2
0.

01
2

2.
20

4
1.

65
2

2.
16

2
2.

16
2

pl
as

tic
pr

od
uc

ts
1.

08
2

1.
04

8
0.

15
8

0.
13

2
1.

07
4

1.
01

4
0.

13
4

0.
10

7
1.

10
0

1.
09

2
-0

.0
13

-0
.0

55
gl

as
s

&
ce

ra
m

ic
pr

od
uc

ts
1.

43
7

1.
33

2
0.

03
1

0.
09

2
1.

55
5

1.
38

4
0.

05
9

-0
.1

22
1.

57
6

1.
51

6
-0

.0
63

-0
.0

36
cr

ud
e

st
ee

l
1.

90
2

1.
52

2
0.

17
9

0.
17

9
1.

63
6

1.
52

0
0.

06
0

-0
.1

45
1.

78
3

1.
70

4
.

.
hi

gh
qu

al
ity

st
ee

l&
st

ee
lp

la
te

s
1.

26
6

0.
99

9
.

-0
.9

62
1.

54
2

1.
37

3
-0

.5
52

-0
.5

52
1.

92
0

1.
84

6
.

.
he

av
y

m
et

al
pr

od
uc

ts
2.

05
5

1.
97

8
0.

24
9

0.
19

0
2.

05
9

1.
84

5
0.

24
7

-0
.0

30
2.

27
8

2.
27

6
-0

.0
17

-0
.0

84
lig

ht
m

et
al

pr
od

uc
ts

1.
37

2
1.

13
3

.
.

1.
82

1
1.

57
9

.
.

1.
41

4
1.

40
5

0.
34

5
0.

31
1

au
to

pa
rt

s
1.

36
6

1.
28

6
-0

.0
82

-0
.1

40
1.

38
7

1.
30

5
0.

01
5

0.
05

4
1.

17
6

1.
04

0
0.

11
5

0.
00

2
w

he
el

s,
ge

ar
s,

&
m

in
in

g
eq

ui
pm

en
t

1.
33

4
1.

33
3

0.
00

4
-0

.1
72

1.
64

1
1.

59
2

0.
14

2
0.

07
4

2.
23

3
2.

05
3

0.
39

9
0.

16
9

tr
an

sp
or

ta
tio

n
eq

ui
pm

en
t

2.
12

5
1.

96
9

.
.

2.
24

3
2.

30
7

0.
21

3
-0

.0
34

1.
47

9
1.

48
0

-0
.7

09
-0

.7
09

ab
at

em
en

te
qu

ip
.&

he
av

y
m

ac
h.

3.
34

0
3.

22
3

0.
61

6
0.

61
6

2.
17

5
1.

99
9

0.
35

4
-0

.1
57

.
.

.
.

co
m

m
.c

ab
le

s
&

el
ec

.w
ir

es
1.

00
8

0.
97

4
0.

00
4

-0
.0

60
1.

29
5

1.
18

9
-0

.0
63

-0
.1

40
1.

66
7

1.
07

8
-0

.1
84

-0
.2

17
m

ea
su

ri
ng

te
ch

.,
pr

in
te

rs
,e

tc
1.

09
6

1.
14

1
.

.
1.

56
6

1.
53

7
-0

.0
04

0.
04

8
0.

99
4

0.
99

2
-0

.7
71

-0
.7

72
N

ot
es

:
C

ol
um

ns
(1

)-
(4

)
re

po
rt

st
at

is
tic

s
fo

r
do

m
es

tic
,p

riv
at

el
y-

he
ld

en
te

rp
ri

se
s.

C
ol

um
ns

(5
)-

(8
)

an
d

co
lu

m
ns

(9
)-

(1
2)

re
po

rt
an

al
og

ou
s

st
at

is
tic

s
fo

r
st

at
e-

ow
ne

d
an

d
fo

re
ig

n-
ow

ne
d

fir
m

s,
re

sp
ec

tiv
el

y.
C

ol
um

ns
(1

)a
nd

(2
)r

ep
or

tm
ea

n
an

d
m

ed
ia

n
m

ar
ku

ps
,w

hi
le

co
lu

m
ns

(3
)a

nd
(4

)r
ep

or
tt

he
m

ea
n

an
d

m
ed

ia
n

ch
an

ge
in

m
ar

ku
ps

ov
er

th
e

20
00

-2
00

5
pe

ri
od

fo
rt

he
m

ul
tip

le
-t

ec
hn

ol
og

y
ap

pr
oa

ch
.E

ac
h

ca
lc

ul
at

io
n

is
pe

rf
or

m
ed

se
pa

ra
te

ly
fo

r2
4

2-
di

gi
tm

an
uf

ac
tu

ri
ng

se
ct

or
s.

T
he

re
ar

e
in

su
ffi

ci
en

to
bs

er
va

tio
ns

to
re

co
ve

re
st

im
at

es
fo

rt
he

al
co

ho
lic

be
ve

ra
ge

in
du

st
ry

w
he

n
em

pl
oy

in
g

th
e

m
ul

tip
le

-t
ec

hn
ol

og
y

ap
pr

oa
ch

.

48



Ta
bl

e
13

:D
iff

er
en

ce
s

A
cr

os
s

O
w

ne
rs

hi
p

an
d

Im
pl

ie
d

E
m

is
si

on
s

Ta
xe

s
(M

ul
tip

le
-T

ec
hn

ol
og

y
A

pp
ro

ac
h)

D
om

es
tic

,P
riv

at
e

St
at

e-
O

w
ne

d
Fo

re
ig

n
L

ev
el

s
∆

’s
20

00
-5

00
5

L
ev

el
s

∆
’s

20
00

-5
00

5
L

ev
el

s
∆

’s
20

00
-5

00
5

Se
ct

or
M

ea
n

M
ed

ia
n

M
ea

n
M

ed
ia

n
M

ea
n

M
ed

ia
n

M
ea

n
M

ed
ia

n
M

ea
n

M
ed

ia
n

M
ea

n
M

ed
ia

n
(1

)
(2

)
(3

)
(4

)
(5

)
(6

)
(7

)
(8

)
(9

)
(1

0)
(1

1)
(1

2)
m

in
er

al
pr

od
uc

ts
0.

30
0

0.
04

6
1.

59
4

-0
.1

65
0.

43
5

0.
05

9
3.

32
8

0.
99

7
0.

07
2

0.
03

3
-0

.1
05

-0
.1

77
el

ec
tr

ic
ity

ge
ne

ra
tio

n
0.

48
0

0.
07

1
0.

39
4

0.
04

5
0.

36
2

0.
02

2
1.

30
0

-0
.0

20
0.

40
6

0.
01

7
1.

01
8

0.
18

3
fo

od
pr

od
uc

ts
0.

89
0

0.
30

5
1.

26
9

0.
02

8
0.

81
6

0.
28

6
1.

67
7

0.
28

2
1.

43
9

0.
96

5
2.

11
4

0.
57

5
cl

ot
h

0.
74

8
0.

34
9

1.
53

3
1.

12
9

0.
78

7
0.

32
1

0.
13

9
0.

07
9

0.
84

4
0.

39
5

2.
18

3
0.

20
4

cl
ot

hi
ng

&
ap

pa
re

l
0.

58
5

0.
22

1
1.

45
2

0.
08

3
0.

80
4

0.
23

9
1.

09
9

0.
09

5
1.

03
9

0.
47

4
0.

99
1

-0
.2

07
w

oo
de

n
fu

rn
itu

re
0.

25
3

0.
21

2
-0

.0
33

-0
.2

42
0.

19
6

0.
14

7
0.

46
2

0.
07

6
0.

21
7

0.
18

7
-0

.1
28

-0
.2

07
pa

pe
rp

ro
du

ct
s

0.
60

2
0.

32
5

0.
99

4
0.

30
9

0.
62

1
0.

29
0

0.
67

0
0.

30
6

1.
51

1
0.

86
6

0.
09

9
0.

00
1

fu
el

,d
ie

se
l&

ga
s

0.
40

3
0.

24
5

0.
94

4
0.

56
8

0.
42

6
0.

23
2

1.
53

8
0.

73
9

0.
63

3
0.

27
1

1.
39

2
1.

18
4

ch
em

ic
al

pr
od

uc
ts

0.
82

6
0.

16
0

-0
.9

15
-0

.9
84

1.
03

3
0.

14
2

-0
.1

40
-0

.6
97

0.
63

1
0.

03
4

4.
63

2
0.

85
5

ru
bb

er
pr

od
uc

ts
1.

85
5

1.
22

1
.

.
0.

79
2

0.
30

6
1.

44
1

-0
.5

92
1.

51
6

1.
02

8
0.

46
0

15
.9

65
tir

es
&

co
nv

ey
or

be
lts

1.
52

8
1.

28
2

-0
.0

60
-0

.0
60

1.
99

0
1.

82
2

-0
.8

87
-0

.8
87

2.
88

6
2.

59
5

-0
.8

66
-0

.8
67

pl
as

tic
pr

od
uc

ts
0.

07
0

0.
03

1
1.

59
5

0.
71

8
0.

08
0

0.
02

6
1.

28
7

0.
40

1
0.

17
9

0.
05

0
1.

78
7

0.
27

5
gl

as
s

&
ce

ra
m

ic
pr

od
uc

ts
0.

21
9

0.
03

9
2.

58
6

-0
.1

18
0.

29
7

0.
05

8
0.

43
0

0.
54

8
0.

40
1

0.
12

2
1.

72
0

0.
15

0
cr

ud
e

st
ee

l
0.

54
7

0.
01

7
-0

.0
20

-0
.0

20
1.

24
0

0.
16

6
4.

83
7

1.
95

6
1.

47
0

2.
53

0
.

.
hi

gh
qu

al
ity

st
ee

l&
st

ee
lp

la
te

s
1.

33
8

0.
70

4
-0

.7
27

-0
.8

63
1.

29
7

0.
19

9
-1

.5
75

-2
.1

78
0.

96
6

1.
65

3
.

.
he

av
y

m
et

al
pr

od
uc

ts
2.

22
4

1.
78

5
1.

96
1

1.
12

5
1.

49
4

0.
78

6
1.

19
0

14
.3

53
2.

38
2

2.
54

1
1.

38
4

2.
36

9
lig

ht
m

et
al

pr
od

uc
ts

1.
26

1
2.

92
4

.
.

1.
82

3
1.

59
0

.
.

2.
02

4
2.

42
7

0.
09

2
0.

53
5

au
to

pa
rt

s
0.

21
1

0.
03

5
1.

88
4

-0
.7

85
0.

19
2

0.
01

0
2.

95
6

0.
36

1
0.

49
0

0.
04

7
0.

55
6

0.
23

4
w

he
el

s,
ge

ar
s,

&
m

in
in

g
eq

ui
p.

1.
55

4
0.

64
6

0.
14

1
-0

.2
71

1.
62

4
0.

57
9

4.
74

7
-0

.2
94

2.
89

0
6.

00
5

4.
00

0
-0

.3
27

tr
an

sp
or

ta
tio

n
eq

ui
pm

en
t

1.
92

6
5.

22
5

.
.

2.
37

4
6.

56
7

-0
.5

04
-0

.6
28

0.
05

5
0.

07
3

.
.

ab
at

em
en

te
qu

ip
.&

he
av

y
m

ac
h.

1.
40

4
16

.9
84

2.
88

5
2.

88
5

4.
05

0
9.

08
6

0.
91

3
-0

.0
72

.
.

.
.

co
m

m
.c

ab
le

s
&

el
ec

.w
ir

es
1.

67
8

1.
53

0
0.

33
3

-0
.0

03
1.

21
7

0.
59

5
2.

43
9

0.
35

4
1.

52
8

1.
90

7
3.

13
8

0.
68

7
m

ea
su

ri
ng

te
ch

.,
pr

in
te

rs
,e

tc
2.

73
4

2.
55

2
.

.
1.

41
9

1.
17

1
1.

68
2

-0
.0

60
1.

36
7

0.
05

7
3.

35
4

3.
35

4
N

ot
es

:C
ol

um
ns

(1
)-

(4
)r

ep
or

ts
ta

tis
tic

s
fo

rd
om

es
tic

,p
riv

at
el

y-
he

ld
en

te
rp

ri
se

s.
C

ol
um

ns
(5

)-
(8

)a
nd

co
lu

m
ns

(9
)-

(1
2)

re
po

rt
an

al
og

ou
s

st
at

is
tic

s
fo

rs
ta

te
-o

w
ne

d
an

d
fo

re
ig

n-
ow

ne
d

fir
m

s,
re

sp
ec

tiv
el

y.
C

ol
um

ns
(1

)
an

d
(2

)
re

po
rt

th
e

m
ea

n
an

d
m

ed
ia

n
im

pl
ie

d
em

is
si

on
s

ta
xe

s,
w

hi
le

co
lu

m
ns

(3
)

an
d

(4
)

re
po

rt
th

e
m

ea
n

an
d

m
ed

ia
n

ch
an

ge
in

th
e

im
pl

ie
d

em
is

si
on

s
ta

xe
s

ov
er

th
e

20
00

-2
00

5
pe

ri
od

fo
rt

he
m

ul
tip

le
-t

ec
hn

ol
og

y
ap

pr
oa

ch
.E

ac
h

ca
lc

ul
at

io
n

is
pe

rf
or

m
ed

se
pa

ra
te

ly
fo

r2
4

2-
di

gi
tm

an
uf

ac
tu

ri
ng

se
ct

or
s.

T
he

re
ar

e
in

su
ffi

ci
en

to
bs

er
va

tio
ns

to
re

co
ve

re
st

im
at

es
fo

rt
he

al
co

ho
lic

be
ve

ra
ge

in
du

st
ry

w
he

n
em

pl
oy

in
g

th
e

m
ul

tip
le

-t
ec

hn
ol

og
y

ap
pr

oa
ch

.

49



F.2 Decomposition Robustness

Tables 7 and 8 in the main text report decomposition results after trimming outliers. Starting with the full

sample, we consistently trimmed one percentile from the top and bottom of the distribution of firm-level

contributions of each subcomponent in Table 8. We then collected the remaining firms and recomputed

the entire decomposition.

Table 14: Sources of Aggregate SO2 Emissions Growth

Percentage Contribution
Approach Scale Policy Technology Reallocation Churning
Single-Technology 87.58 -0.57 -21.24 34.19 0.02
Multiple-Technology 84.53 -0.48 -17.41 33.31 0.06

Notes: Table 7 documents the contribution from each source of emissions growth according
to the decomposition equation (12).

The elimination of extreme firms inherently raises the question of the robustness of our main findings.

Tables 14 and 15 report analogous decomposition results using the full sample without any trimming. In

general, all of the same qualitative findings continue to hold: increases in economic scale explain almost

all of the increase in emissions, resources reallocated towards dirty producers, while technology and

policy change mitigated emissions growth. Relative to Tables 7 and 8, we observe that the reallocation

and technology terms are somewhat larger in absolute magnitude, while scale is slightly smaller and the

regulation term is close to zero.

Table 15: Subcomponents of SO2 Emissions Growth

Approach Component Share Subcomponent Share
Scale

Number of firms Number of Products Average Output Growth
Single-Technology 87.58 0.001 -3.27 103.27
Multiple-Technology 84.53 0.002 -0.58 100.06

Technology
EBTC Efficiency

Single-Technology -21.24 0.47 99.53
Multiple-Technology -17.41 0.24 99.76

Reallocation
Across-Firm Reallocation Across-Product (Within-Firm) Reallocation

Single-Technology 34.19 99.58 0.42
Multiple-Technology 33.31 100.12 -0.12

Churning
Firm-Level Product-Level Emissions Product-Level Cost

Single-Technology 0.02 -0.80 21.95 78.85
Multiple-Technology 0.06 3.96 63.96 32.07

Notes: Table 8 documents the contribution from each subcomponent of emissions growth in the decomposition equation (12).

Similarly, the subcomponents documented in Table 15 follow the same pattern as those reported in

Table 8. Trimming the top and bottom one percent of firm-level contribution does not affect the inherent

conclusions of the analysis though it does eliminate a number of extreme outliers.
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