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1 Learning Objectives
After mastering the material in this chapter, the reader should:

1. understand that an economic model is "a logical representation of what-
ever a priori or theoretical knowledge economic analysis suggests is most
relevant for treating a particular problem."

2. understand why economists make such pervasive use of models;

3. know that the key components of models are equations that represent
assumed logical interrelationships among variables;

4. know the distinction between endogenous and exogenous variables;

5. know what it means to "solve a model;"

6. understand how "curve - shifting" conveys the changes in a model’s solu-
tion that arise from changes in exogenous variables;

7. understand the difference between general functional notation and a spe-
cific functional form, and understand why economists use specific func-
tional forms;

8. understand the difference between a structural model and its reduced form.
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2 Introduction
International economics as usually taught centers around a string of models:
the Ricardian Model, the Specific and Mobile Factors Model, the Heckscher -
Ohlin Model, the model of monopolistic competition, and a variety of others,
depending on which text one uses. What is difficult for students is that these
models are not (and are not usually presented as) more and more elaborate
treatments of the same basic model, but rather are in some ways fundamentally
different. Different models are used to understand different phenomenon. Un-
derstanding all these different models may appear a daunting task. What helps
in this task is an understanding of the generic structure that underlies virtually
every economic model. Such an understanding provides the mental hooks on
which to hang the new features of different models. This chapter will provide
this understanding.
We start with illustrations of the power and pervasiveness of models even

outside of economics. We then provide an outline of the components of a generic
economic model and a discussion of how economists use their models. We then
illustrate these general concepts by building a model to address an international
economics policy issue that arose in 2004.

3 The power and ubiquitousness of models
Consider the following problem: At exactly 6:00 AM, a monk leaves the base
of a mountain to begin climbing the path to the top. He arrives at the top at
6:00 PM, where he spends the night in the monastery. The next morning at
6:00 AM, he begins descending along the same trail that he used to climb the
mountain. At 6:00 PM he arrives back at the base of the mountain.
The question we pose is the following: Must he have been at some identical

point on the trail at the exact same time of day on both his trip up and his trip
down?
Take a few minutes to think about this problem before reading further and

finding the answer. Be clear about what the problem asks: is there a spot
on the trail, say, for example, at length 300 meters from the bottom, that the
monk reaches at the same time of day, for example 11:30 AM, both on his way
up and on his way down? You are not told whether or not the monk travels
at a constant rate of speed or whether he rests sporadically during his journey.
All you know is his departure and arrival times and that he travels the same
trail. You are not asked to describe a particular time and place, only to decide
whether there must be such a time and place.
This is a hard problem. When students are broken into a dozen or so

small groups of four or five people and given ten minutes or so to work on this
problem, most of the groups cannot decide if the answer is true or false. A
few groups conclude it is false because it seems improbable to them. A few
groups answer a slightly different question than the one asked. They make the
following conditional claim: "If the monk travels at the same rate both up and
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Figure 1: The Monk’s paths

down the mountain, he will be at the midpoint of the trail at noon on both
days." They stop at this point because any enrichment of possibilities, e.g., the
monk travels faster downhill for the first six hours, and then rests for awhile,
makes it too difficult for them to figure out what might happen. Usually, only
one or two groups conclude it is true. This is the correct answer.
How did the few groups who got the right answer arrive at their conclusion?

Invariably they did so in one of two ways. The most frequent method was where
the group (or someone in the group) hit upon the idea of drawing a graph of the
monk’s progress. On the vertical axis they measured the length of the trail from
a starting point at the bottom of the mountain, and on the horizontal axis they
measured time from a starting point of 6:00 A.M. They then plotted where he
is on the trail at every moment of his twelve-hour trip up the mountain. Then
they plotted where he is on the trail at every moment of his twelve-hour trip
down the mountain. If you try this, you will see that you cannot plot these
paths without them crossing. The crossing point represents a point where the
monk is at the same point on the path at the same time of day. A sample
graph is depicted in Figure 1. The figure illustrates the progress of a monk
who travels at varied speeds to emphasize that the answer to the question does
not require specific information on the exact speed of the monk.
When this solution is presented to the other groups, most students imme-

diately see that this is a correct analysis. However, a few students sometimes
remain unconvinced. For them, the other method used to uncover the correct
answer is the one that is persuasive.
This method is an argument by analogy. Invariably some group poses the

following "thought experiment": Suppose there are two monks, one at the top
of the mountain, one at the bottom. They both start to travel at 6:00 AM, one
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going down and one going up, and they both must finish their trip by 6:00 PM.
Clearly they must meet on the path. If one thinks of the monk coming down
the mountain as mimicking the pace of the lone monk of the first problem as
he (the lone monk) descends on the second day, then the point where the two
monks meet satisfies the requirement that the lone monk be at the same spot
at the same time both on the way up and on the way down.
What this group has seen is that the two-monk thought experiment is es-

sentially the same as the original problem. It is analogous or alike "enough" to
the first problem, so we see that they capture the same phenomenon.
With both successful approaches, what students are doing to solve this prob-

lem is constructing a model : a logical representation of the essence of the sit-
uation. Note that this model is not an exact re - creation of the problem:
neither a graph or a two-monk thought experiment is exactly like the original
problem. In fact, one can (with great difficulty) imagine a true skeptic who is
not convinced by either of these models. Such a skeptic might want to follow
the monk up and down the mountain, measuring distance and recording times.
Of course, even then, all the skeptic has proven is that one particular monk on
two particular days has been on the identical spot on the trail at the same time.
To understand anything useful, that is, something that applies to other similar
experiences, the skeptic still must abstract.
The point here is that to solve problems people construct abstract models.

What a model does is eliminate insignificant or inconsequential detail, leav-
ing the essence of the problem exposed for analysis. When economists tackle
problems, this is what they must also do.
Models are not only essential for solving hard problems, they are also ubiq-

uitous in everyday life. Consider what is meant by "a straight line". Most
people remember the definition they learned in high school geometry: a straight
line is the shortest distance between two points. They also generally agree that
in everyday usage, many objects, such as the edge of a door, are straight lines.
Upon reflection, though, everyone realizes that no object in the world satisfies
the geometric definition: under a powerful enough microscope, every straight
line will appear curved and jagged. We must conclude, then, that straight lines
in the real world are to us like pornography was to Justice Potter Stewart of
the U.S. Supreme Court: we can’t define it, but we know it when we see it.
The conclusion we can draw from this discussion is that any attempt to make

sense of the world involves abstraction and simplification. To make progress,
we are forced to do things like some people do to solve the monk problem:
"Assume there are two monks".
The reader may have heard the old joke about the shipwreck that left a

chemist, a physicist, and an economist stranded on a deserted island. The only
thing saved from the ship was a box of canned food. The three survivors’ prob-
lem was how to open the cans. The chemist suggested they gather some roots
and vegetation from the island from which he would make an acidic solution
that they could use to eat through the top of the cans. The physicist suggested
they use his eyeglass lens to focus sunlight on the cans and melt the top. The
economist chuckled at the complexity of these two solutions, and then offered
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his own solution: assume a can-opener.
Even economists, despite being dismal scientists, can laugh at this joke.

They know that they make many assumptions that appear heroic in their dis-
tance from what appears to be the real world. Again and again, students
and non-economists express amazement at the plethora of assumptions used
by economists, assumptions like: firms maximize profits, households choose a
most-preferred bundle of commodities, and so on. The question one must keep
in mind is not whether these assumptions exactly capture reality, but rather
whether they capture the essence of the problem at hand, and thus help make
progress in understanding or solving some economic problem.
In contrast to many other social science disciplines, economics has a rather

well-developed concept of what are the key components of their models. These
key components form a generic structure within which virtually all economic
models fit. Once one has learned this generic structure, he or she can better
remember and use the more specific models designed to address specific prob-
lems. For this reason, we are going to devote considerable attention to this
generic structure. In the remainder of this chapter, we will develop this generic
structure and illustrate it with concrete examples of a model with which the
student might have some familiarity from a principles course.

4 The structure, language, and depiction of eco-
nomic models.

4.1 Some definitions

We noted above that an economic model is a "logical representation of the
essence of the situation." A more complete definition of an economic model is
provided in Kane (1968):

An economic model is a logical (usually mathematical) representa-
tion of whatever a priori or theoretical knowledge economic analysis
suggests is most relevant for treating a particular problem. a priori: re-

lated to or
derived by
reasoning from
self -evident
propositions;
being without
examination
or analysis.

What do we mean by a "logical representation?" For virtually every eco-
nomic model, such a representation can be boiled down to a collection of equa-
tions that express interrelationships among variables. How do economists come
up with these collections of equations, and how do they use them to address
issues? In this section, we will explicitly delineate the "thought protocols" used
by economists as they construct and use models. In doing so, we provide a more
detailed description of the variables and equations that constitute elements of
models, and a detailed description of how economists use these models. As we
do this, we also introduce some basic terminology and review the key concepts
from analytic geometry that are most useful to economists.
To orient you as we develop this detailed description, we first pose an inter-

national economic problem that is typical of those analyzed by economists.
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4.2 A problem: The effects of an end of EU sugar - pro-
duction subsidies

In 2004, the European Union’s agricultural minister stated that subsidies paid
to European Union sugar producers were going to removed at some time in the
future. Many people in countries such as Brazil applauded this announcement,
anticipating that sugar producers in their countries would be better off if the
subsidies were removed.
This is the sort of problem economists frequently analyze: what are the

effects of a contemplated policy change on the economic well-being of various
participants in the economy? We can illustrate how economists analyze a
problem like this using the basic supply/demand model for which the basics are
familiar to anyone with a passing exposure to economic analysis.

4.3 Elements of models

4.3.1 Variables

First, for the problem at hand, economists think about what variables are likely
important and what variables are likely unimportant. For example, when think- A variable is

a quantity free
to take on any
of a number
of permissible
values.

ing about what determines an individual’s consumption of sugar per year (itself
a variable), economists believe that variables like the price of sugar, the price
of related goods, and disposable income per year are important. In contrast,
they don’t believe variables like hair color, height, phase of the moon, or gender
are important. They may be important for the study of another problem, such
as the proportion of expenditure spent on clothing, but not for the problem
of explaining total sugar purchases. An economist makes this choice of what
variables are important and what variables are inconsequential on the basis of
a variety of things, including intuition, introspection, information gleaned from
related disciplines such as psychology or sociology, and from empirical obser-
vations. This choice, never irrevocable, represents the first part of the art of
modeling.
An important feature of variables used in economic modeling is that they

can all be represented by numbers. For some variables, this seems obvious:
prices and quantities, for example, are naturally described as numbers. For
other variables, though, assigning numbers to them is not an obvious step, but
can be thought of as just a way of renaming things. Even things like phases
of the moon or hair coloring can be assigned different numerical values. For
example, if hair color was thought to be important for some model, red could
be assigned (i.e., named) the number one (1), brown the number two (2), purple
the number three (3), and so on. Assigning variables values that are numbers
allows economists to use the techniques of analytic geometry to depict these
variables and their interactions with each other.
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4.3.2 Logical structuring and representation

After making this first-stage decision about what variables are important, econo-
mists then make a logical structuring and representation of what they think are
the interrelationships between these variables. There are two key parts to this
process.

Endogenous versus exogenous variables First, economists make a fur-
ther distinction among variables: they dichotomize them into endogenous and
exogenous. An exogenous variable is defined as having a value determined Exogenous

variable: hav-
ing a value
determined
outside the
model.
Endogenous
variable: hav-
ing a value
jointly de-
termined by
the values
of exogenous
variables and
by the logical
relationships
among vari-
ables in the
model.

outside the model. That is, the value of an exogenous variable is taken by
the economist as "god-given" and not to be determined by the economist. An
exogenous variable is sometimes referred to as an independent variable. An en-
dogenous variable, on the other hand, is defined as having its value determined
jointly by the particular values taken by the exogenous variables and by the
logical relationships among variables within the model. Endogenous variables
are sometimes referred to as dependent variables.

Equations and other statements Once a decision is made about what vari-
ables are important and, of these, which variables are endogenous and which
are exogenous, then the interactions between these variables must be specified.
Usually these interactions are represented as a system of equations that consist
of definitions, identities (things true by definition), technical descriptions, be-
havioral hypotheses, and equilibrium conditions. These relationships consist of
statements like: “Consumption per year is an increasing function of disposable
income per year”, or "the quantity supplied per unit of time is an increasing
function of the own price of the good".
There are a number of ways to depict a relationship between variables. Be-

fore describing these, let us be clear about what we mean by “relationship.”
When, for example, we state that “quantity supplied per unit of time is an in-
creasing function of the own price” we are asserting a systematic relationship
between two variables: price, and quantity per unit of time. For any specific
relationship, there are three ways to represent it: with a table of values, with
a mathematical expression, and with a graph. A table of values is the most
concrete way to represent such a relationship, but also the most cumbersome.
A mathematical expression uses symbols to represent variables and algebraic
operations to describe the relationships between these variables, and is both
economical and flexible. Unfortunately, these very qualities make them more
abstract and intimidating to many people.
Fortunately, because variables take on values that are numbers, many equa-

tions can be depicted as graphs. For many people, a visual depiction of math-
ematical statements provides greater understanding of the underlying logical
relationships. This observation accounts for the long-standing appeal of ana-
lytic geometry as a tool for helping people understand abstract mathematics.
Most of the models used in undergraduate economics are simplified so as to per-
mit their representation and manipulation with the tools of analytic geometry.
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As we work through our specific example in this chapter, we will review those
tools most useful to us.
There are also other statements that involve variables and represent other

aspects of a model but do not initially take the form of equations. Because
economics is often concerned with choices made by individuals, firms, govern-
ments, and organizations, economic models frequently include statements that
are descriptions of an action taken by an economic agent such as:

"Individual i chooses the most-preferred bundle of commodities that
lie within her or his feasible set."

This description of optimizing behavior, which represents a behavioral
assumption that an individual (individual i) chooses a bundle of things from
a collection of bundles that is within her or his budget ("within her or his
feasible set") so as to make her or him self as well-off as possible. From other
economic texts or classes you may have heard this described as an assumption
that someone maximizes his or her "utility" by choice of a particular bundle
of commodities from those bundles he or she could afford.
Other descriptions of actions might be:

"Firm j chooses the level of employment that maximizes its profits."

This instruction represents the assumption that firms choose levels of inputs
into a production process so as to maximize profits.
Such actions, when followed, lead to decision rules that take the form of

behavioral equations. In particular, they relate an endogenous variable ( also
known in this context as a choice variable) to what are treated as exogenous
variables from the point of view of the economic agent that does the choosing.
Perhaps the most familiar decision rule is an individual’s demand function:
it describes the choice by an individual of a quantity consumed, where the
quantity chosen is determined by the values of variables (taken as exogenous by
the individual) such as prices and income.

Parameters In some models, the equational statements involve variable-like
entities called parameters. Parameters are like exogenous variables in that they
represent a number, e.g., “six,” and in that their values are given exogenously,
that is, from outside the model. We distinguish between parameters and exoge-
nous variables because we frequently think of parameters as representing aspects
of an economy that change less frequently than do those aspects represented by
exogenous variables.

4.4 Solving the model

4.4.1 The canonical question

At this point, the model is complete. Now the economist frequently uses the
model to answer the following canonical question: Canonical:

conforming
to a general
rule; reduced
to the sim-
plest or most
clear schema
possible.
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What is the relationship between the values of the endogenous vari-
ables and the values of the exogenous variables?

Answering this question is referred to as "solving the model.”
The term "relationship” in the statement of the canonical question is not

very precise, and needs some elaboration. For some models, usually ones that
we develop as learning exercises rather than ones that we view as true working
models, the form of this relationship is very exact. We want to know: What
are the actual numerical values of the endogenous variables for any particular
given permissible values of the exogenous variables?
For many economic models, the specific form of the canonical question asked

is a slight variation of the one posed above. It asks: What are the directional
changes in the values of the endogenous variables for given, arbitrary directional
changes in the values of the exogenous variables? That is, instead of specify-
ing unique numbers as values for each of the exogenous variables and asking
what are the associated numerical values of the endogenous variables, it posits
a numerically-unspecified directional change, i.e., increase or decrease, in the
value of an exogenous variable and asks: What are the associated numerically-
unspecified directional changes in some or all of the endogenous variables?
The basic reason we ask a model this question about changes is that our

economic models don’t give us enough information to make the detailed specifi-
cations necessary to answer the first question. Many of the behavioral equations
that make up our models can only be specified in the weaker terminology of qual-
itative changes. For example, a complete model of the interactions between an
assumed exogenous variable such as the Fed Funds interest rate and other en-
dogenous macrovariables such as employment and inflation might have as one
equation: “Consumption is an increasing function of disposable income.” There
is information here: if disposable income goes up, consumption goes up. But
the information not here is the quantitative relationship that tell us how much
consumption goes up in response to a particular numerically-valued change in
disposable income.
Without quantitative information embedded in our models, the best we can

hope for is that our models can answer this form of the canonical question. The
ability of many economic models to map values of exogenous variables to values
of endogenous variables has been compared to the ability of a Russian tank
commander in the early days of World War II to predict the response of his
tank to a movement in the driving controls. These tanks were allegedly crude
affairs, and movement of the tank was controlled by a big lever. If the lever
was pushed forward, the tank moved forward. The farther forward the lever
was pushed, the faster the tank would go. If the lever was pulled back, the tank
went backward. The farther back the lever was pulled, the faster in reverse the
tank went. The problem was that the lever was very “stiff:” the driver had to
apply a lot of pressure to get it to move at all, and sometimes it would then move
a lot, and sometimes a little. Hence, the commander could always tell in which
direction the tank would move - forward or backward - but not how fast. Many
economic models have that same characteristic: when an exogenous variable
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changes, the model can tell us in what direction the endogenous variables will
move, but not by how much.
Why is this general question of the relationship between endogenous and

exogenous variables the raison d’être (reason or justification for existence) of
an economic model? First, many of the real-world problems of interest to
economists are problems for which policy advice is relevant and important. For
example, the chairman of the Federal Reserve Board (The Federal Reserve or
"Fed" is the monetary authority in the United States) may want to know what
will be the likely effects on national output, the inflation rate, the unemployment
rate, and the exchange rate if the Federal Reserve decides to lower the interest
rate it charges for loans to commercial banks. This interest rate is something the
Fed can control if it so desires, so it can be treated as exogenous to the rest of the
economy. In most macroeconomic models, a change in this exogenous variable
engenders changes in the endogenous variables such as output, unemployment,
inflation, and the exchange rate. Hence, this canonical question that economists
ask of their models is exactly the question policy-makers should be interested
in.
Second, this question helps economists avoid the particularly pervasive prob-

lem of confusing correlation with causality. As an example of this problem, con-
sider the following theory: drinking diet cola makes people overweight. The
evidence in support of this theory is the observation that one sees mostly over-
weight people buying diet cola at the grocery store. Another “theory” about
another phenomenon we could propose is that the installation of storm windows
brings on winter. The evidence in support is that every year the onset of winter
is preceded by many people putting up their storm windows.
These two “theories” are relatively easily dismissed despite the presence of

corroborating evidence that takes the form of correlation between the hypothe-
sized cause and the effect. The dismissal is easy because we have good theories
about what is exogenous and endogenous in these two examples. In both cases,
the "evidence" is a correlation between the endogenous variables. What we re-
ally believe is that other latent (present though not directly visible) exogenous
variables are changing, which are in turn changing the values of the endogenous
variables. In the “diet cola leads to obesity” theory, we believe the truth is
that already-heavy people are choosing diet cola in an attempt to reduce their
caloric intake and get thinner. The latent variable that causes people to show
up at the diet cola section and that causes these people to be heavy is “desire
to get thinner.” In the storm window example, the latent variable that causes
both cold weather and people to put up their storm windows is the movement
of the earth around the sun.
While in these two examples the fallacy inherent in each theory is transpar-

ent, political candidates, government officials and other public intellectuals often
make similar errors. For example, a recent study has shown that if parents ask
their children two questions before they leave the house, the children are less
likely to use drugs. The two questions are: (1) Where are you going, and (2)
When will you be home? Some people (perhaps politicians) will be tempted to
infer from this that a program to teach parents to ask these questions will reduce
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drug use by teenagers. Such a program is likely to have little effect, though,
because what the study has probably found is that caring, involved, parents
ask these questions, and the "latent variable" of being a caring, involved parent
causes such parents to ask such questions and to do a variety of other things
that reduce their childrens’ likelihood of taking drugs.

4.4.2 Solution strategies

Sub-models Many economic models, in their entirety, involve many equations
and many variables. As a strategy for understanding and explicating such a
complex system, economists build sub-models that they then use to build the
complete model. In these sub-models, variables (and sometimes parameters)
that are ultimately and fundamentally endogenous within the model as a whole,
are treated as exogenous.

Mathematics Powerful mathematical techniques are available for solving sys-
tems of equations, and an economic model can ultimately be represented as a
system of equations. Advanced treatments of economics and economic research
being described for other professional economists often uses these techniques.
Even in these treatments, though, economists often use graphical techniques to
help themselves and their readers understand the components of their models
and how these components fit together. For non-economists, these graphical
techniques are paramount for helping them understand a model.

Graphs A picture is worth a thousand words, and is also worth a few equa-
tions. Most people, including most economists, find graphs enormously helpful
in understanding complex relationships between variables. Because variables
take on values that are numbers, the techniques of analytic geometry can be
used to depict economic models. For many people, though, the use of graphs
is only slightly less confusing than equations in helping them understand an
economic model. For them, the following graph used by P.J. O’Rourke in his
humorous layman’s guide to economics, Eat the Rich, sums up their feelings
about graphs in economics.
Fortunately, there are some general features of how economists use these

tools that will help people keep from getting lost in a thicket of complicated-
looking graphs. First, it helps to know what visual constraints economists
impose upon themselves and how these constraints shape their graphs. Second,
it also helps to know the final destination of the trip when the trip takes us
through a maze of graphs.

Dimensionality Economic models, especially those used in international
economics, frequently have many variables and many logical interrelationships
between these variables. Unfortunately, a simultaneous depiction that human
beings can understand of all these variables and interactions is impossible: most
of us can’t envision things in more than two, and at most sometimes three,
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HOW TO READ A GRAPH

Quantity of things that
can't be graphed

Quality of things that can't be Quantified

eenie
meenie
minie
moe

fee fie foe fum

Where:  pu=Numberof pages of Econ text devoted to graphical 
analysis

du'h=Number of Econ students asleep in lecture hall

Figure 2: The O’Rourke graph

dimensions. Hence, economists try to collapse information by a variety of
tricks into two-dimensional pictures. This is frequently the sole reason for
some seemingly-complicated graph; it is simply a two-dimensional way-station
helping us to get from one part of a model to another. It is closely related to
the use of sub-models.

The canonical question and economic graphs Remember that econo-
mists are trying to use their models to answer a particular question: what is the
relationship between exogenous and endogenous variables? The final graphs in
a presentation of a model (or sub-model, for that matter) are designed to an-
swer this question. The strategy, then, is to depict on a two-dimensional graph
two independent relationships between at most two endogenous variables. The
intersection of these relationships determines a pair of numbers that is at least
part of the solution to the model. We say this pair may be just a part of the
solution because in models with more than two endogenous variable, there will
have to be other numbers that are part of the solution, perhaps depicted in other
related two-dimensional graphs. By judicious choices, the economist hopes to
be able to have only one of these relationships shift in the two-dimensional plane
when an exogenous variable changes its value. This allows one to “read off”
from the graph the induced change in the values of the endogenous variables.
We now move on to an in-depth description of the usual ways that economists

create and express the logical interactions between the variables in a model. To
make the concepts concrete and memorable, we will illustrate them with a spe-
cific model familiar to a student who has had an economic principles class: the
microeconomic partial-equilibrium model of supply and demand for a particu-
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lar good or service. The good in question is sugar, and the question we ask of
this model is what happens to production of sugar by non - European produc-
ers if subsidies to European Union sugar producers are eliminated. We make
simplifying assumptions in our model in order to help us answer this specific
question.

5 The microeconomic partial-equilibriummodel
of competitive demand and supply for sugar

This model, parts of which are familiar from principles courses, is constructed
from two sub-models: a model of demand, that is, a model of how individuals
make decisions about how much of a particular good to consume over a given
period of time; and a model of supply, that is, a model of how firms choose how
much of the good to produce and sell during the given time period. The two
sub-models are linked together by the equilibrium condition that demand equals
supply. The endogenous variables for the model as a whole are the quantity
of sugar per unit of time produced and consumed, and the equilibrium price.
The exogenous variable is a subsidy that may be paid to European Union sugar
producers. A model designed for other purposes, such as forecasting sugar
production, would involve other exogenous variables such as consumer income,
the prices of related goods, the price of agricultural inputs, weather, and a
host of other possibilities. For the problem at hand, we make the simplifying
assumption that these other variables don’t matter.
We use the modifier partial equilibrium because we are looking at interactions

in one market only. This means we ignore potentially important feedback
effects between one market and others. We are also deferring to a later point
a full development of a deeper model of consumer and producer behavior. Our
primary goal here is to provide a self-conscious description of a familiar model
in terms of its generic parts.

5.1 A note on notation

One of the more boring and tedious parts of learning a model is paying attention
to the notation used to symbolize the various parts of the model. In particular,
in models used in international economics, in which it is important to keep
track of what happens to different individuals and different firms, all of which
need to be identified by country location, there are a multitude of subscripts
and superscripts. Unfortunately, there are few shortcuts that can help here:
learning a model requires attention to a sometimes - extensive collection of
symbols. The rule we follow here is to err on the side of clarity rather than
simplicity.
Not always, but frequently, variables are represented by letters, e.g., x, and

parameters, those exogenous-variable-like entities, by Greek letters. Greek
letters are especially useful because they tend to impress the unitiated and lead
them to think economics is akin to rocket science.
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5.2 Demand submodel

5.2.1 Variables

First consider the demand sub-model. What are the important variables that
influence the decision of how much sugar an individual consumer might wish
to purchase over a given time period? Observation, introspection, and past
investigations suggest that, in general, a number of variables are important:
the price of sugar, the price of related goods, and the income of the individual.
For the consumer, these variables are exogenous, that is, variables whose values
are assumed by the consumer to be unaffected by his or her decisions. The
endogenous variable in this sub-model is the quantity per unit time that is
bought.
As noted, for our purposes, we will assume that the only variable that is

important is the price of sugar. To help orient the reader to the more familiar
model in which other variables are important, though, we treat an individual’s
income as important as well. By adding this additional variable, we also illus-
trate why we can treat it as unimportant for our question.

5.2.2 Logical structuring

Let us go through the list of exogenous variables and recount what the theory
learned in principles courses tells us about the qualitative impact of hypothetical
changes in the value of these variables on the quantity demanded per unit of
time. For each variable, the thought experiment being conducted holds constant
the values of the other exogenous variables. This is called the ceterus paribus
assumption: ceterus paribus is a Latin phrase meaning “other things being
equal”. ceterus

paribus: other
things being
equal.

1. Own price. Ceterus paribus, as a good’s own price goes up, the quantity
demanded per unit of time is expected to decrease. This inverse relation-
ship between own price and quantity demanded is sometimes know as the
Law of Demand.

2. Income. Ceterus paribus, as an individual’s income goes up, the quantity
demanded per unit of time goes up.1

These two sentences describe what is frequently called an individual demand
curve, or individual demand function, or individual demand schedule. Note that
it describes how the endogenous (or "choice") variable is assumed to change in
response to a hypothesized increase in the value of another exogenous variable,
holding constant the values of the other exogenous variable.

1You may have learned that the quantity demanded per unit of time may go down if the
good in question is an "inferior" good. For normal goods, an increase in income increases
consumption of the good; for an inferior good, an increase in income reduces consumption of
the good. For most applications, the assumption of normality is appropriate.

15



Functional relationship We can express the logical relationship assumed to
hold between these variables in a useful shorthand method by making use of the
concept of a function and by denoting each variable by a symbol. Denote the
quantity of sugar demanded per unit of time by an individual consumer as Sdi ,
(the S is mnemonic for ”sugar”, the superscript d reminds us this is a demand
relationship, and the subscript i indicates this is for a particular individual,
individual i), and income per unit of time by Yi. The equation that embodies
the information contained in the two sentences that described an individual’s
demand curve can be written as:

Sdi = fi(
−
PS ,

+

Yi), i = 1, 2, ...I (3.1)

and is to be read as: “The quantity of sugar demanded per unit of time by
individual i is a decreasing function of the price of sugar, and an increasing
function of income per unit of time.” The variables PS and Yi are called the
arguments of the function fi. The algebraic signs ("plus" and "minus") above
each argument indicates the direction in which the value of the left - hand -
side variable moves in response to an increase in the value of argument, ceterus
paribus. The statement that “the quantity demanded is a function of the
variables PS and Yi means that once particular numerical values are specified
for each of these two variables then there is a unique associated numerical value
for the variable Sdi . We will shortly elaborate on this concept.
A demand function is also referred to as a demand schedule. This termi-

nology emphasizes that the relationship between the exogenous variables and
the quantity demanded can also be expressed in the following way: A demand
schedule tells how much of a good (per unit of time) would be bought at any
possible values for price and income. That is, for every set of values of exoge-
nous variables, it “reads off”, much like reading information from a schedule,
the quantity that would be demanded.
An example of such a schedule might look like Table 3.1. In that table,

column one (1) specifies values for the endogenous variable Sdi , and the other
two columns specify values for the exogenous variables PS and Yi. The values
for the exogenous variable Yi is set at one (1). Three different values of the
exogenous variable PS are stipulated: one - fourth (14 ), one (1), and two (2).
For each set of values for the exogenous variables, e.g., {PS = 1, Yi = 1}, the
quantity demanded per unit of time associated with that set is specified in the
first column.

Sdi PS Yi
1 1

4 1
1
4 1 1
1
8 2 1
Table 3.1

Now, the information captured by our notion of the demand relationship
could be captured in a collection of tables like Table 3.1, each table having
a different set of values for exogenous variables and associated values for the
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endogenous variable. There are two problems with expressing the information
embodied in our equational statement of demand via such a set of tables. First,
the tables are too restrictive for our purposes. Our theory, for reasons that will
be clearer after the next chapter, is not usually capable of predicting exact
relationships between actual numbers. Rather, it is a qualitative prediction.
Hence, a table of values can only serve as an example, and cannot convey the
general proposition about the variables embodied in our equational statement.
Second, even as an example, a table of values is cumbersome. First of all, for

a market such as the one we are describing, the units for quantities per unit of
time are surely on the order of millions of kilograms per year. That is, when we
stipulate “Sdi = 1” we surely should interpret the number one (1) as measuring
hundreds of kilograms per year. As a consequence, a table of values should
have many more entries, ranging from one kilogram to one million kilograms.
Second, even ignoring this problem, we would need a different table for each
different set of values for the exogenous variables. Even with the values of the
three variables restricted to whole numbers between zero and five, this becomes
a massive number of tables.
The above table, though, can help us understand both the idea of a function

and how we use the tools of analytic geometry to depict functions. Note
that Table 3.1 keeps the value of Yi constant over all three rows. The only
variation is between the values of the exogenous (to the consumers) price PS
and the quantity demanded per unit of time, Sdi . That is, when we look at
only the two variables whose values change row to row, we have a set of ordered
pairs of numbers (PS , Sdi ) such that to each value of the first variable there
corresponds a unique value of the second variable. The set of ordered pairs
from our example is {

¡
1
4 , 1
¢
, (1, 14), (2,

1
8)}. A set can also be thought of as a

collection, and standard notation uses the curly braces {} to identify a set, and
uses parenthetical brackets () to denote members of a set. The idea of an ordered
pair is that the first element of any pair always represents the same variable,
and the second element also always represents the same (albeit different from
the first variable) variable.
The formal mathematical definition of a function of two variables is in fact

just this: a set of ordered pairs of numbers (PS , Sdi ) such that to each value
of the first variable PS there corresponds a unique value of the second variable
Sdi . We emphasize that a two-variable function is a set of ordered pairs of
numbers because analytic geometry gives us tools to depict ordered pairs of
numbers, namely points (and collections of points known as geometric curves)
in the Cartesian plane. For many people, this depiction is the key tool for
understanding logical interactions among variables.
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The key ideas of analytic geometry

Analytic geometry allows us to picture ordered pairs of numbers and alge-
braic equations in terms of points and geometric curves. For many people,
this depiction is the key tool for understanding logical interactions among
variables. The key idea, the discovery of which is credited to the French
mathematician Descartes (1596-1650) involves locating a point in a plane
by means of its distance from two perpendicular axis. Such a plane is
known as a “Cartesian plane” and points in this plane are located by pairs
of numbers known as “Cartesian coordinates.” This terminology is in
commemoration of Descartes. We briefly review these concepts before
developing graphical representations of the logical relationships that make
up our sub-model of demand.

Coordinates The fundamental idea in analytic geometry is the estab-
lishment of a one-to-one correspondence between numbers or groups of
numbers and points in a geometric space. “One-to-one” means that
for every unique point there corresponds a unique pair of numbers. Of
most use to undergraduate-level economics is the correspondence between
points in a plane and pairs of numbers. For our partial-equilibrium
demand-supply model, the pairs of numbers of interest are (PV , QV ).
Generic notation familiar to some from mathematics classes denotes pairs
as (x, y). Most people are familiar with this basic concept from knowledge
of map coordinates. A point on a map is described by its coordinates :
a pair of numbers, one of which specifies latitude and the other longitude.
To establish the one-to-one correspondence between points in a plane
and pairs of numbers, start with a horizontal line in a plane, extending
indefinitely to the left and the right. In generic notation, this line is
known as the x − axis. For the model of this section, we might want
to think of this axis as the PV − axis (although later in this section, for
quirky reasons of historical developments in economic thought, we will
"switch" the notation of this axis). A reference point O on this axis and
a unit of length (e.g., price of a bottle of wine) are then chosen. The
axis is scaled by this unit of length so that the number zero is attached
to point O, the number +a is attached to the point a units of length to
the right of O, the number +2a is attached to the point 2a units to the
right of O, the number −a is attached to the point a units to the left
of O, and so on. In this way, every point on the x − axis corresponds
to a unique real number. The perhaps non-intuitive feature of this real
number line is that between any two real numbers, no matter how close to
each other, there can always to interspersed another real number. This
implies that a point on the line takes up no space. For the purposes of
economic models, one can think of the real number line as a convenient
approximation to numbers that represent small but discrete units.
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Now place another straight line vertical in the plane, i.e., at a right angle
to the x-axis, through point O. In generic notation, this is the y − axis.
For the model of this section, we (initially) would think of this as the
QV − axis. It also extends indefinitely up and down. Choose a unit of
length, such as quantity of wine per unit of time, and scale the y-axis with
this unit, much as with the x-axis. That is, the number b is attached to
the point on the y-axis b units above point O, the number 2b is attached
to the point on the y-axis 2b units above point O, and so on.
Now draw a line parallel to the y − axis through point a on the x− axis
and a line parallel to the x−axis through point b on the y−axis. These
two lines intersect at point R, which corresponds to the pair of numbers
(a, b). Clearly, for any two real numbers a and b, there corresponds a
unique point R, which we denote as R(a, b). Conversely, we say that
the coordinates of R are (a, b). The following figure illustrates the point
associated with the pair (2, 1).

32.752.52.2521.751.51.2510.750.50.250-0.25-0.5-0.75-1
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The Cartesian Plane

The two axis divide the plane into four quadrants labeled I, II, III, and IV,
where standard terminology denotes quadrant I as that section for which
all points have two positive coordinates. This quadrant is of most use in
economics because most economic variables, such as prices and quantities,
are inherently non-negative numbers. Quadrant II has points with signs
(−,+), quadrant III has points with signs (−,−) and quadrant IV has
points with signs (+,−).

Graphs of functions Because of the one-to-one relationship between pairs
of numbers and points in a plane, we can now depict the functional relation-
ship between Sdi and PS captured in Table 3.1 (for the stipulated fixed val-
ues of the other exogenous variable) and expressed as the set of ordered pairs
{
¡
1
4 , 1
¢
, (1, 14), (2,

1
8)}. The first member of the pair is measured along the hor-

izontal axis and the second member along the vertical axis. These points are
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Figure 3: Pairs of (PS , Sdi )

depicted in Figure 3.
As noted, expressing this information in table form is cumbersome and limit-

ing. Consequently, we like to express this information in equational form, either
in words or in functional notation so as to succinctly capture the relationship
between the endogenous and exogenous variables in the demand relationship in
a symbolic form. We also like to allow the variables to take any value in some
specified segment of the real number line, because this facilitates representation
of relationships as continuous curves. This representation provides a much
more concise way of expressing all the members of a function which has many
members, as do most of the functions in which we are interested.
Consider, for example, the function:

Sdi =
1

4PS
.

We can immediately check that the three points from our table are members
of this function by substituting the three values of PV into the equation Sdi =
1
4PS

and confirming that the values of Sdi that result do indeed correspond to
the associated points from the table. From this function, we could construct
as detailed a table as we would like by picking values of PS and calculating
1
4PS

to get the associated value of Sdi . If we wanted to construct a table that
incorporated every possible pair, though, it would be an infinitely large table,
because there are an infinite number of real numbers that lie in the interval
between zero and any positive real number. This means that the functional
relationship will have an infinite number of set members. The graph of this
set of points, though, is easily depicted in the Cartesian plane as a continuous
curve. We can think of this graph as if constructed by drawing a line with a
pencil without lifting the pencil from the paper. Such a graph is depicted in
Figure 4.
As noted earlier, the point here is not that we think most economic variables

are measured continuously. The assumption of continuous measurement is
simply convenient and innocuous. An innocuous assumption is one that can
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Figure 4: Sdi =
1
4PS

be replaced by a more realistic or complicated assumption without affecting the
main conclusions or implications drawn from the model. When we describe an innocuous

assumption:
one that can
be replaced by
a more realis-
tic assumption
without chang-
ing the main
conclusions
drawn from
the model.

assumption as innocuous, we are appealing to the authority of the economics
profession at large, members of which have in fact determined through research
that the assumption doesn’t affect the main conclusions of the theory.

Depicting the logical interrelations: curve-shifting and escaping "Flat-
land." Our graph of the three representative numbers of the demand function
Sdi = f(PS , Y1) depicted pairs of numbers in the PS−Sdi Cartesian plane, as did
our graph of the specific function Sdi =

1
4PS

from which the three numbers in
the table could have been picked. We could only do this by "holding constant"
the values of the other exogenous variable of this sub-model, namely Yi.
That is, our demand function is really a three - variable function: a collec-

tion of ordered triplets of numbers that tell us the unique value of the variable
Sdi associated with any pair of numbers assigned to the variables PS and Yi,
respectively.
Depicting three - variable functions on a two-dimensional piece of paper

or screen ("flatland") is possible, but difficult for many people without aid of
computer-generated drawings. As a consequence, economists have developed
techniques for collapsing the information in our three - variable function into a
two-dimensional graph. The technique imposes the ceterus paribus assumption
on Yi and then plots in the two-dimensional PS− Sdi plane the curve relating
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Sdi to PS for these given other exogenous variable values.
The placement of this curve in the PS− Sdi plane would change, though, if

there were a different value for Yi. To understand how this placement changes,
it helps to work through an example in which we assume a specific functional
form for our demand function.

Assumption of specific functional forms To help make an abstract equa-
tion like (3.1) or (3.2) more concrete, we frequently specify the relationship as
a particular explicit equation. This is known as picking a specific functional
form to serve as an example. We will work through two examples, each with a
different but specific functional form.

The linear case First consider a linear function for individual i:

Sdi = a0,i − a1,iPS + a2,iYi, a0,i ≥ 0, a1,i ≥ 0, a2,i ≥ 0. (3.2)

The lower - case a0s in (3.2) are examples of parameters. We index them
by i to emphasize that they are associated with a particular individual. As
noted, they are like exogenous variables in that they symbolize numbers that are
determined outside of the model, and they are usually assumed to be constant.
All of them in this example are restricted to be non-negative so that equation
(3.2) conforms to the assumptions we made about how Sdi moves in response to
changes in the values of the exogenous variables, i.e., as PS gets larger, ceterus
paribus, Sdi gets smaller.
At this point, we need to address one of the peculiarities of the economics

profession in terms of how it translates equations into graphs. In keeping with
a long tradition in economics, the price of sugar, measured in units of cur-
rency/unit of sugar, is measured along the vertical axis, while the quantity/unit
of time is measured along the horizontal axis. Note that this means we are mea-
suring the endogenous variable Sdi along the horizontal axis and the exogenous
variable PS along the vertical axis. This tradition is sometimes confusing to
students who have been schooled in high school algebra to graph functions with
the dependent (endogenous) variable on the vertical axis and the independent
(exogenous) variable on the horizontal axis, as we did in Figures 3 and 4.
For the linear functional form of (3.2), one can use algebra to express the

demand relationship with PS on the left-hand-side of the equality sign and all
other variables on the right:

PS = (
a0,i
a1,i

)− ( 1
a1,i

)Sdi + (
a2,i
a1,i

)Yi. (3.3)

We call this the inverse form of the demand curve. In general functional
notation, we would write this as follows:

PS = f−1i (
−
Sdi ,

+

Y i) (3.4)
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where again the algebraic signs above each argument tells us the direction in
which the value of left-hand- variables moves when the value of a right-hand-
side argument goes up. These signs can be inferred from our fundamental
assumptions embodied in equation (3.1). For the linear functional form, this is
straightforward: we can infer the signs by looking at the signs of the coefficients
on the right-hand-side of (3.3). The symbol f−1i is the traditional way of
describing an inverse function, and is just another symbol that is to be read
“...is a function of...”. Again, let us emphasize that this inverse form better
corresponds to the traditional graphical approach in economics of measuring
own price on the vertical axis and quantity demanded per unit of time on the
horizontal axis.
We could go one step further in making our examples concrete by specifying

actual numbers as examples of parameters. For example, we could specify a
linear demand curve as: Concept check:

What are the
specific values
assumed for
the parameters
a0,i, a1,i, and
a2,i in this
example?

Sdi = .5− PS + 2Yi. (3.5)

Occasionally, this further step away from the abstract can provide a useful
"mental hook" on which to hang a concept. It also further helps us understand
the pedagogical technique of “curve-shifting” that economists frequently use to
teach models. Economists will frequently say something along the lines of :
“If, ceterus paribus, income increases, this shifts the demand curve out to the
right.” To understand better what this means, first rearrange equation (3.5) in
inverse form:

PS = .5− Sdi + 2Yi. (3.6)

Now imagine that hypothetical numerical values for the exogenous variable Yi
is three - fourths ( 34 = .75). The demand curve represented by equation (3.5)
could now be written as

Sdi = .5− PS + 2

Y

×
z}|{
(.75) (3.7)

= 2− PS .

Equivalently, (3.6), would be

PS = 2− Sdi . (3.8)

With these numerical values for the exogenous variables, the inverse form is a
straight line with slope of minus one (−1) and intercept of two (2). This is
depicted in Figure 5.
Now imagine a new hypothetical value of income for individual i of one (1),

i.e., Yi = 1. The graphical representation of this new curve is again a straight
line with slope minus one (-1), but with intercept of two-and-one-half (212).
This new curve is parallel to the old one, but has “shifted up” or, in equivalent
language, “shifted out,” so that associated with every value of Sdi there is now
a higher value of PS . These two curves are actually depicted in Figure 6, where
the black line depicts the case where Y = 3

4 and the red line depicts the case
where Y = 1.
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The linear function

The linear function used in this example is frequently used in other eco-
nomic applications. In generic notation, we frequently write a linear
function as follows:

y = mx+ b

where y and x are variables and m and b are numbers known as the
parameters of the function. When written in this fashion, we say the
function is written in slope-intercept form. The y-axis intercept is the
value of y when x = 0. The slope of the function is symbolized by m ,
and tells you the change in the y-variable for any given change in the x-
variable as you move from one point on the line to another. To elaborate,
suppose you know that a point P1(x1, y1) lies on the above line and a point
P2(x2, y2) also lies on the line, where the xi’s and yi’s stand for particular
numerical values, such as x1 = 1, x2 =

1
2 , y1 = 1, y2 = 112 .For these

particular values, the two points P1 and P2 would be (1, 1) and (12 , 1
1
2),

respectively. The change in y from point P2 to point P1, symbolized
as either y2 − y1 or ∆y, is defined as the value of the y−coordinate of
point P2 minus the value of the y−coordinate of point P1. The change
in x, symbolized as either x2 − x1 or ∆x, is defined as the value of the
x−coordinate of point P2 minus the value of the x−coordinate of point P1.
For the example points P1(1, 1) and P2(

1
2 , 1

1
2), ∆y =

1
2 , and ∆x = −

1
2 .

For any arbitrary value of y 6= y1 , and arbitrary value of x 6= x1, the ratio
y−y1
x−x1 is known as the slope, m. For the example of our linear demand
curve, the intercept is 2 and the slope is −1. Note that the change in the
y-value coordinates of any two points on the line divide by the change in
x-value coordinates for these two same points is always the same number,
m.

The multiplicative/exponential case To make sure this concept of
curve-shifting is clear, now consider another example in which we use a dif-
ferent functional form. Consider the following specification:

Sdi = α0,i(Ps)
(−α1,i)(Yi)

(α2,i), α0,i, α1,i, α2,i ≥ 0. (3.9)

where the α0s are parameters. Remembering the rules of exponents from high
school algebra (reviewed in the associated box), this can be expressed in inverse
form as

PS = (
Sdi
α0,i

)
− 1
α1,i (Yi)

(
α2,i
α1,i

)
. (3.10)

We will see that this example of a demand curve, like the linear example
above, satisfies the general assumptions we made about how the quantity de-
manded per unit of time is affected by the price and income variables. That
is, the quantity demanded changes in the stipulated direction for an increase in
each of the price and income variables.
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Exponents

The expression 62 means that six (6) is to be raised to the second power,
which means multiply six (6) time six (6). In general, we have

xn ≡ x× x× x× ...× x| {z }
n terms

Rules of exponents

1. xn × xm = xn+m (example: x2 × x5 = x7)

2. xn

xm = xn−m

3. x−n = 1
xn

4. x0 = 1

5. x
1
n = n

√
x

6. (xn)m = xnm

7. xnyn = (xy)n

As with the linear example, let us assume the following specific numerical
values for the α0s and the exogenous variables other than PS . For the parame-
ters, assume they take the following values:

α0,i = 1, α1,i = 1, α2,i = 2.

For the exogenous variable, assume that Yi = 1
2 . With these values, equation

(3.10) becomes:

PS = (
Sdi
1|{z}

α0,i=1

)(

−1
α1,iz}|{
−1 )(

Yiz}|{
1

2
)(

α2,i
α1,i

=2z}|{
2 ) (3.11)

=
1

4Sdi

For someone less familiar with a function of this form, it may help to remember
that the points that comprised our earlier tabular example of points of a demand
function were members of this function. This function is displayed in Figure 7.
Now let us see how this curve shifts in response to a ceterus paribus change

in Yi. As with the linear example, now, instead of having Yi =
1
2 , let Yi = 1.

The inverse demand function then becomes

PS =
1

Sdi
(3.12)

You may want to plot a few points for this function. Figure 8 superimposes
the graph of equation 3.15, depicted in red and placed "higher" along the vertical
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axis or "farther out" along the horizontal axis than the graph of 3.14.ii, on the
graph of 3.14.ii to illustrate this “shift.”
Before moving on, we need to emphasize that the use of specific functional

forms is mostly a pedagogical device: it permits us to make concrete the less
constraining but harder-to-visualize general model. Specific functional forms
are seldom an implication of theory. However, to be useful, they must be
consistent with the theory. In the above demand curve examples, consistency of
the specific functional forms with the theory is embodied in the sign restrictions
on the a’s and α’s. Even though the different functional form assumptions gave
rise to different graphs - one is a straight line, the other has curvature - both
satisfy the theoretical restriction that requires the curve to slope down.
Also before leaving this introductory discussion of functional form, we note

two other reasons besides the pedagogical one that economic models are ex-
pressed with specific functions. First, most general functions of interest to
economists can be approximated by one or another specific functional form.
Second, when economists use data to estimate an economic model, perhaps for
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forecasting purposes, they often need to assume a particular functional form.
In fact, the “multiplicative case” of a demand curve is often labeled a “constant
elasticity” demand curve because this functional form has a particular property
- “constant elasticity” - that frequently fits economic data quite well. The hope
of the economist is that the specific functional form chosen is in fact a good
approximation to whatever the unknown “true” functional form might be.

Curve-shifting: the general case and ”bidirectional”logic. As noted,
often all that we know about a function are its qualitative properties, as de-
scribed, for example, by equation (3.2). With only this limited qualitative
information, how do we carry out the curve-shifting exercise that we just did
with specific functional forms?
First note that by holding constant the values of the exogenous variable Yi

at some particular value denoted by, say, (Yi)0, we have created a two-variable
function that conceptually tells us an associated value of Sdi for every permissible
value of PS . The use of a numerical subscript, in this case zero or ”naught,” is
standard notation for indicating that we are contemplating a particular value
of a variable. We say ”conceptually” to emphasis that we have no specific
function in mind. We do know, though, that our behavioral assumption (1)
implies that this function must associate lower values of Sdi with higher values
of PS . This means the graph of this function, with Sdi plotted on the vertical
axis and PS plotted on the horizontal axis, is a curve with negative slope. It
also implies that the graph of the inverse demand function, with PS measured
on the vertical axis and Sdi measured on the horizontal axis, will also be a curve
with negative slope.
In the tradition of economics, let us focus on the graph of the inverse demand

curve, and consider the inverse demand curve when the value of the exogenous
variable Yi is (Yi)0. Contemplate now a particular value of S

d
i along this curve,

denoted by (Sdi )0, and the associated value of PS , denoted by (PS)0. Ask the
hypothetical question: What would happen to Sdi if, at PS = (PS)0, Yi were
to increase, i.e., Yi were to take a value greater than (Yi)0? The answer to
this hypothetical question is given by our behavioral assumption that, ceterus
paribus, an increase in income increases the quantity demanded. At the higher
value of Yi, it must be that Sdi > (Sdi )0.
Now, there is nothing special about the value (PS)0. We could have carried

out the same thought experiment for any of the permissible values of PS , and
for each value the same logic would apply: at the higher value of Yi, it must be
that Sdi > (Sdi )0. Hence, at every value of PS , the graph of the inverse demand
function would have ”shifted up.” in response to an increase in Yi.
We could also imagine going through the same exercise with the following

change: instead of asking about what happens to Sdi at particular values of PS
when Yi increases, ask what must happen to PS at particular values of Sdi when,
ceterus paribus, Yi increases This question is perhaps less intuitive because our
behavioral assumption is that people choose quantity per unit of time based on
the values taken by exogenous variables. This new question almost seems to
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ask: what price does individual i choose at a given value of Sdi when there is
an increase in Yi, ceterus paribus? But this is not correct. What we are really
asking is: if we observe a person consuming the same quantity in the face of an
increase in Yi, then what must have happened to PS? Because an individual
would consume more with higher Yi and unchanged PS , but we observe (or
“hold constant” in our thought experiment) an unchanged Sdi , then it must be
that PS has gone up so as to offset the increased demand from the increase in
Yi. Hence, for every value of Sdi , the graph will have “shifted out.”
To recap, with only information about the qualitative responses of individ-

uals’ demands to changes in exogenous variables, we can still determine via
thought experiments in which direction the demand curve will shift. We call
this bidirectional logic because our strategy was to imagine holding constant
either the variable measured on the vertical axis and asking what must happen
to the variable measured on the horizontal axis, or holding constant the vari-
able on the horizontal axis and asking what must happen to the variable on the
vertical axis. In the former case, the curve “shifted out” while in the latter the
curve “shifted up.” Both depict the same phenomena.

5.2.3 The "market" or "aggregate" demand curve: summing up
over individuals

Our sub - model of demand is almost complete. We have developed a model of
an individual’s demand curve, but not a model of the total demand for sugar.
In the sugar market, what matters to suppliers is the total ( or "market" or
"aggregate") demand function. To get this market demand function, we simply
add up the individual demand functions. If we denote market demand by the
symbol Sd, then we have that Sd is the sum of all the individual demand curves:

Sd = Sd1 + Sd2 + ...+ Si + ...+ SI (3.13)

= f1(PS ;Y1) + f2(PS ;Y2) + ...+ fI(PS ;YI)

≡ f(PS ;Y1, Y2, ...YI).

The subscripts denote "individual one, individual two," and so forth, and I
symbolizes the total number of individuals who have demands for sugar. For
example, individual one might be someone named "Alex," individual two might
be someone named "Bobby," and so forth, and I might be 3000. For notational
simplicity, we have defined a new function, f(PS ;Y1, Y2, ...YI), to denote the
aggregate or market demand function.
Graphically, we construct market demand functions by "adding up" along

the horizontal axis the individual inverse demand functions. For example,
suppose there were only two demanders: Alex and Bobby2. Assume their
demand curves are specified as: Concept

check: By
writing their
demand func-
tions in this
fashion, about
what variable
are we making
the ceterus
paribus as-
sumption?

2The asumption of only two individuals is obviously unrealistic, but is useful because we
can mentally "keep track" of two individuals.
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SdA =
1

PS
;

SdB =
2

PS
.

Their inverse demand functions would be:

PS =
1

SdA
(Alex’s inverse demand)

Ps =
2

SdB
(Bobby’s inverse demand)

Market demand would thus be:

Sd = SdA + SdB

=
1

PS
+
2

PS

=
3

PS
.

Notice that the market demand curve shares the same qualitative features as
do the individual demand curves: as price increases, quantity demanded falls.
The inverse market demand curve is

Ps =
3

Sd
.

The depiction of the inverse market demand function as equal to the "horizontal
addition" of the individual demand curves is depicted in Figure 9. In this figure,
the curve closest to the origin is Alex’s inverse demand curve, the curve next
to Alex’s inverse demand curve is Bobby’s, and the thicker curve farthest out
from the origin is the sum of these two individual inverse demand curves.

5.3 Supply

Now consider the sub-model for supply. What are the important variables that
influence the decisions of firms about how much of a good to produce over a
given time period? Twin underlying assumptions, one about behavior and the
other about technology, motivate the answer to this question. One assumption
describes the mainspring of firm motivation: firms attempt to maximize profits.
A second assumption is that there exists a well-defined technology called the
production function that tells how much output per unit of time can be produced
for any given quantity of inputs, e.g., labor, per unit of time. Given these
assumptions, a full-blown detailed model of firm decision-making tells us that
the quantity produced per unit of time is an increasing function of the per - unit
revenue the firm receives for its output, and a decreasing function of the price
of inputs into the production process. Again assume we are concerned with
production of sugar. Denote the quantity of sugar produced by a particular
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firm as Ssj , where the subscript j denotes that we are describing supply by the
"jth” firm. Assume the only inputs into the production process are labor and
land, with associated prices w (for wage) and r (for rent). For the firm, the per
- unit revenue it receives is the sum of the market price, PS , and any per - unit
subsidy it receives, which we will denote by the Greek letter σj ("sigma sub
j"). The quantity produced is endogenous, and the price of sugar, the amount
of any subsidy received, and the price of inputs are exogenous. The shorthand
expression for the relationship between these variables is the individual firm
supply schedule

Ssj = gj(
+

PS + σj ,
−
w,
−
r). (3.14)

Analogous to the demand schedule, PS +σj , w, and r are the arguments of the
firm supply function.
For our purposes, we can ignore the effects of input prices on the supply

function and focus on the effects of changes in the per - unit subsidy σj on the
inverse supply function. That is, we will ignore w and r for the rest of our
analysis. Another way of thinking about what this simplification entails is to
think of us as simply imposing the ceterus paribus assumption on w and r.
Our symbolic representation in general functional notation of an individual

firm’s supply function is, with this simplification, thus:

SSj = gj(
+

PS + σj) (3.15)

We could also write this in inverse form: Remember,
expression
of either
a demand
or supply
functional
relationship in
inverse form
conveys no
new informa-
tion: It simply
arranges vari-
ables in a

PS + σj = g−1j (
+

SSj ). (3.16)
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This last expression for the jth firms inverse supply function turns out to be
especially useful for us, because we can re - write it with just PS on the left -
hand - side:

PS = g−1j (
+

SSj )− σj (3.17)

Writing the function this way partially obscures the knowledge we have of
the relationship between PS , σj and the per - unit revenue received by the firm,
PS + σj . But it does prepare us for a graphical depiction of supply curves on
a diagram with the same variables on the axes as in the diagram of the market
demand curve. This is important because we eventually want to superimpose
on one diagram both the market supply and the market demand functions.
Such a diagram proves useful for understanding and depicting the solution of
the model.
Again, use of a specific functional form might make clear the relationship

between the supply function written with the lone argument PS + σj and the
supply function written with PS and σj as separate arguments.
Consider the linear parametric specification of firm j0s supply function:

SSj = b0,j + b1,j(PS + σj), b1,j > 0. (3.18)

This, of course, can be re - written as

SSj = b0,j + b1,jPS + b1,jσj . (3.19)

In inverse form, this equation would be:

Ps = −
b0,j
b1,j

+
SSj
b1,j

+
σj
b1,j

. (3.20)

To be more concrete, we could assume the parameters of this equation have
the values:

b0,j = 0, b1,j = 1

so that firm j’s inverse supply function would be

Ps = SSj + σj .

For any given value of σj , the graphical depiction of firm j’s inverse supply
function would be an upward-sloping curve with PS on the vertical axis and
quantity of sugar per unit of time on the horizontal axis. The curve "shifts up"
(or, in equivalent language, "shifts back") as the subsidy σj takes on larger and
larger values. Examples are depicted in Figure 10 , with the red line depicting
the inverse supply function associated with the lower value of σj .

Market supply functions Much as with the sub - model of demand,
we need to combine individual firm supply functions to create a market supply
function. And much as with the demand sub - model, we create a market supply
function by adding up individual supply functions. That is, if we symbolize
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market supply by Ss, the market supply function is just the sum of all the
individual firm supply functions:

Ss =

j=JX
j=1

Ssj

where we use the summation symbol "
P
” to indicate the addition of all the

individual firms’ supply functions, of which there are J . That is,

Ss ≡
j=JX
j=1

Ssj = Ss1 + Ss2 + ...+ SsJ (3.21)

= g1(Ps, σ1) + ...+ gJ(PS , σJ).

Because the market supply function is defined as the sum of the individual
firms’ supply functions, for notational ease we can denote it as a new function,
g:

Ss = g(PS ;σ1, ..., σJ) (3.22)

For our purposes, suppose there are only two firms: one in the European
Union that receives a subsidy σEU , and one in "the rest of the world" (de-
noted ROW in international economics jargon) that does not receive a subsidy.
Further suppose the EU firm has the following supply function:

SsEU = PS + σEU .
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In inverse form this would be

PS = SsEU − σEU .

Assume the ROW supply function is:

SsROW = PS .

Adding up, we have that the world, or market, supply function of sugar is

Ss = 2Ps + σEU .

In inverse form this would be

Ps =
1

2
Ss − 1

2
σEU

The inverse supply functions are depicted in Figure 11 for σEU = 1
2 . The red

line depicts the ROW inverse supply function, the thin black line depicts the
EU inverse supply function, and the thick black line depicts the market inverse
supply function.
This completes our discussion of the sub-models of demand and supply. Note

how each sub-model answers the question: What happens to the value of the
endogenous variables in the demand sub-model, quantity demanded per unit of
time, quantity supplied per unit of time in the supply sub-model - when the
values of the exogenous variables change? We now combine these sub-models
into an equilibrium model of demand and supply. While in each of the above
sub-models the price of sugar was taken as exogenous by the decision-makers,
in the equilibrium model this variable will be taken as endogenous.

34



5.4 Equilibrium

The concept of “equilibrium” is that we have found a “rest point” where, in
the absence of any changes in either the values of exogenous variables or in the
specification of the logical interactions among these variables, the values of the
endogenous variables are unchanging. For our partial-equilibrium model, this
“rest point” occurs when the quantity demanded equals the quantity supplied.
In symbolic notation, this equilibrium condition is:

Sd = Ss (3.23)

With the addition of this equilibrium condition, the specification of our model
is complete. When we have a simple listing of all the equational statements
of a model, where each equation represents either a behavioral relationship,
an identity, definition, or technical relationship, or an equilibrium condition,
then we say the model is written in structural form. The structural form of our
simple demand-supply model is simply the collection of the behavioral equations
representing the demand function and the supply function, and the equilibrium
condition that quantity demanded equals quantity supplied. For emphasis, we
collect the structural equations of our model here:

Sdi =
i=IX
i=1

fi(
−
PS ,

+

Y i) ≡ f(
−
PS ,

+

Y1,
+

Y2, ...,
+

YI) (3.13)

Ssj =

j=JX
j=1

gj(
+
PS , σj) ≡ g(

+
PS ,

+
σ1,

+
σ2, ...,

+
σJ) (3.22)

Sd = Ss (3.23)

Each equation spells out an economic assumption of the model, telling us
something about postulated behavior of individual economic units - ((3.13 )
and (3.22)) - or markets - (3.23). That is, the structural model lays bare the
economic framework of the model.
Our goal, though, is to use the model to answer the canonical questions we

posed earlier: what is the relationship between the values of the exogenous
variables and the values of the endogenous variables? To this end, we now
develop various ways that we can answer this question via a solution of the
model.

6 Solving the model
Generally, there are two presentations of the solution of this model: graphical
and mathematical. For pedagogical purposes, we will use graphical methods
whenever possible ("a picture is worth a thousand words"). We also provide
the in-depth mathematical solution in this case, though, so one can see most
clearly the connection between equations and graphs.
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6.0.1 Solving the model without graphs

A strategy or “protocol” often used to solve a model is to first substitute be-
havioral relationships into the equilibrium condition. This allows us to solve
for the market - clearing, i.e., equilibrium, market price and quantity. Having
solved for the market price, the individual equilibrium quantities demanded and
supplied can then be determined.
For expositional simplicity, we will from here on assume there are just two

firms in the model, the firm in the European Union and the firm in the "rest
of the world." Thus, the only exogenous supply variable is σ, the subsidy paid
to the EU firm. Substitution of equation (3.13), the demand schedule, and
equation (3.22), the supply schedule, into equilibrium condition (3.23) tells us
implicitly what price is necessary to equate quantity demanded to quantity
supplied:

f(PS ;Y1, Y2, ...YI) = g(PS ;σ) (3.24)

We separate the arguments in each function by a semi-colon to denote that the
variables to the right of the semi-colon in each function are exogenous. This
emphasizes that (3.24) is a single equation in which the only endogenous variable
is PS .
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Implicit and explicit functions

We say that this substitution tells us implicitly the equilibrium price that
clears the market because (3.24) is an example of an implicit function. Up
until now, we have encountered mostly functions of the form y = f(x).
In equations like this, the variable y simply appears by itself on the left
hand side of the equation, and expressions which only involve the variable
x appear on the right hand side. That is, there is no intermingling of y
and x on either side of the equality sign, and y appears as the variable
itself and not as some function of the variable such as, for example, y2 , or
perhaps y − 6. We say that such an equation tells us explicitly what the
value is of y for any permissible value of x. For example, the following
equation expresses PS explicitly as a function of Sdi :

PS =
1

4Sdi
.

An implicit function, on the other hand, may have variables intertwined
and showing up on either side of the equality signs. They are equations
like

x+ y = 1;

y2 = x;

x2 + xy + y2 = 3

As another example, we could multiply both sides of the equation

PS =
1

4Sdi
.

by Sdi so as to turn it into an implicit function:

PsS
d
i =

1

4

Of course, this also means that we can turn this implicit equation into
an explicit equation by multiplying both sides by 1

Sdi
. For many implicit

functions, this transformation from implicit to explicit function can be
done. For some implicit functions, this can’t be done. But even for
these implicit functions (written as f(x, y) = 0), it is often the case that
we know that there exists a function y = h(x) associated with f(x, y),
even though there doesn’t exist a closed form solution. In either case,
of most interest to us is that the functions we will encounter in most
economic problems have either closed form explicit solutions or explicit
solutions of unknown form.
For the problem at hand, the implicit equation (3.24) can be transformed

into an explicit equation with PS on the left-hand-side of the equality sign and
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all other variables on the right. When we do this transformation, we often
describe this by saying that the equilibrium price of sugar can be “solved out”
of equation (3.24) and expressed as a function of just the exogenous variables:

bPS = F (σ, Y1, Y2, ...YI). (3.25)

This expression for bPS can be substituted into either the demand or the supply
function to yield an equation that expresses the equilibrium quantity of sugar
produced or consumed per unit of time as a function of just the exogenous
variables. For example, if we substituted (3.24) into the supply function (3.22)
in place of PS , we would havecSs = g(F (σ, Y1, Y2, ...YI), σ)

which we could write as:

cSs = G(σ, Y1, Y2, ...YI). (3.26)

Finally, because of the equilibrium condition,

cSs = cSd ≡ bS = G(σ, Y1, Y2, ...YI). (3.27)

where we use the “defined as” binary relation symbol (” ≡ ”)to emphasize that
the equilibrium quantity per unit of time, bS, is not a different value for the
demand and supply functions. Note that we denote equilibrium values of PS
and S by putting a “hat” over the symbol for the variable. This helps keep
clear that when we write PS and S in the demand and supply functions (without
a ”hat”), they are not variables with uniquely determined values, but rather
possible values of variables. The equilibrium values of these variables, denoted
by the ”hat” over them, though, are the particular values that simultaneously
satisfy all the equations of the model.
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"Solving out"

“Solving out” may not yet be clear to someone without some mathemat-
ical sophistication. Again, use of specific functional forms helps make
this clearer. For purposes of exposition, consider the examples of linear
functional forms for demand and supply, and assume all individual para-
meters are identical, e.g., a0,i = a0/I for every individual consumer and
b0,j = b0/J for every firm. Substitution of these equations into (3.24) and
use of the tools of ordinary high school algebra yield the explicit function
for the equilibrium price:

bPS = a0 − b0
(a1 + b1)

− b1
(a1 + b1)

X
j

σj +
a2

(a1 + b1)

X
i

Yi

Now the equilibrium quantity bought and sold can be solved explicitly by
substituting the above equation into either the demand or supply function,
and applying again the tools of ordinary high school algebra:

bS = a0b1 + a1b0
(a1 + b1)

+
a1b1

(a1 + b1)

X
j

σj +
a2b1

(a1 + b1)

X
i

Yi.

where again the ”hat” identifies an equilibrium value. The two above
equations are ideally suited to answering the canonical question that we
ask of models: what are the values of the endogenous variables for given
values of the exogenous variables. If we are given values for the para-
meters - the a’s and b’s - and are given values for each of the exogenous
variables - the Yi’s and σ0s - then we can immediately compute the equi-
librium values of PS and S.
Even with knowledge of a specific functional form such as in the above
boxed material, we may not know the magnitudes of the various para-
meters. That is, all we might know about the a’s and b’s is that they
are non-negative numbers. Clearly, we cannot ascertain exact numerical
values of the solution values of the endogenous variables. In this case
the form of the canonical question that we would ask would be: In what
directions - larger or smaller - do the values of the endogenous variables
move when there is a qualitative change,i.e., an increase or decrease of
unspecified magnitude, in the value of an exogenous variable. Because
all the parameters were specified as non-negative numbers, we can imme-
diately “sign” these changes by inspection. For example, if

P
j σj were to

increase, ceterus paribus, then the value of bPS would decrease because the
coefficient on

P
j σj in the reduced form price equation, namely −b1

a1+b1
,

is negative. In contrast, the value of bS would increase because the co-
efficient on

P
j σj in the reduced - form equation for quantity supplied,

namely a1b1
a1+b1

, is positive.

Can we answer these canonical questions even if we don’t have specific func-
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tional forms for our demand and supply functions? For this model, we can.
What will allow us to do this is the behavioral assumptions about what ex-
ogenous variables affect demand and what ones affect supply. We emphasize
"behavioral" in the preceding sentence to make clear these are assumptions that
are manifested in structural equations of the model and not in equations such
as (3.25) and (3.26). Equation (3.25) and (3.26) or any of their counterparts
that arise from use of a specific functional form of specific example are known
as reduced form equations. Before seeing how we can answer the canonical
questions, let us digress briefly to spell out the relationship between structural
and reduced form.
To move from the structural form to the reduced form, we repeatedly substi-

tuted structural equational statements about one or another endogenous vari-
ables for that endogenous variable in another structural equation. In the above
model, we substituted the right-hand side of the structural equation that had
Sd on the left-hand-side (equation 3.2) and we substituted the right-hand side
of the structural equation that had Ss on the left-hand side (equation 3.19),
into the structural equation that imposed the equilibrium condition (equation
3.23). We then substituted the implicit function for PS that arose out of this
first step into the left-hand side of the structural equation for supply. These
mathematical manipulations transformed the structural model into the reduced
from.
For any model, when this rearrangement is completed, there is one reduced-

form equation for each endogenous variable; such an equation has one and only
one endogenous variable on the left-hand-side of the equation, with any number
of exogenous variables on the right-hand-side. Remember, though, the right-
hand-side contains no endogenous variables.
To get from a structural model to the reduced form, the structural model

needs to have as many equations as there are endogenous variables. This
equality of numbers of structural equations and endogenous variables is in fact
a necessary condition for any structural model to be capable of answering the key
question we ask of models: what happens to the values of endogenous variables
when the value of an exogenous variable changes? This means that counting
equations and endogenous variables provides a diagnostic check of whether or
not a structural model is “well-specified”, that is, whether or not it can answer
our canonical question. As an example, in our demand-supply model, there are
three structural equations, namely the demand function, the supply function,
and the equilibrium condition, and three endogenous variables: the quantity
demanded (Sd), the quantity supplied (Ss), and the price of sugar (PS). Note
again that there is no logical restriction on the number of exogenous variables.
Now, let us return to how we go about answering the canonical question.

The first step of the transformation of the structural model into the reduced
form was done by equating the demand and supply functions to each other.
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This was equation 3.24, reproduced here for convenience:

Sdz }| {
f(
−
PS ;

+
Y1,

+
Y2, ...

+
YI) =

Ssz }| {
g(

+
PS ;

+
σ) (3.24)

The key feature of this equation is that the left-hand side has the single
endogenous variable PS and the exogenous variables Y1, Y2, ..., YI , while the
right-hand side has the same single endogenous variable PS but the different
exogenous variable σ. This reflects our behavioral assumptions about what
exogenous variables affect the quantity demanded and quantity supplied, re-
spectively.
Carry out the thought experiment of contemplating a ceterus paribus de-

crease in the value of one of the exogenous variables, say σ, from an initial
position of equilibrium. What happens to PS? There are only three possibil- We contem-

plate a de-
crease because
it corresponds
to the actual
proposed pol-
icy change by
the EU.

ities: It must either stay the same, decrease, or increase. We will trace out
the implications of each of these possibilities and find that only one is possible.
Because these three possibilities exhaust all cases, the one that is possible is
also the correct answer.
Suppose PS remained the same. This would mean the left - hand side of

(3.24), that is, Sd, remains the same number. This of course requires that
the right - hand side - Ss− remains that same number. But if σ decreases,
ceterus paribus, and PS remains unchanged, then Ss must have gone down.
But if Ss decreased in value, it cannot still be equal to the unchanged value of
Sd. We have a contradiction. This eliminates the possibility that PS remains
unchanged in the face of a decrease in σ.
Now suppose PS decreased. If this happened, the left - hand - side of (3.24)

requires that Sd increased. (This is just the behavioral assumption that, ceterus
paribus, quantity demanded increases with a decrease in its own price.) If Sd

increased, then, in equilibrium, Ss must also have increased. But behaviorally,
a decrease in PS , ceterus paribus, decreases the value of the variable Ss. By
assumption, the only other variable to change value is σ, and behaviorally a
decrease in σ also decreases the value of the variable Ss. Hence, if both PS
and σ decrease, ceterus paribus, then Ss must have decreased. But this means
that it cannot be equal to Sd, which must have increased if PS decreased. We
have a contradiction. This eliminates the second possibility that a decrease in
σ could lead to a decrease in PS .
Hence the only possibility left is that PS increased, so this must be the

correct answer. (Remember, one of the three possibilities had to occur.) A
diagnostic check on our logic can be done by seeing what happened to Ss from
such a rise in price. Our behavioral assumptions about the effects of PS and σ
on Ss tells us that Ss must have risen in value. This means that in equilibrium
Sd must also have increased in value. This is consistent with our behavioral
assumption about the effect of an increase in PS on Sd.
Note that if we had simply started our analysis with the possibility that

there was an increase in PS , all we would have proved was that this possibility
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could not be ruled out. But because we ruled out all other possibilities, this
last possibility must in fact be what had to have happened.
Knowing that bPS must have increased in response to a ceterus paribus de-

crease in σ, we can now figure out what is the response of bS. Because the
exogenous variables in the demand function,i.e., the left - hand side of (3.24),
are, by assumption, unchanged, the behavioral assumption that Sd decreases if
PS increases insures that the equilibrium value bS (which must equal both the
quantity demanded, the value of the left-hand side of (3.24), and the quantity
supplied, the value of the right-hand side) has decreased.
Finally, with knowledge of how bPS has changed in response to the hypoth-

esized change in σ, we can determine the change in each individual’s quantity
demanded and the change in each firm’s quantity supplied. This will complete
our description of the changes in the values of all the endogenous variables in
the model engendered by a hypothetical change in an exogenous variable.
For the quantity demanded by each individual, this last step is straight-

forward. The quantity demanded by each individual in equilibrium is given
by their individual demand functions, fi( bPS ;Yi), i = 1, 2, ...I. Knowing bPS ,
and knowing Yi ( because it is exogenous), we obviously know bSdi = fi(

−bPS ;Yi).
Hence, if we contemplate a ceterus paribus decrease in σ, the European Union
sugar production subsidy, we know that bPS would increase, and thus bSdi would
decrease. This would be true for every individual’s quantity demanded per unit
of time.
On the supply side, the results are a little less straightforward to obtain.

The equilibrium quantity supplied by the Rest of the World firm is described
by its individual supply function:

bSsROW = gROW (
+bPS).

Following a hypothetical decrease in σ, we know that bPS increases. Hence,
sugar production by the Rest of the World firm would increase.
But the quantity supplied per unit of time by the European Union firm is

given by its supply function:

bSsEU = gEU (
+bPS ;−σ).

The tricky part here is that the contemplated decrease in σ is assumed, ceterus
paribus, to decrease European Union sugar production. But the equilibrium
price, bPS , would have increased, which, ceterus paribus, would lead to an in-
crease in production.
Which "ceterus paribus" effect is stronger - the increase in production from

the increase in price or the decrease in production due to the decrease in sub-
sidy - when ceterus paribus does not apply to the behavioral relationship in
question? To answer this, we must make use of our knowledge of what would
have happened to total world production and to the ROW production. In
equilibrium, we have already shown that world production of sugar per unit of
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time would have decreased in response to a reduction in the EU sugar subsidy.
And we have also shown that ROW sugar production per unit of time would
have increased. If world production has decreased and ROW production has
increased, it must be that EU production has decreased. It cannot be

otherwise: if
EU production
had stayed the
same or in-
creased, then
the sum of
EU and ROW
production
would have
increased, and
hence world
production
would have in-
creased. This,
of course, is a
contradiction
of what we
know: world
production
would have
gone down.

To sum up, we have been able to infer the answer to the ”directional” form
of our canonical questions about the effects of a decrease in σ on the values of
the endogenous variables bS, bP ,bSdi , bSsROW , and bSsEU , even without knowledge
of specific functional forms. We might usefully summarize these results in the
following reduced - form description of the model:

bP = F (
−
σ,

+

Y1,
+

Y2, ...,
+

YI)

bS = G(
−
σ,

+
Y1,

+
Y2, ...,

+
YI)

bSd1 = F1(
−
σ,

+

Y1,
−
Y2, ...,

−
YI);bSd2 = F2(

−
σ,
−
Y1,

+

Y2, ...,
−
YI);

...bSdI = FI(
−
σ,
−
Y1,

−
Y2, ...,

+

YI);

bSd2 = F1(
−
σ,

+

Y1,
−
Y2, ...,

−
YI

bSsROW = GROW (
+
σ,

+
Y1,

+
Y2, ...,

+
YI)

bSsEU = GEU (
−
σ,

+

Y1,
+

Y2, ...,
+

YI).

Note that the directional sign over the arguments Y1, Y2, ..., YI in the individual
demand functions have a plus sign for an individual’s own income but a negative
sign for other individuals’ incomes. We did not work out these implications,
but could with the same logic used for understanding the effects of a change in
σ on the various endogenous variables. An ability to understand these signs
provides a good check on one’s understanding of the solution of this model.
For many people, though, a graphical approach to answering these questions

is easier to understand.

6.0.2 Graphical solution

Graphically, market equilibrium is depicted by superimposing on one graph
both the demand and the supply curve. Remember, a demand function is a
set of points that constitutes a downward-sloping line-not necessarily straight-
in the PS − Sd plane, and a supply function is a set of points that constitutes
an upward-sloping line-again not necessarily straight-in the PS − Ss plane. In
terms of inverse demand and supply functions, these curves have the same slopes
but are in the S − PS plane. That is, the vertical axis measures price and the
horizontal axis measures quantity. The intersection of these curves depicts the
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Figure 12: Depicting the demand - supply model

equilibrium price and the equilibrium quantities bought and sold per unit of
time.. Notice that the equilibrium is an ordered pair, represented by a point
in the plane. This is depicted in Figure 12 as the point (1, 1). The labels
on the horizontal axis are both Sd and Ss - one for the demand function and
one for the supply function. The point on the horizontal axis where Sd = Ss

is that value of S where the quantity demanded equals the quantity supplied.
Associated with this equilibrium value bS is the equilibrium value bPS .
Although the graph uses linear functions to depict this equilibrium, all the

information we need to know about the demand and supply curves in order to
depict an equilibrium is that they intersect at some point in the positive quad-
rant of the S − PS plane. We don’t need to know a specific functional form or
specific parameter values. Furthermore, without knowing a specific functional
form or specific parameter values, we can further characterize the relationship
between exogenous and endogenous variables based solely on our qualitative
behavioral knowledge captured be the assumed algebraic signs over the argu-
ments in the behavioral equations that constitute the structural model. This
is done by applying the ”curve-shifting” techniques introduced in our analysis
of demand and supply.
The key feature of our model that lets us easily use the diagrammatic analysis

to characterize the effects of changes in values of exogenous variables on the
values of endogenous variables is the lack of overlap of exogenous variables in
the demand and supply behavioral relationships. Because of this, any of our
ceterus paribus thought experiments in which we assume a change in the value
of just a single exogenous variable results in a shift of only one curve: either
the demand (or inverse demand) curve or the supply (or inverse supply) curve.
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Figure 13: Equilibrium with different income

Hence, a change in, say, income, shifts "out" or "up" the inverse demand curve.
The inverse supply curve, though, remains at its initial placement in the S−PS
plane. Consequently, the new equilibrium point is a new pair (bS, bPS) that we
can think of as representing a movement along the inverse supply curve resulting
from a shift in the inverse demand curve. Figure 13 depicts such a shift of
the inverse demand curve and the associated movement of the equilibrium pair
along the inverse supply curve. In the figure, the new inverse demand curve is
depicted as a red line. Clearly, the new equilibrium pair has a higher value for
both bS and bPS .
Other ceterus paribus thought experiments follow the same logic. For ex-

ample, if σ were to decrease, this would shift up the inverse supply curve while
leaving the inverse demand curve unchanged. The new equilibrium could be
described as a new pair (bS, bPS) that represents a movement along the inverse
demand curve resulting from a shift in the supply curve. This new pair would
have a higher value of PS and a lower value of S.
The value of having specified graphical relationships in which only one curve

shifts in response to a change in an exogenous variable is that once the direction
of the shift is known, the change in the equilibrium values of the endogenous
variables is obvious. For our simple partial-equilibrium model of demand and
supply, the specification of our behavioral relationships led us naturally to such a
diagram. In more complicated models, we frequently manipulate the structural
model solely to be able to depict the model in terms of this type of graph.
Such manipulations do not reflect some deep economic insight, but are rather a
strategy used to display relationships in this useful way.
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7 Some Further Issues
We have now provided a careful statement of the partial-equilibrium demand-
supply model familiar from an economic - principles course. While providing a
review of this basic model, the primary purpose has been to illustrate the generic
structure of economic models and to familiarize the reader with the terminology
of these models. Two interrelated questions remain. First, how do we evaluate
this model? Is it a “good” model, and what would we mean by that? Second,
are there questions not adequately addressed by this model that suggest the
need for a more refined model?

7.1 Evaluation of Models

What makes a “good” model? One answer to this question is given by how
close a model hews to the five “epistemic virtues” that were spelled out in
Chapter Two: predictive ability, internal coherence and external consistency,
unification, fertility, and simplicity. A less encompassing but still useful answer
is that a good model also helps us understand the problem at hand. At a very
preliminary stage of investigation of a problem, a good model can be one that
simply helps us organize thought about the problem. For many questions, the
simple demand-supply model just presented is a “good” model.
In particular, consider what our model tells us about the effects on sugar

production in the European Union and in the rest of the world that would arise
from a reduction of the European Union sugar production subsidy. The answers
given by our model are that EU production would fall and ROW production
would increase. These answers are the keys to understanding parts of the polit-
ical fights over this proposed policy. Many developing countries such as Brazil
feel that they will benefit from the higher world sugar price and concomitant
increase in Brazilian sugar production. Hence they have lobbied for such a
change. European Union sugar producers, on the other hand, lobby against
such a proposed change.

7.2 Unanswered Questions

For some of the most interesting questions of international trade, though, this
model is inadequate. For one thing, what is needed to grapple with the idea of
what economists mean by “gains from trade” is a model that looks behind the
demand and supply curves and provides a fuller description of what is meant by
tastes and technology, and how these notions constrain behavior. For another,
much of the subject matter of international economics requires an understand-
ing of the simultaneous interactions between the parts of all of the markets
of an economy. Such a general equilibrium model has two important ad-
vantages over partial - equilibrium models for the purposes of understanding
international trade issues. First, some of the most prominent arguments about
the effects of trade policy concerns questions about whether jobs are created or
destroyed. Remember, for example, the discussions in the introductory chapter
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about the loss of jobs in the textile industry arising from rising foreign imports,
or the expected loss of jobs in “big steel” unless tariffs were imposed. General
equilibrium models emphasize and make clear that on net, jobs are not “lost” in
response to changing economic conditions, but are redistributed from one sector
to another. Once one develops the habit of thinking in terms of general equilib-
rium, one quickly recognizes the less-emphasized related effects of job creation
in other sectors whenever the ”jobs” discussions about trade policy is broached.
This is not to say that there are not real problems and hardships associated with
the economic dislocations brought about by participation in the international
economy, but rather that there are also opportunities not as readily apparent
to someone not trained in general - equilibrium thinking.
Such general - equilibrium habits of thought also help one bring to mind more

quickly analogous situations that help one think about trade policy effects. For
example, other kinds of economic changes such as changes in technology have the
same types of dislocation effects as does international trade. The development of
word processors caused a loss of jobs in the typewriter manufacturing industry,
but led to an expansion of a variety of other industries. This situation is
analogous to the “textile” question in that both of these situations had the
same generic effects on employment: jobs in some industries were lost, and jobs
in other industries were gained.
The jobs issue is just one example of a general phenomenon highlighted by

general-equilibrium models: the substitutability of resources within an econ-
omy. Recall from the first chapter the discussion about the popular view of
“price gouging” by hoteliers in the research triangle area of North Carolina in
anticipation of soon-to-be-held special Olympics. This view, we argued, was
flawed because it failed to understand the ability of producers in an economy to
substitute resources in the production of goods and services, and the ability of
consumers in an economy to substitute one good for another in the face of chang-
ing incentives. This feature of substitutability, as one of the few key elements of
the way economist’s think about the world, is really only fully understood and
appreciated within the context of a general equilibrium model.
We now move on to develop three key models for an understanding of inter-

national economics. First, we develop the simplest possible general equilibrium
model we can envisage, one in which there are no production decisions. Such an
economy, populated only by consumers but not producers, allows us to lay bare
the basic novel features of general equilibrium models and some key features of
international trade models. It also allows us to introduce the concept of “gains
from trade” in its most pure and uncomplicated form.
Second, we introduce production into the general equilibrium framework.

Because so much of international economics concerns the effects of changes in
the mix of products produced by the factors of production available to the
economy as a whole, knowledge of this model is essential to an understanding
of both international trade and open-economy macroeconomics.
Finally, we analyze the demand and supply of money. Knowledge of how

economists model this feature of the modern economy permits us to understand
the key distinction between real and nominal variable.
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