Introduction to Möbius functions.

Bogdan Chornomaz

September 25, 2020

Incidence algebras.

For a finite lattice L (locally finite poset P), an incidence algebra of L is a set of functions $\{\alpha: I(L) \rightarrow \mathbb{Z}\}$, where $I(L)=\left\{(x, y) \in L^{2} \mid x \leq y\right\}$ with an associative convolution:

$$
\alpha * \beta(x, y)=\sum_{x \leq z \leq y} \alpha(x, z) \beta(z, y)
$$

Several special elements in incidence algebra are:
■ $\delta(x, y)=\left\{\begin{array}{l}1, x=y, \\ 0, x<y ;\end{array} \quad \delta\right.$ is a unit of the algebra;

- $\zeta \equiv 1 ;$
- μ - unique left and right inverse of ζ, i.e. $\mu * \zeta=\delta, \zeta * \mu=\delta$;
- $\mu(x, y)= \begin{cases}1 & x=y ; \\ -\sum_{x \leq z<y} \mu(x, z) & \text { otherwise } .\end{cases}$

Some examples

Möbius function of the boolean lattice is $(-1)^{l}$, where l is the length of the interval.

It is zero above any non-atomic joinirreducible element...
but it also can be zero in other cases.

Why right inverse?

The explicit formula for μ comes from expanding the formula $\mu * \zeta=\delta$:

$$
\left\{\begin{array}{l}
\mu * \zeta(x, x)=\delta(x, x) \quad \Leftrightarrow \quad \mu(x, x)=1 ; \\
\mu * \zeta(x, y)=\delta(x, y) \quad \Leftrightarrow \quad \sum_{x \leq z \leq y} \mu(x, z)=0 .
\end{array}\right.
$$

Hence $\mu(x, y)=-\sum_{x \leq z<y} \mu(x, z)$ for $x<y$ and this enables to define μ iteratively in a unique fashion. But saying that μ is the right inverse of $\zeta, \zeta * \mu=\delta$, is equivalent to $\mu(x, y)=-\sum_{x<z \leq y} \mu(z, y)$. How does that follow?

First note, that any α for which $\alpha(x, x) \equiv 1$ has left and right inverse. Let θ be a left inverse for $\mu, \theta * \mu=\delta$, then

$$
\begin{aligned}
\zeta * \mu & =(\theta * \mu) *(\zeta * \mu) \\
& =\theta *(\mu * \zeta) * \mu=\theta * \mu=\delta
\end{aligned}
$$

In fact, matrices

Let $n=|L|$ and let us enumerate the elements of L in any compatible order (that is, $x_{i} \leq_{L} x_{j}$ implies $i \leq j$). Now, for α from the incidence algebra of L we put into a correspondence an integer $n \times n$ matrix M_{α}, defined as:

$$
M_{\alpha}(i, j)= \begin{cases}\alpha\left(x_{i}, x_{j}\right) & x_{i} \leq_{L} x_{j} \\ 0 & \text { otherwise }\end{cases}
$$

then

$$
\begin{aligned}
M_{\alpha} M_{\beta}(i, j) & =\sum_{k} M_{\alpha}(i, k) M_{\beta}(k, j) \\
& =\sum_{k: x_{i} \leq{ }_{L} x_{k} \leq{ }_{L} x_{j}} \alpha\left(x_{i}, x_{k}\right) \beta\left(x_{k}, x_{j}\right)=M_{\alpha * \beta}(i, j)
\end{aligned}
$$

Also, as the order is compatible, all those matrices are upper-triangular. And if $\alpha(x, x) \equiv 1$ then $\operatorname{det} M_{\alpha}=1$ and thus M_{α} is invertible.

Products

Lemma

$$
\mu_{L \times K}\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\mu_{L}\left(x_{1}, y_{1}\right) \mu_{K}\left(x_{2}, y_{2}\right)
$$

Proof. By induction:

$$
\begin{aligned}
\mu_{L \times K} & \left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=-\sum_{\left(x_{1}, x_{2}\right) \leq\left(z_{1}, z_{2}\right)<\left(y_{1}, y_{2}\right)} \mu_{L \times K}\left(\left(x_{1}, x_{2}\right),\left(z_{1}, z_{2}\right)\right) \\
& =-\sum_{\substack{x_{1} \leq z_{1} \leq y_{1} ; x_{2} \leq z_{2} \leq y_{2} \\
\left(z_{1}, z_{2}\right) \neq\left(y_{1}, y_{2}\right)}} \mu_{L}\left(x_{1}, z_{1}\right) \mu_{K}\left(x_{2}, z_{2}\right) \\
& =-\sum_{\substack{x_{1} \leq z_{1} \leq y_{1}}} \mu_{L}\left(x_{1}, z_{1}\right) \cdot \sum_{x_{2} \leq z_{2} \leq y_{2}} \mu_{K}\left(x_{2}, z_{2}\right)+\mu_{L}\left(x_{1}, y_{1}\right) \mu_{K}\left(x_{2}, y_{2}\right) \\
& =\mu_{L}\left(x_{1}, y_{1}\right) \mu_{K}\left(x_{2}, y_{2}\right)
\end{aligned}
$$

Möbius inversion formula

Theorem

Let $f, g: L \rightarrow \mathbb{Z}$. Then

$$
f(x)=\sum_{y \leq x} g(y) \Leftrightarrow g(x)=\sum_{y \leq x} f(y) \mu(y, x) .
$$

Proof. We use matrix representation. If we "interpret" f and g as $1 \times n$ vectors then

$$
f(x)=\sum_{y \leq x} g(y) \cong f=g \cdot M_{\zeta}
$$

thus $g=g \cdot M_{\delta}=g \cdot M_{\zeta} M_{\mu}=f \cdot M_{\mu}$.
Similarly, $f(x)=\sum_{y \geq x} g(y) \cong f^{t}=M_{\zeta} \cdot g^{t}$, hence

Theorem

$$
f(x)=\sum_{y \geq x} g(y) \Leftrightarrow g(x)=\sum_{y \geq x} \mu(x, y) f(y)
$$

Inclusion-exclusion principle

Note that $B_{n}=\mathbf{2} \times \cdots \times \mathbf{2}$. Hence $\mu_{B_{n}}(S, T)=(-1)^{|T|-|S|}$, where $S, T \subseteq \mathbf{n}$. Now we can derive inclusion-exclusion principle:

Let $X=A_{1} \cup \cdots \cup A_{n}$. Let $f(S)=\left|\bigcap_{s \in S} A_{s}\right|$ and $g(S)=\left|\bigcap_{s \in S} A_{s} \cap \bigcap_{s^{\prime} \notin S}\left(X-A_{s^{\prime}}\right)\right|$. Then

$$
f(S)=\sum_{S \subseteq T} g(T) \Leftrightarrow g(S)=\sum_{S \subseteq T}(-1)^{|T|-|S|} f(T)
$$

Plug $S=\emptyset$ to the second equation. Note that $g(\emptyset)=0$ and $f(\emptyset)=|X|$

$$
0=\sum_{T}(-1)^{|T|} f(T) \quad \Leftrightarrow \quad f(\emptyset)=\sum_{T \neq \emptyset}(-1)^{|T|+1} f(T) .
$$

And the latter is inclusion-exclusion formula.

Can't live without shattering.

$$
\mathcal{F}
$$

For a finite lattice L and $F \subseteq L, F$ shatters an element $y \in L$, iff

$$
\forall z \leq y \quad \exists x \in F \text { s.t. } z=y \wedge x
$$

The set of elements shattered by F is denoted $S h(F)$, and it is an order-ideal.
$\mathcal{F} \quad \operatorname{Sh}(\mathcal{F})$
L satisfies Sauer-Shelah-Perles lemma (is SSP), if for any $F \subseteq L$ it holds: $|F| \leq|S h(F)|$.

Theorem (Babai, Frankl)

If a lattice L has a non-vanishing Möbius function μ, then it is $S S P$.

Proof of the theorem.

Theorem (Babai, Frankl)

If a lattice L has a non-vanishing Möbius function μ, then it is SSP.
Fix $F \subseteq L$ and consider an F-dimensional vector space $\mathbb{R}[F]$ over \mathbb{R} (doesn't really matter over what). That is, elements of $\mathbb{R}[F]$ are functions $f: F \rightarrow \mathbb{R}$.

For $x \in L$ let $\chi_{x} \in \mathbb{R}[F]$ be defined as $\chi_{x}=\mathbf{1}_{\{y \in F \mid y \geq x\}}$. That is,

$$
\begin{cases}1 & y \geq x \\ 0 & \text { otherwise }\end{cases}
$$

The set $\left\{\chi_{x} \mid x \in F\right\}$ is a basis of $\mathbb{R}[F]$. We claim that $\left\{\chi_{x} \mid x \in S h(F)\right\}$ is also a basis. The claim then follows by comparing dimensions.

Note. Functions χ_{x} are defined only on F, but they are defined for any $x \in L$.

Proof of the theorem.

Theorem (Babai, Frankl)

If a lattice L has a non-vanishing Möbius function μ, then it is SSP.
Claim. If x is not shattered by F through y, then

$$
\chi_{x}=-\sum_{y \leq z<x} \frac{\mu(y, z)}{\mu(y, x)} \chi_{z}
$$

Proof (of the claim). This is equivalent to

$$
\begin{equation*}
\sum_{y \leq z \leq x} \mu(y, z) \chi_{z}=0 \tag{*}
\end{equation*}
$$

Now, why is this obvious?
1 Let's for a moment think of χ_{z} as defined on all L, not only on F.
2 The function $(*)$ is constant on partitions $P_{z}=\{u \mid u \wedge x=z\}, z \in[y, x]$.
3 By the definition of $\mu,(*)$ is 0 on P_{z} for $z \neq y$. Only P_{y} is a trouble.
4 But $P_{y} \cap F=\emptyset$, so $(*)$ as a function on F doesn't see it. \qquad

Proof of the theorem.

Theorem (Babai, Frankl)

If a lattice L has a non-vanishing Möbius function μ, then it is SSP.
And that's it! Once again:
1 The dimension of $\mathbb{R}[F]$ is $|F|,\left\{\chi_{x} \mid x \in F\right\}$ is its basis;
2 Using the claim, $\chi_{x} \in \operatorname{Lin}\left\{\chi_{z} \mid z<x\right\}$, whenever $x \notin \operatorname{Sh}(F)$;
3 As $S h(F)$ is an order-ideal, by iteratively applying the claim, we get $\chi_{x} \in \operatorname{Lin}\left\{\chi_{z} \mid z \in S h(F)\right\}$, for any $x \in L$.
4 Thus, $\mathbb{R}[F]=\operatorname{Lin}\left\{\chi_{x} \mid x \in F\right\} \leq \operatorname{Lin}\left\{\chi_{z} \mid z \in S h(F)\right\}$;
5 So $|F|=\operatorname{dim} \mathbb{R}[F] \leq \operatorname{dim} \operatorname{Lin}\left\{\chi_{z} \mid z \in S h(F)\right\} \leq|S h(F)|$.

Geometric lattices

Let L be a finite lattice, which is:
11 atomic;
$\sqrt{2}$ graded, that is, there is a rank function $r: L \rightarrow \mathbb{Z}$ such that every maximal chain in $[0, x]$ has length $r(x)$;
3 semimodular, that is, $r(x)+r(y) \geq r(x \wedge y)+r(x \vee y)$.
Such lattices are called geometric. Why do we care?
A matroid \mathcal{M} is a nonempty order-ideal $\mathcal{I} \subseteq 2^{X}, X$ - finite, such that an exchange axiom holds:
for all $A, B \in \mathcal{I},|B|<|A|$, there is $x \in A-B$ s.t. $B+x \in \mathcal{I}$.
A $\operatorname{rank} r(S)$ of a set $S \subseteq X$ is $r(S)=\max \{|A| \mid A \in \mathcal{I}, A \subseteq S\}$. A set S is closed if it is maximal of its rank.

Theorem

A lattice L is geometric iff it is a lattice of closed sets of a matroid.

Geometric lattices (examples)

Also anything modular...

...also some weird things...

...and the Fano plane...

Möbius function of geometric lattices is alternating

Theorem (Rota, 1964)

For a geometric lattice L, for all $x \leq y, \mu(x, y)$ is nonzero and $\operatorname{sgn} \mu(x, y)=(-1)^{r(x)-r(y)}$.

There are many theorems about computing Möbius function. We'll need one of them:

Lemma

For 0-posets P and Q, let $p: P$ be an order-preserving map such that

- for any $y \in Q$ there is $x \in P$ such that $p^{-1}[0, y]=[0, x]$;
- $p^{-1}(0)$ contains at least two points.

Then for any $y \in Q$,

$$
\sum_{x: p(x)=y} \mu(0, x)=0
$$

Möbius function of geometric lattices is alternating

Lemma

For 0-posets P and Q, let $p: P$ be an order-preserving mapping such that
1 for any $y \in Q$ there is $x \in P$ such that $p^{-1}[0, y]=[0, x]$;
$2 p^{-1}(0)$ contains at least two points.
Then for any $y \in Q$,

$$
\sum_{z: p(z)=y} \mu(0, z)=0
$$

Proof. Note that

$$
\begin{aligned}
\sum_{z: p(z) \leq y} \mu(0, z) & =\left[\begin{array}{l}
\text { take } x=x(y) \text { as } \\
\text { provided in }(1)
\end{array}\right]=\sum_{z \in[0, x]} \mu(0, z) \\
& =[0<x \text { by }(1)]=0 .
\end{aligned}
$$

And the statement follows by induction on $y . \square$

Möbius function of geometric lattices is alternating

Lemma

For 0-posets P and Q, let $p: P$ be an order-preserving mapping such that

1 for any $y \in Q$ there is $x \in P$ such that $p^{-1}[0, y]=[0, x]$;
$2 p^{-1}(0)$ contains at least two points.
Then for any $y \in Q$,

$$
\sum_{z: p(z)=y} \mu(0, z)=0
$$

Corollary

For $a, b \in L, a \neq 0$, it holds:

$$
\sum \mu(0, z)=0
$$

Proof. Apply lemma to $P=L, Q=[a, 1]$ and $p=\cdot \vee a \cdot \square$

Möbius function of geometric lattices is alternating

Theorem (Rota, 1964)

For a geometric lattice L, for all $x \leq y, \mu(x, y)$ is nonzero and $\operatorname{sgn} \mu(x, y)=(-1)^{r(x)-r(y)}$.

Proof. By induction: $\mu(0,0)=1$ and $\mu(0, a)=-1$ for a-atom. Now let us take arbitrary y and $a<y$, an atom. Then (by Corollary):

$$
\mu(0, y)=-\sum_{z<y: z \vee a=y} \mu(0, z) .
$$

If $z<y$ and $z \vee a=y$ then $z \nsupseteq a$, hence $z \wedge a=0$. By submodularity, $r(z)+1=r(z)+r(a) \geq r(0)+r(y)=r(y)$. Then $r(z)=r(y)-1$ and the statement of the theorem follows. \square

Thank you!

(In case you didn't have a good look last time.)

