Introduction to Möbius functions.

Bogdan Chornomaz

September 25, 2020

Title

September 25, 2020

Incidence algebras.

For a finite lattice L (locally finite poset P), an **incidence algebra** of L is a set of functions $\{\alpha : I(L) \to \mathbb{Z}\}$, where $I(L) = \{(x, y) \in L^2 \mid x \leq y\}$ with an associative **convolution**:

$$\alpha*\beta(x,y)=\sum_{x\leq z\leq y}\alpha(x,z)\beta(z,y).$$

Several special elements in incidence algebra are:

$$\delta(x,y) = \begin{cases} 1, x = y, \\ 0, x < y; \end{cases} \delta \text{ is a unit of the algebra;} \\ \zeta \equiv 1; \\ \mu \text{ - unique left and right inverse of } \zeta, \text{ i.e. } \mu * \zeta = \delta, \zeta * \mu = \delta; \\ \mu(x,y) = \begin{cases} 1 & x = y; \\ -\sum_{x \le z < y} \mu(x,z) & otherwise. \end{cases}$$

Möbius function of the boolean lattice is $(-1)^l$, where l is the length of the interval.

It is zero above any non-atomic joinirreducible element...

but it also can be zero in other cases.

Why right inverse?

The explicit formula for μ comes from expanding the formula $\mu * \zeta = \delta$:

$$\begin{cases} \mu * \zeta(x, x) = \delta(x, x) & \Leftrightarrow \quad \mu(x, x) = 1; \\ \mu * \zeta(x, y) = \delta(x, y) & \Leftrightarrow \quad \sum_{x \le z \le y} \mu(x, z) = 0. \end{cases}$$

Hence $\mu(x, y) = -\sum_{x \leq z < y} \mu(x, z)$ for x < y and this enables to define μ iteratively in a unique fashion. But saying that μ is the right inverse of ζ , $\zeta * \mu = \delta$, is equivalent to $\mu(x, y) = -\sum_{x < z \leq y} \mu(z, y)$. How does that follow?

First note, that any α for which $\alpha(x, x) \equiv 1$ has left and right inverse. Let θ be a left inverse for μ , $\theta * \mu = \delta$, then

$$\begin{aligned} \zeta * \mu &= (\theta * \mu) * (\zeta * \mu) \\ &= \theta * (\mu * \zeta) * \mu = \theta * \mu = \delta. \end{aligned}$$

In fact, matrices

Let n = |L| and let us enumerate the elements of L in any compatible order (that is, $x_i \leq_L x_j$ implies $i \leq j$). Now, for α from the incidence algebra of L we put into a correspondence an integer $n \times n$ matrix M_{α} , defined as:

$$M_{\alpha}(i,j) = \begin{cases} \alpha(x_i, x_j) & x_i \leq_L x_j \\ 0 & \text{otherwise} \end{cases}$$

then

$$M_{\alpha}M_{\beta}(i,j) = \sum_{k} M_{\alpha}(i,k)M_{\beta}(k,j)$$
$$= \sum_{k: x_{i} \leq L} x_{k} \leq L} \alpha(x_{i},x_{k})\beta(x_{k},x_{j}) = M_{\alpha*\beta}(i,j).$$

Also, as the order is compatible, all those matrices are upper-triangular. And if $\alpha(x, x) \equiv 1$ then det $M_{\alpha} = 1$ and thus M_{α} is invertible.

Lemma

$$\mu_{L \times K} \big((x_1, x_2), (y_1, y_2) \big) = \mu_L(x_1, y_1) \mu_K(x_2, y_2).$$

Proof. By induction:

$$\begin{split} \mu_{L\times K}\big((x_1, x_2), (y_1, y_2)\big) &= -\sum_{\substack{(x_1, x_2) \le (z_1, z_2) < (y_1, y_2)}} \mu_{L\times K}\big((x_1, x_2), (z_1, z_2)\big) \\ &= -\sum_{\substack{x_1 \le z_1 \le y_1; \ x_2 \le z_2 \le y_2 \\ (z_1, z_2) \ne (y_1, y_2)}} \mu_L(x_1, z_1) \mu_K(x_2, z_2) \\ &= -\sum_{\substack{x_1 \le z_1 \le y_1}} \mu_L(x_1, z_1) \cdot \sum_{\substack{x_2 \le z_2 \le y_2}} \mu_K(x_2, z_2) + \mu_L(x_1, y_1) \mu_K(x_2, y_2) \\ &= \mu_L(x_1, y_1) \mu_K(x_2, y_2) \end{split}$$

ъ

Möbius inversion formula

Theorem

Let $f, g: L \to \mathbb{Z}$. Then $f(x) = \sum_{y \le x} g(y) \Leftrightarrow g(x) = \sum_{y \le x} f(y)\mu(y, x).$

Proof. We use matrix representation. If we "interpret" f and g as $1 \times n$ vectors then

$$f(x) = \sum_{y \le x} g(y) \quad \cong \quad f = g \cdot M_{\zeta}$$

thus $g = g \cdot M_{\delta} = g \cdot M_{\zeta} M_{\mu} = f \cdot M_{\mu}$.

Similarly, $f(x) = \sum_{y \ge x} g(y) \cong f^t = M_{\zeta} \cdot g^t$, hence

Theorem

$$f(x) = \sum_{y \geq x} g(y) \Leftrightarrow g(x) = \sum_{y \geq x} \mu(x, y) f(y).$$

Inclusion-exclusion principle

Note that $B_n = \mathbf{2} \times \cdots \times \mathbf{2}$. Hence $\mu_{B_n}(S,T) = (-1)^{|T|-|S|}$, where $S,T \subseteq \mathbf{n}$. Now we can derive inclusion-exclusion principle:

Let $X = A_1 \cup \cdots \cup A_n$. Let $f(S) = \left|\bigcap_{s \in S} A_s\right|$ and $g(S) = \left|\bigcap_{s \in S} A_s \cap \bigcap_{s' \notin S} (X - A_{s'})\right|$. Then

$$f(S) = \sum_{S \subseteq T} g(T) \quad \Leftrightarrow \quad g(S) = \sum_{S \subseteq T} (-1)^{|T| - |S|} f(T)$$

Plug $S = \emptyset$ to the second equation. Note that $g(\emptyset) = 0$ and $f(\emptyset) = |X|$

$$0 = \sum_{T} (-1)^{|T|} f(T) \quad \Leftrightarrow \quad f(\emptyset) = \sum_{T \neq \emptyset} (-1)^{|T|+1} f(T).$$

And the latter is inclusion-exclusion formula.

Can't live without shattering.

Just in case you forgot.

 \mathcal{F}

 $Sh(\mathcal{F})$

For a finite lattice L and $F \subseteq L$, F shatters an element $y \in L$, iff

$$\forall z \leq y \;\; \exists x \in F \;\; \text{s.t.} \;\; z = y \land x.$$

The set of elements shattered by F is denoted Sh(F), and it is an order-ideal.

L satisfies Sauer-Shelah-Perles lemma (is SSP), if for any $F \subseteq L$ it holds: $|F| \leq |Sh(F)|$.

Theorem (Babai, Frankl)

If a lattice L has a non-vanishing Möbius function μ , then it is SSP.

Title

Theorem (Babai, Frankl)

If a lattice L has a non-vanishing Möbius function μ , then it is SSP.

Fix $F \subseteq L$ and consider an *F*-dimensional vector space $\mathbb{R}[F]$ over \mathbb{R} (doesn't really matter over what). That is, elements of $\mathbb{R}[F]$ are functions $f: F \to \mathbb{R}$.

For $x \in L$ let $\chi_x \in \mathbb{R}[F]$ be defined as $\chi_x = \mathbf{1}_{\{y \in F \mid y \ge x\}}$. That is, $\begin{cases} 1 \quad y \ge x; \\ 0 \quad \text{otherwise.} \end{cases}$ The set $\{\chi_x \mid x \in F\}$ is a basis of $\mathbb{R}[F]$. We claim that $\{\chi_x \mid x \in Sh(F)\}$ is also a basis. The claim then follows by comparing dimensions.

Note. Functions χ_x are defined only on F, but they are defined for any $x \in L$.

Theorem (Babai, Frankl)

If a lattice L has a non-vanishing Möbius function μ , then it is SSP.

Claim. If x is not shattered by F through y, then

$$\chi_x = -\sum_{y \le z < x} \frac{\mu(y, z)}{\mu(y, x)} \chi_z$$

Proof (of the claim). This is equivalent to

$$\sum_{\leq z \leq x} \mu(y, z) \chi_z = 0. \tag{*}$$

Now, why is this obvious?

- **1** Let's for a moment think of χ_z as defined on all L, not only on F.
- **2** The function (*) is constant on partitions $P_z = \{u | u \land x = z\}, z \in [y, x].$
- **B** By the definition of μ , (*) is 0 on P_z for $z \neq y$. Only P_y is a trouble.
- **4** But $P_y \cap F = \emptyset$, so (*) as a function on F doesn't see it. \Box

Theorem (Babai, Frankl)

If a lattice L has a non-vanishing Möbius function μ , then it is SSP.

And that's it! Once again:

- **1** The dimension of $\mathbb{R}[F]$ is |F|, $\{\chi_x \mid x \in F\}$ is its basis;
- **2** Using the claim, $\chi_x \in \text{Lin} \{\chi_z \mid z < x\}$, whenever $x \notin Sh(F)$;
- **B** As Sh(F) is an order-ideal, by iteratively applying the claim, we get $\chi_x \in \text{Lin} \{\chi_z \mid z \in Sh(F)\}$, for any $x \in L$.
- 5 So $|F| = \dim \mathbb{R}[F] \le \dim \operatorname{Lin} \{\chi_z \mid z \in Sh(F)\} \le |Sh(F)|.$

Geometric lattices

Let L be a finite lattice, which is:

1 atomic;

2 graded, that is, there is a rank function $r: L \to \mathbb{Z}$ such that every maximal chain in [0, x] has length r(x);

3 semimodular, that is, $r(x) + r(y) \ge r(x \land y) + r(x \lor y)$.

Such lattices are called *geometric*. Why do we care?

A matroid \mathcal{M} is a nonempty order-ideal $\mathcal{I} \subseteq 2^X$, X- finite, such that an exchange axiom holds:

for all $A, B \in \mathcal{I}$, |B| < |A|, there is $x \in A - B$ s.t. $B + x \in \mathcal{I}$. A rank r(S) of a set $S \subseteq X$ is $r(S) = \max\{|A| \mid A \in \mathcal{I}, A \subseteq S\}$. A set S is closed if it is maximal of its rank.

Theorem

A lattice L is geometric iff it is a lattice of closed sets of a matroid.

September 25, 2020

Geometric lattices (examples)

14/19

Title

Theorem (Rota, 1964)

For a geometric lattice L, for all $x \leq y$, $\mu(x, y)$ is nonzero and $\operatorname{sgn} \mu(x, y) = (-1)^{r(x)-r(y)}$.

There are many theorems about computing Möbius function. We'll need one of them:

Lemma

For 0-posets P and Q, let p: P be an order-preserving map such that

- for any $y \in Q$ there is $x \in P$ such that $p^{-1}[0, y] = [0, x];$
- $p^{-1}(0)$ contains at least two points.

Then for any $y \in Q$,

$$\sum_{x \colon p(x)=y} \mu(0,x) = 0.$$

Title

Lemma

For 0-posets P and Q, let p: P be an order-preserving mapping such that

for any y ∈ Q there is x ∈ P such that p⁻¹[0, y] = [0, x];
p⁻¹(0) contains at least two points.
Then for any y ∈ Q,

z

$$\sum_{z \colon p(z)=y} \mu(0,z) = 0.$$

Proof. Note that

$$\sum_{z: p(z) \le y} \mu(0, z) = \begin{bmatrix} \text{take } x = x(y) & \text{as} \\ \text{provided in } (1) \end{bmatrix} = \sum_{z \in [0, x]} \mu(0, z)$$
$$= \begin{bmatrix} 0 < x \text{ by } (1) \end{bmatrix} = 0.$$

And the statement follows by induction on y.

Möbius function of geometric lattices is alternating

Lemma

For 0-posets P and Q, let p: P be an order-preserving mapping such that

for any y ∈ Q there is x ∈ P such that p⁻¹[0, y] = [0, x];
p⁻¹(0) contains at least two points.
Then for any y ∈ Q,

z

z

$$\sum_{z: p(z)=y} \mu(0,z) = 0.$$

Corollary

For $a, b \in L$, $a \neq 0$, it holds:

$$\sum_{z \lor a=b} \mu(0, z) = 0.$$

Proof. Apply lemma to P = L, Q = [a, 1] and $p = A = \Box$

Theorem (Rota, 1964)

For a geometric lattice L, for all $x \leq y$, $\mu(x, y)$ is nonzero and $\operatorname{sgn} \mu(x, y) = (-1)^{r(x)-r(y)}$.

Proof. By induction: $\mu(0,0) = 1$ and $\mu(0,a) = -1$ for a - atom. Now let us take arbitrary y and a < y, an atom. Then (by Corollary):

$$\mu(0,y) = -\sum_{z < y \colon z \lor a = y} \mu(0,z).$$

If z < y and $z \lor a = y$ then $z \ge a$, hence $z \land a = 0$. By submodularity, $r(z) + 1 = r(z) + r(a) \ge r(0) + r(y) = r(y)$. Then r(z) = r(y) - 1 and the statement of the theorem follows. \Box

Thank you!

(In case you didn't have a good look last time.) September 25, 2020 19/19