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Incidence algebras.

For a finite lattice L (locally finite poset P), an incidence algebra
of L is a set of functions {« : I(L) — Z}, where

I(L) = {(z,y) € L? | # < y} with an associative convolution:

axBla,y) = > alx,2)B(zy),

z<z<y

Several special elements in incidence algebra are:

1o =

m0(z,y) = { =% 5 is a unit of the algebra;
0,z <y;

(=1

m 4 - unique left and right inverse of (, i.e. ux (=4, { * yu = d;

=1 "=y,
| x, =
ey - Zx§z<y p(x,z) otherwise.
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Some examples

Mobius function of
the boolean lattice is
(—1)!, where [ is the
length of the interval.

/‘(Oa )

It is zero above any
non-atomic join-
irreducible element...

1
-1 -1
0
_1{ O
1

2
1

but it also can be zero
in other cases.
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Why right inverse?

The explicit formula for p comes from expanding the formula p * { = d:

pel(e,n)=bma) & ploo) =1
prllz,y) =6(zy) © Y pz,z) =0

r<zy

Hence p(z,y) = — >, <., #(, 2) for x <y and this enables to
define p iteratively in a unique fashion. But saying that p is the right

inverse of ¢, { x = 4, is equivalent to pu(z,y) = — Zx<z§y w(z,y).
How does that follow?

First note, that any « for which a(z,z) = 1 has left and right inverse.
Let 6 be a left inverse for p, 6 x = 9, then

G = (0 ) % (¢ )
=0x(ux()xpu=0xpu=>9.
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In fact, matrices

Let n = |L| and let us enumerate the elements of L in any compatible
order (that is, x; <z, z; implies ¢ < j). Now, for o from the incidence
algebra of L we put into a correspondence an integer n X n matrix M,,

defined as:

o afwy, ;) x; <p w5
My(i,7) =
a(i-) {O otherwise
then

Mo Mpg(i, §) = >  Ma(i, k) Mps(k, j)
k

= > alwia)Blar 15) = Maws(i, j).
k:zi<pzp<pz;
Also, as the order is compatible, all those matrices are

upper-triangular. And if a(z,x) = 1 then det M, = 1 and thus M, is
invertible.
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prxi ((x1,22), (Y1, 42)) = pr(@, y1)pk (@2, y2)-

Proof. By induction:

prxi ((z1,22), (y1,y2)) = — Z prxx ((x1,22), (21, 22))
(z1,22)<(21,22)<(y1,y2)

== > ol z)px (2, 22)
21<21<y1; x2<22<y2
(21,22)#(y1,y2)

Z—Z pr(ry, z1) - Z pi (w2, 22) + pr (@1, Y1) pk (2, y2)

r1<21<Yy1 T2<22<y2

= pr(z1, Y1)k (T2, y2)
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Mobius inversion formula

Let f,g: L — Z. Then

f@)=> a(y) & g(@) =Y f(y)u(y, ).

y<z y<z

Proof. We use matrix representation. If we “interpret” f and g as
1 X n vectors then
f@)=>gy) = f=g M
y<z
thusg=g-Ms=g- MM, = f-M,.

Similarly, f(z) =325, 9(y) = f'= M- g', hence

fl@) = a(y) & g(@) = p(x,y)f(y)-

y>x y>x
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Inclusion-exclusion principle

Note that B, = 2 x --- x 2. Hence pug, (S,T) = (—1)I71=15I, where

S,T C n. Now we can derive inclusion-exclusion principle:

Let X = Ay U---UAy,. Let f(S) = |N,eq As| and
S) = |Naes As N Nyrgg(X — A) Then

)= g(T) & g(8)=>Y (-1)T5lf)

scT scT

Plug S = () to the second equation. Note that g()) = 0 and f(0) = |X|

0=> (-DTFT) & f0)=D (-HTHFHD).
T T4

And the latter is inclusion-exclusion formula.
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Can’t live without shattering.

Sh(F) Just in case you forgot.

f
For a finite lattice L and F' C L, I’ shatters
an element y € L, iff
Ve<y dx € F st. z=yAz.
The set of elements shattered by F' is denoted
Sh(F), and it is an order-ideal.
F Sh(F)

L satisfies Sauer-Shelah-Perles lemma (is
% SSP), if for any F' C L it holds: |F| < |Sh(F)].

Theorem (Babai, Frankl)

If a lattice L has a non-vanishing Mobius
function p, then it is SSP.
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Proof of the theorem.

Theorem (Babai, Frankl)

If a lattice L has a non-vanishing Mobius function u, then it is SSP.

Fix F C L and consider an F-dimensional vector space R[F] over R
(doesn’t really matter over what). That is, elements of R[F] are
functions f: F' — R.

For x € L let x, € R[F] be defined as x; = lycp | y>2}- That is,
L yzuwx;
0 otherwise.

The set {xz | * € F'} is a basis of R[F]. We claim that
{xz | x € Sh(F)} is also a basis. The claim then follows by comparing
dimensions.

Note. Functions y, are defined only on F', but they are defined for
any x € L.
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Proof of the theorem.

Theorem (Babai, Frankl)

If a lattice L has a non-vanishing Mobius function p, then it is SSP.

Claim. 1If z is not shattered by F' through y, then

(y, 2
Xz = — Z E §Xz
y<o<z By,
Proof (of the claim). This is equivalent to
> wly,2)x. =0. (*)
y<z<z
Now, why is this obvious?

Let’s for a moment think of y, as defined on all L, not only on F'.
The function (¥ is constant on partitions P,={u|uAx =2z}, z € [y, x].
By the definition of p, () is 0 on P, for z#y. Only P, is a trouble.
But P,NF = 0, so (%) as a function on F' doesn’t see it. [

September 25, 2020 11/19



Proof of the theorem.

Theorem (Babai, Frankl)

If a lattice L has a non-vanishing Mobius function p, then it is SSP.

And that’s it! Once again:
The dimension of R[F] is |F|, {xz | * € F'} is its basis;
Using the claim, x, € Lin{x: | z < 2}, whenever x ¢ Sh(F);

=

As Sh(F) is an order-ideal, by iteratively applying the claim, we
get x5 € Lin{x. | z € Sh(F)}, for any = € L.

Thus, R[F] = Lin{x, | x € F} <Lin{x. | z € Sh(F)};

So |F| = dim R[F] < dimLin {x. | z € Sh(F)} < |Sh(F)|.

-
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Geometric lattices

Let L be a finite lattice, which is:
atomic;

graded, that is, there is a rank function r: L — Z such that every
maximal chain in [0, z] has length r(z);

semimodular, that is, r(xz) +r(y) > r(z Ay) +r(z Vy).

Such lattices are called geometric. Why do we care?

A matroid M is a nonempty order-ideal Z C 2%, X- finite, such that
an ezxchange aziom holds:

for all A, B € 7, |B| < |A|, thereis x € A—B s.t. B+z €Z.
A rank r(S) of aset S C X is r(S) =max{|A| | A€ Z,AC S}. A set

S is closed if it is maximal of its rank.

A lattice L is geometric iff it is a lattice of closed sets of a matroid. \
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Geometric lattices (examples)

o

Also anything modular...

&
A

. .alSO some Weird thlngs . .. .a‘nd the Fano plane. .

...and so on.
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Mobius function of geometric lattices is alternating

Theorem (Rota, 1964)

For a geometric lattice L, for all x <y, p(xz,y) is nonzero and
sgn p(z,y) = (—1)" @),

There are many theorems about computing Mdébius function. We’ll
need one of them:

Lemma

For 0-posets P and @, let p: P be an order-preserving map such that
m for any y € Q there is x € P such that p~1[0,y] = [0, z];

m p 1(0) contains at least two points.

Then for any y € Q,
> w0,z)=0.

z: p(z)=y
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Mobius function of geometric lattices is alternating

Lemma

For 0-posets P and Q, let p: P be an order-preserving mapping such
that

for any y € Q there is x € P such that p~*[0,y] = [0, x];
p~1(0) contains at least two points.

Then for any y € Q,
> w0,2)=0.

z: p(2)=y

Proof. Note that

Z (0, 2) = [take x = z(y) as] _ Z 1(0, 2)

rovided in (1
2 p(5)<y P )

=[0<azby(1)] =0.
And the statement follows by induction on y. (O

September 25, 2020 16 /19



Mobius function of geometric lattices is alternating

Lemma

For 0-posets P and @, let p: P be an order-preserving mapping such
that

for any y € Q there is x € P such that p~1[0,y] = [0, z];
p~1(0) contains at least two points.

Then for any y € Q,
Z w1(0,2) = 0.

z: p(z)=y

Fora,be L, a#0, it holds:

Z ©(0,z) = 0.

z: zVa=b

Proof. Apply lemma to P=L, Q =[a,1] and p = -V a. O
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Mobius function of geometric lattices is alternating

Theorem (Rota, 1964)

For a geometric lattice L, for all x <y, p(z,y) is nonzero and
sgn pu(z, y) = (—1)7@-W),

Proof. By induction: 1(0,0) =1 and p(0,a) = —1 for a - atom. Now
let us take arbitrary y and a < y, an atom. Then (by Corollary):

pOy) == Y u0,2).

z<y: zVa=y

If z<yand zVa=y then z 2 a, hence z A a = 0. By submodularity,
r(z) +1=r(z) +r(a) >r(0)+r(y) =r(y). Then r(z) =r(y) — 1 and
the statement of the theorem follows. [J
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Thank you!
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