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Reminder: Sauer-Shelah-Perles lemma

F

Sh(F)

Let us fix a base set X and a family F . A set
Y ⊆ X is shattered by F iff F|Y = 2Y .
Stated otherwise:

∀Z ⊆ Y ∃X ∈ F s.t. Z = Y ∩X.

Lemma (Sauer-Shelah-Perles)

Every family F shatters at least as many
elements as it has.

Alternatively, we can say that F is a subset of
a boolean lattice Bn, and an element y ∈ Bn

is shattered by F if

∀z ≤ y ∃X ∈ F s.t. z = y ∧ x.
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Lattices, satisfying SSP.

F Sh(F)

F Sh(F)

So, for original SSP lemma in the background
we always have a boolean lattice Bn, which
regulates how shattering is defined.

We can change BN to arbitrary finite lattice
to arbitrary lattice L, and say that F ⊆ L
shatters an element y ∈ L, iff

∀z ≤ y ∃x ∈ F s.t. z = y ∧ x.

We say that L satisfies Sauer-Shelah-Perles
lemma (is SSP), if for any F ⊆ L holds:
|F | ≤ |Sh(F )|.

Thus, all Bn are SSP, but, for example, a
chain of length at least two is not.
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Reminder: incidence algebras.

For a finite lattice L (locally finite pose P ), an incidence algebra of
L is a set of functions {f : I → Z}, where I = {(x, y) ∈ L2 | x ≤ y}
with an associative convolution:

f ∗ g(x, y) =
∑

x≤z≤y
f(x, z)g(z, y).

Several special elements in incidence algebra are:

δ(x, y) =

{
1, x = y,

0, x < y;
δ is a unit of the algebra;

ζ ≡ 1;

µ - unique left and right inverse of ζ, i.e. µ ∗ ζ = δ, ζ ∗ µ = δ;

µ(x, y) =

{
1 x = y;

−
∑

x≤z<y µ(x, z) otherwise.
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Sufficient condition for SSP.

So, which finite lattices are SSP? There is one nice sufficient condition
from László Babai, Péter Frankl. Linear algebra methods in
combinatorics.

Theorem ((S) Babai, Frankl)

If a lattice L has a non-vanishing Möbius function µ, then it is SSP.

2

-1 -1 -1

1

µ(0, ·)
0

-1

1

As we see, for M3 sufficient condition
(S) holds, so M3 is SSP. Same
argument shows that Mn is SSP for
all n ≥ 2, including M2 = B2.

For chains of length at least two, (S)
does not hold. Although this
condition is not necessary, such chains
are not SSP.
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Some examples: (S) is not necessary

0

-1
-1 -1

-1
1

1 1

1

µ(0, ·) For a lattice on the picture, µ vanishes on
the pair (0, 1), however the corresponding
lattice is SSP. We do not have a good
criterion to easily see this, however this
can be checked directly;

This example can be generalized by
adjoining an element in the similar way
to an SSP lattice with µ(0, 1) = −1.
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Very simple necessary condition

F

Sh(F )

Lemma

If L is SSP then it does not have a
three-element chain as a subinterval.

Proof: If x < y < z is such a subinterval,
then F = (z]− {x} can shatter only elements
in (z]− {x, y}.
A lattice is relatively complemented if
every interval is complemented. We refer to
Anders Björner, On complements in lattices of
finite length, 1981, where it is proved that L is
RC iff it has no 3-element interval.

Corollary (N)

SSP ⇒ RC.
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SSP
?
= RC.

The conjecture is stated in Stijn Cambie, Bogdan Chornomaz, Zeev
Dvir, Yuval Filmus, Shay Moran. A Sauer-Shelah-Perles lemma for
lattices.

Conjecture

SSP = RC.

RC is obviously closed under direct products. Moreover, in
Dilworth, The Structure of Relatively Complemented Lattices,
1950, it is proven that every RC lattice is a direct product of
simple RC lattices. SSP class is also closed under direct products
(the proof is easy).

As SSP is closed under direct product, and as we have an example
of SSP lattice with vanishing µ, we can construct an SSP lattice
where µ will vanish almost everywhere;

RC is also trivially closed under taking duals. We do not know
whether it holds for RC.
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Some notation.

When trying to approach SSP=RC conjecture we will use the following
notation:

Typically we deal with a finite RC lattice L, equipped with a
partial relative complementation function c(x, y, z) - complement
of y in [x, z], for x ≤ y ≤ z; C(x, y, z) is a set of all complements
of y in [x, z]. Thus, c(x, y, z) ∈ C(x, y, z).

We consider F ⊆ L. Str(F ) is the set of shattered elements of F .

The set of non-shattered elements of F is denoted by S,
S = L− Str(F ). It is an order-filter with minimal elements
x1, . . . , xn, forming an antichain.

Each xi is non-shattered through some yi. Sometimes, instead of
starting with F , we start with such xi’s and yi’s, calling it system.

We denote Si = [xi) and Ci = {u | u ∧ xi = y + i}. Then
S =

⋃
i Si, and we denote C =

⋃
iCi. Thus, F ⊆ L− C, and

generally we can assume that F = L− C.
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Some positive results for small n (n=1).

Note that to prove SSP=RC it is enough to show that for an arbitrary
system E = xi, yi it holds: |SE | ≤ |CE |, as that would imply:

|F | ≤ |L− CE | ≤ |L− SE | = | Str(F )|.

It turns out that when an antichain xi has one or two elements, we can
prove that |SE | ≤ |CE |. The case n = 1 is almost trivial.

Lemma

For y ≤ x, |Sx| ≤ |Cx|.

Proof. We claim that the mapping u 7→ c(y, x, u) is injective and maps
Sx to Cx. Indeed, x ∧ c(y, x, u) = y, so c(y, x, u) ∈ Cx. Also,
x ∨ c(y, x, u) = u which proves injectivity.
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Some positive results for small n (n=2).

We will use this simple but useful lemma

xb

xb ∧ v

xb ∨ v

xa

xa ∧ v

xa ∨ v

v

v+

v−

xb ∨ v+

xa ∧ v−

Lemma (*)

For arbitrary xa, v, xb ∈ L
there are elements v− and v+,
v− ≤ v ≤ v+ such that

v− ∨ xa = v ∨ xa = v+ ∨ xa,
v− ∧ xb = v ∧ xb = v+ ∧ xb,

and

v+ ∨ xb ≥ xa;

v− ∧ xa ≤ xb.
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Some positive results for small n (n=2).

xb

yb

xa

ya

u

v

v+

w
Lemma

For a system ya ≤ xa, yb ≤ xb, it holds
|S| ≤ |C|.

Proof. Let α : Sa → Ca, β : Sb−Sa → Cb be:

β(u) = c(yb, xb, u),

α(u) =

{
v = c(ya, xa, u), if v /∈ β[Sb − Sa];

v+, otherwise .

Then β is injective and maps into Cb. Also,
for u ∈ Sa, u = xa ∨ α(u), hence α is
injective, and it maps into C = Ca ∪ Cb.
Also, if α(u) = β(w) then α(u) = v+ for
v = c(ya, xa, u). But then w = v+ ∨ xb ≥ a,
which is impossible as w ∈ Sb − Sa.
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Graphs and types.

The case n = 3 is a stumbling stone for this approach. We still want to
apply (∗) to this case and see what we can get.

Definition

For a system ya ≤ xa, yb ≤ xb and yc ≤ xc, let Γ be a bipartite graph
with:

S and C are disjoint states of vertices of Γ. We say that vertices of
S are “black” and of C are “white”;

edges of Γ are colored with colors a, b and c;

there is an (undirected) a-edge from u ∈ C to v ∈ S if u ∨ xa = c.

Every white vertex has exactly one a, one b and one c-edge;
if u ∈ L is in S ∩ C, then it will correspond to two vertices in Γ,
one black and one white;
a black vertex u has an outgoing a-edge (in Γ) iff u ∈ Sa (in L);
edges of different colors can be parallel;
this definition can be easily formulated for other n’s.
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Graphs and types (n = 2 example).

Can this be a “proper” graph?

a
a

b
b a

a

b
b

Lemma (Extension property)

For any u ∈ C we should be able to
map the following path into Γ,
starting with u.

a a b b a b

u

and similarly for a and b swapped.

Proof. By application of (∗) (with
a and b swapped), as on the picture
below

xbxa

ya

u ∨ xa
v ∨ xb

u

v

v+

w

a a

b

b
a
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Proofs with graphs (n=2)

Let Γ be a bipartite graph with parts S and C and with edges colored
in a, b, such that:

every vertex from C has exactly one outgoing a-edge and one
b-edge;

every vertex in S has at least one outgoing edge;

extension property is satisfied.

Lemma

For every Γ as above, it holds |S| ≤ |C|.

Proof. Suppose not, and let us take a minimal (in |C|)
counterexample. As |S| > |C|, there is a black vertex x of degree 1,
w.l.g. the outgoing edge is a going to u.

a b b a b

x

u

y

v

z

w

Then on the picture we have y 6= x, z 6= x
and hence u 6= v. Then Γ′ obtained by
“contracting” x with z and u with v has
|S| > |C| and has smaller |C|.
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Proofs with graphs (n=3)

The “useful” property in this approach is extension property. How it
should be adapted for n = 3?

Definition (E1: extension property for n = 3, naive)

For any u ∈ C we should be able to map the following path into Γ,
starting with u.

a a b b a b

u

and similarly for any of the six pairs of letters from a, b, c.

But it should be more than that.
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Proofs with graphs (n=3)

The “useful” property in this approach is extension property. How it
should be adapted for n = 3?

Definition (E2: extension property for n = 3)

For any u ∈ C we should be able to map the following tree into Γ,
starting with u.

a a b b a b

c

c a
b

c

c

c a c

b

b a

b

c

u

and similarly for any of the six pairs of letters from a, b, c.

And even more than that.

Title September 21, 2020 17 / 46



Proofs with graphs (n=3)

For a white vertex u, its type, T (u), is a graph like that:

a

b

c A

B

C a

B

c

there are three vertices (n, in general), named after x’s: a, b and c;

vertex letters are either small or capitalized, independently of each
other;

edges are oriented and transitively closed (we don’t draw loops);

for a type T , we write A ∈ T (A /∈ T ) if a is capitalized (small)
in T , and a→ b ∈ T if T has an edge from a to b; also, A→ b ∈ T
if A ∈ T and a→ b ∈ T .

In Γ, constructed from L, and a white vertex u ∈ Γ, we put:

A ∈ T (u) iff u ∈ Ca;

a→ b ∈ T (u) iff u ∨ xa ≥ xb.
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Proofs with graphs (n=3)

Now we can reformulate extension properties in terms of types:

Definition (E3: extension property for n = 3, with types)

For any white vertex u:

1 there is an a-a-path from u to v such that
A ∈ T (v);

2 a→ b ∈ T (u) iff there is an a-b-path from u;

3 if A ∈ T (u) then there is a b-b-path from u to
u+ such that A→ b ∈ T (u+), and
E(T (u+)) ⊇ E(T (u)), that is, T (u+) has all
edges that T (u) has;

4 if a↔ b ∈ T (u) then a and b-edge from u go
to the same black vertex.

and similarly for any of the six pairs of letters
from a, b, c.

a a
A

1)

a b

a→ b
2)

b b

A A→ b
3)

a,b

a↔ b
4)
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Counterexample by Stijn Cambie

;

caab

b
c c a

bcc
a

a b b c

abb
c

c
a a b

c b b a a
c

a
b c a b

c

a, b, c

a, b, c

All in all,
E3⇒ E2⇒
E1.

This graph
has 14 black
elements,
17 white
elements.

It satisfies E2
but not E3.
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Counterexample to E3

bb

a

a

c

c

b b

a

a

c

c

a

b

c

b
b

ac

abc

a

a
bc

abc

cc
ab

abc

A
b

c

B
a

c

C
a

b A

B

C

A

B

C

# = 12
# = 13

AbC

aBC

ABc
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Do we need those tails?

Not really.
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Counterexample to E3

bb

a

a

c

c

b b

a

a

c

c

a

b

c

A
b

c

B
a

c

C
a

b

AbC

aBC

ABc

# = 6
# = 7

We modify the
definition of Γ: every
white vertex has at
most one a, b and
c-edge;

Extension properties
also got modified:

1) For any white
vertex u, if there is
an a-edge from u,
then there is an
a-a-path from u to v
such that A ∈ T (v).

and so on...
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Extension properties strengthening (conditions on y’s)

So, E3 is stronger than E2, which is stronger than E1. Can we make
those properties even stronger? Sure.

xbxa

ya

u

u−

xb ∧ u

xb ∧ u−

We now can make use of v−

from Lemma (∗) to get another
extension property.

Definition (E3+)

Unless yb ≤ ya, for a white
vertex u from Γ, if A ∈ T (u)
and there is a b-edge from u,
then there is a b-b-path from u
to u− such that A ∈ T (u−),
B /∈ T (u−), and
E(T (u−)) ⊆ E(T (u)).
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Extension properties strengthening

bb

a

a

c

c

b b

a

a

c

c

a

b

c

A
b

c

B
a

c

C
a

b

AbC

aBC

ABc

# = 6
# = 7

Looking at white
vertices ABc, AbC
and aBC, we see
that E3+ is not
satisfied, so we can
infer that (in L)

ya = yb = yc,

and we call it y.
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Extension properties strengthening (if all y’s are equal)

xb

y

z

w

v

u

xa u ∧ xb

xa ∧ xb

(u ∧ xb) ∨ xa

ψb
a(u) = w

xb

y

z

w

u

xa

xa ∧ xb

ϕb
a(u) = w

Lemma

If ya = yb then |Sa∆Sb| ≤ |Ca∆Cb|.

Y b
a = {u ∈ Sa − Sb | u ∧ xb > xa ∧ xb};

Xb
a = {u ∈ Sa − Sb | u ∧ xb = xa ∧ xb}.

And there are ψb
a : Y b

a → Ca − Cb.
ϕb
a : Xb

a → Cb − Ca, such that:

a
u ψb

a(u)

A �B
��a→b

a
u ϕb

a(u)

�A B
��a→b
b→a

b

u ψa
b (u)

�A B
��b→a

b

u ϕa
b (u)

A �B
��b→a
a→b
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Just a side remark

xb

y

z

w

v

u

xa u ∧ xb

xa ∧ xb

(u ∧ xb) ∨ xa

ψb
a(u) = w

xb

y

z

w

u

xa

xa ∧ xb

ϕb
a(u) = w

And, just in case:

ψb
a(u) = c

(
c
(
y, xa ∧ xb, u ∧ xb

)
,

u ∧ xb,

c
(
u ∧ xb, (u ∧ xb) ∨ xa, u

))

ϕb
a(u) = c

(
c
(
y, xa ∧ xb, xa

)
, xa, u

)

Those are “injective”. But is there
a way to characterize injective
polynomials in this language in
general? God knows.
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Extension properties strengthening

bb

a

a

c

c

b b

a

a

c

c

a

b

c

A
b

c

B
a

c

C
a

b

AbC

aBC

ABc# = 6
# = 7

Xb
a, Y c

a

Xb
c , Y a

c Xc
a, Y b

a

Xa
c , Y b

c

Xc
b , Y a

b

Xa
b , Y c

b

Now we can say, for
some black vertices,
whether they lie in
X’s or in Y ’s.

But all in all, the
counterexample
survives.
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Generic elements (an example)

So, we wold like to try and construct a lattice, corresponding to this
counterexample.

But it’s doubtful that we can construct a lattice, which “literally”
corresponds to this graph: in a lattice we should have a top element,
x’s and y’s, their joins and meets, which are not on the graph;

Instead, we want the graph to describe how “generic elements” should
behave.
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Generic elements

The encircled elements
are “generic”, we can
have n of them in each
ellipse, all of them are in
S ∪ C;

There are “generic”
elements outside of
S ∪ C and elements in
S ∪ C which are not
generic;

The example was used
to illustrate that we can
have |Sa∆Sb| > |Ca∆Cb|
in n = 2 case.

yb

xb

ya

xa

a

a
a b

A← b

A← B

aB
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Pumping (a way to handle “genericity”)

Definition

Let us take N ≥ 2, a prime number;
D ≥ 0, an integer; V = V (N,D), a
D-dimensional vector space over FN ; L, a
finite lattice (not necessarily RC);
K : L→ LinV . Then LK is a poset,
defined as:

Elements of LK are pairs (s, σ), where
s ∈ L and σ ∈ V/K(s);

The covering relation ≺LK is defined
by: (p, π) ≺LK (q, θ) iff p ≺L q and
π ∩ θ 6= ∅;
The partial order ≤LK is a reflexive
transitive closure of ≺LK .

V

∅

∅

V

(1, 0) (1, 1) (0, 1)

L

LK
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RC lattices through pumping

Theorem

LK is an RC lattice iff:

(0†) For e, z - top and bottom, E = Z = V .

(1†) For all p, r, P ∧R ≤ Kp∧r,Kp∨r.

(2†) For all p ≤ q ≤ r, Q ≤ P ∨R.

(3†) For any p ≤ r there is q, p ≤ q ≤ r,
such that Q = P ∨R.

(4†) For any 3-element interval p ≺ q ≺ r,
Q � P ∧R.

(5†) For q, r ≤ s, p, it holds

(S ∨R)∧ (P ∨Q) ≤
[
S′ ∧Q′

]
∨
[
P ′ ∧R′

]
,

where S′ = S ∨ T, . . . , R′ = R ∨ T and
T = (S∨Q)∧(S∨R)∧(P∨Q)∧(P∨R).

V

∅

∅

V

(1, 0) (1, 1) (0, 1)

L

LK

I’m not
a lattice
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RC lattices through pumping (some notes)

Condition (1†) is equivalent to:
{q ∈ L | v ∈ Q} is a sublattice
of L, for all v ∈ V ;

Condition (2†) is equivalent to:
{q ∈ L | Q ≤W} is convex in L,
for all W ∈ LinV (thanks Ralph);

Element q from (3†) has a comple-
ment s in [p, r], and S ≤ P ∧R;

If L is RC, we don’t need (4†);

We need (5†), but sometimes we
don’t;

Conditions for LK to be a lattice
are hard to pinpoint.

x, y, z

x y

x, z x, y + z ∅ x+ z, y y, z

x+ z y + z

x, y, z

Q R

S P

T

I break condition (5†)
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S.P.Q.R.

x, y, z

x y

x, z x, y + z ∅ x+ z, y y, z

x+ z y + z

x, y, z

Q R

S P

T
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Pumping, simplified

Let us fix a basis S in V , |S| = D.
Then linear closures of subsets of S
form a distributive sublattice of LinV .
Let Σ: L → 2S , KΣ : L → LinV ,
KΣ(x) = LinΣ(x), LΣ = LKΣ

Theorem

LΣ is an RC lattice iff:

(0‡) For e, z, top and bot, E = Z = V

(1‡) For all p, r, P ∩R ≤ Σp∧r,Σp∨r.

(2‡) For all p ≤ q ≤ r, Q ≤ P ∪R.

(3‡) For any p ≤ r there is q,
p ≤ q ≤ r, such that Q = P ∪R.

(4†) For any 3-element interval
p ≺ q ≺ r, Q ( P ∩R.
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PROFIT (maybe)

In context of pumping, we want to do the following:

Take a lattice L with fixed x’s and y’s;

Pump it;

Make sure that SK and CK are “images” of S and C - for this we
have to have X ≥ Y for each pair of x and y;

Make sure we can take N “large enough” (we can);

Let Smax ⊆ S and Cmax ⊆ C are the elements, having biggest
codimension in S ∪ C. They will dominate SK and CK ;

Even if L is not RC, and |S| ≤ |C|, we might construct K such
that LK is RC and |Smax| > |Cmax|;
Because elements in SK

max and CK
max dominate all others, we get

|SK | > |CK |;
PROFIT.

All in all, it’s the codimension of K that we care about.
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Which functions are expressible as codimensions?

Definition

We say that φ : L→ Q+ is
realizable if M · φ is a codimension
function for some K, satisfying
(0†)− (5†), for some positive
integer M .

Lemma

If φ is realizable then φ is
submodular, that is

1 ζ(e) = ζ(z) = 0, for e, z - top
and bot;

2 ζ(x)+ζ(y) ≥ ζ(x∨y)+ζ(x∧y).

And we need only (0†)− (2†) to
prove it.

0

1 1

0 2 0

1 1 1

0

I’m submodular
but not realizable

0

2

1 1 1

0
I’m K-realizable
but not Σ-realizable
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Wait, what about the Möbius function?

If we can construct LK breaking SSP , then it
breaks SSP for all N large enough; hence the
Möbius function should be vanishing for all N
large enough.

Lemma

If LK breaks SSP then the polynomial Möbius
function ML,K is vanishing, where
ML,K : {(x, y) | x, y ∈ L, x ≤ y} → Poly(t) is
defined as

ML,K(a, b) =
∑
C

(−1)l(C) · tPC ,

where the sum is over all chains C = k0, k1, . . . , kl
from a to b, and PC is

PC =
∑

i=0,...,l

dimKi −
∑

i=0,...,l−1

dimKi∧Ki+1− dimA∨B

µ(0, ·) 0

0 ∗

t−1 0

−1

1

To compute µ(0, ∗):

-1 +1 +t +t −t −t
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Trying to pump it up

bb

a

a

c

c
b b

a

a

c

c

a

b

c

A
b
c

B
a
c

C
a

b

AbC

aBC

ABc

b c a c a b

A b
c B

a
c C

a
b

ABc AbC aBC

y

That’s how it ideally might look. “Fat” dots on the lattice are pumped,
generic elements. All other elements should be either outside of C ∪ S
or small. But it’s not so simple.
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Trying to pump it up (constraints on kernels)

b

ABc

y

xb

u For pumping to preserve C and S, we
should have Xb ≥ Y , that is, xb is “less
generic” than y.

Element u should be “most generic” in
S ∪ C, thus U ≤ Xb. Indeed, if U > Xb then

xb itself is more generic than u; and if U is

incomparable to Xb, then there is v ∈ (xb, u) such

that V ≤ U ∧Xb < U . Then v ∈ Sb and v is more

generic than u.

Finally, KABc = U . As U ≤ Xb, we can argue

that xb has a complement ABc in the interval

[y, u]. Then KABc ≤ Y ∨ U = Y . Also, as

xb ∨ABc = u, U ≥ Xb ∧KABc = KABc. But if

U > KABc, then u is less generic than ABc.
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Trying to pump it up (some other elements)

*

*

*

b c

a c

a b

Ab
c

B
a
c

C
a
b

ABc AbC aBC

y

Elements marked with ∗ are
enforced by the construction
of Lemma (∗), dotted lines
mark complementation.

They are sandwiched
between fat black and fat
white elements, so they
cannot be “less generic”
than those.

Hence we need to ensure
they are not in S ∪ C.
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Trying to pump it up (... and other elements)

*

*

*

�

�

� �

♥

b c

a c
Ab

c

B
a
c

ABc AbC

y

xb

We need diamonds to ensure
that elements which shouldn’t
be in Cb do not get there. They
seem to might be made “small”.

But then we hearts as
complements of xb in the
intervals formed by diamonds
and fat b’s. Those should be
“generic”.

So now we have to ensure
hearts do not get into C, and so
on and so forth... But maybe
we can tame this process.
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Trying to pump it up (that which cannot be tamed)

� �. . .

u v

wb c a b

b

Ab
c C

a
b

ABc AbC aBC

y

xb

The element w in the center is
the meet of u and v. It is
generic as it is sandwiched
between AbC and u, v, while
U = V = KAbC .

It is also in Sb and, because
u ∈ Xa

b ∩ Y c
b and v ∈ Xc

b ∩ Y a
b ,

u and v are incomparable,
hence w < u, v.

All in all, w should be on the
picture with graph, but it isn’t.
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Trying to pump it up (that which cannot be tamed)

� �. . .

u v

wb c a b

b

Ab
c C

a
b

ABc AbC aBC

y

xb

In a way, w correspond to the
b-tail we’d cut from AbC. Yet
we’d hoped to remove this tail
from the picture by making it
“not generic” - but we cannot.

Also, it might not look so bad -
we got an additional element in
S, thus S is now even bigger,
right? But now we have to get
B-element which joins to w,
then apply Lemma (*), that is,
everything which is required by
extension properties.

All in all, w should be on the
picture with graph, but it isn’t.
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That which cannot be tamed and what to do about it

� �. . .

u v

wb c a b

b

Ab
c C

a
b

ABc AbC aBC

y

xb

TRY HARDER - just add those
elements to the graph, construct
new extension which takes them
into account, yet beats SSP,
and then lift it up to the lattice.

ALTERNATIVELY, there
might be a “better pumping”
out there, the one which would
be able to kill that element.

BUT MAYBE, by studying this
example, we can find another
conditions which hold in our
graphs - this would be helpful if
we’re trying to prove SSP=RC,
instead of disproving it.
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Thank you!

Pump a lattice → ??? → PROFIT
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