Join-Completions of Ordered Structures

Constantine Tsinakis Vanderbilt University

October 29, 2010

Join-completions

Abstract-Motivation

The aim of this talk is to present a systematic study of join-extensions of ordered structures.

Abstract Themes Join-Completions Ordered Structures Applications I

Applications II

Join-completions

Abstract-Motivation

The aim of this talk is to present a systematic study of join-extensions of ordered structures.

H. Ono, Completions of Algebras and Completeness of Modal and Substructural Logics, Advances in Modal Logics 4 (2002), 1- 20.

H. Ono, Closure Operators and Complete Embeddings of Residuated Lattices, Studia Logica 74 (3) (2003), 427 - 440.

Abstract	
Themes	
Join-Completions	
Ordered Structures	
Applications I	
Applications II	

(1) Abstract treatment of join-extensions

Abstract Themes Join-Completions

Ordered Structures

Applications I

Applications II

Join-completions

(1) Abstract treatment of join-extensions

(2) The role of nuclei and co-nuclei in logic

Abstract
Themes
Join-Completions
Ordered Structures
Applications I
Applications II

Join-completions

(1) Abstract treatment of join-extensions

(2) The role of nuclei and co-nuclei in logic

(3) Interaction of residuals with join extensions

Abstract
Themes
Join-Completions
Ordered Structures
Applications I
Applications II

Join-completions

(1) Abstract treatment of join-extensions

(2) The role of nuclei and co-nuclei in logic

(3) Interaction of residuals with join extensions

(4) Applications to important classes of ordered structures

Abstract
Themes
Join-Completions
Ordered Structures
Applications I
Applications II

Join-completions

Join-Completions

Join-completions

Join-Extensions and Join-Completions

A poset Q is called be an extension of a poset P provided $P \subseteq Q$ and the order of Q restricts to that of P. In case every element of Q is a join (in Q) of elements of P, we say that Q is a join-extension of P and that P is join-dense in Q. We use the term join-completion for a join-extension that is a complete lattice. The concepts of a meet-extension and a meet-completion are defined dually.

Abstract Themes

Join-Completions Join-Extensions Meets Lower Sets Representation Abstract Descript. (1) Abstract Descript. (2) Operators (1) Operators (2) Join-Completions (1)

Ordered Structures

Applications I

Applications II

C. Tsinakis - slide #5

Join-Extensions and Join-Completions

A poset Q is called be an extension of a poset P provided $P \subseteq Q$ and the order of Q restricts to that of P. In case every element of Q is a join (in Q) of elements of P, we say that Q is a join-extension of P and that P is join-dense in Q. We use the term join-completion for a join-extension that is a complete lattice. The concepts of a meet-extension and a meet-completion are defined dually.

Join-completions, introduced by B. Banaschewski, are intimately related to representations of complete lattices studied systematically by J.R. Büchi.

- B. Banaschewski, Hüllensysteme und Erweiterungen von Quasi-Ordunungen, Z. math. Logik Grundl. Math. 2 (1956), 117 130.
- J. R. Büchi, Representations of complete lattices by sets, Portugaliae Math. 11 (1952), 151 167.

Join-completions

Abstract Themes

Join-Completions Join-Extensions Meets Lower Sets Representation Abstract Descript. (1) Abstract Descript. (2) Operators (1) Operators (2) Join-Completions (1)

Ordered Structures

Applications I

Applications II

Preservation of Meets

If Q is a join-extension of P, then the inclusion map $i : P \rightarrow Q$ preserves all existing meets.

Equivalently, if $X \subseteq P$ and $\bigwedge^{\mathbf{P}} X$ exists, then $\bigwedge^{\mathbf{Q}} X$ exists and $\bigwedge^{\mathbf{P}} X = \bigwedge^{\mathbf{Q}} X$

Abstract Themes

Join-Completions Join-Extensions Meets Lower Sets Representation Abstract Descript. (1) Abstract Descript. (2) Operators (1) Operators (2) Join-Completions (1)

Applications I

Applications II

C. Tsinakis - slide #6

Preservation of Meets

If Q is a join-extension of P, then the inclusion map $i : P \rightarrow Q$ preserves all existing meets.

Equivalently, if $X \subseteq P$ and $\bigwedge^{\mathbf{P}} X$ exists, then $\bigwedge^{\mathbf{Q}} X$ exists and $\bigwedge^{\mathbf{P}} X = \bigwedge^{\mathbf{Q}} X$

Dually, If Q is a meet-extension of P, then the inclusion map $i : P \rightarrow Q$ preserves all existing joins.

Abstract Themes

Join-Completions
Join-Extensions
Meets
Lower Sets
Representation
Abstract Descript. (1)
Abstract Descript. (2)
Operators (1)
Operators (2)
Join-Completions (1)
Ordered Structures
Applications I

Applications II

C. Tsinakis - slide #6

Lower and Upper Sets

A subset *I* of a poset **P** is said to be a lower set of **P** if whenever $y \in P$, $x \in I$, and $y \leq x$, then $y \in I$. Note that the empty set \emptyset is a lower set.

A principal lower set is a lower set of the form

 $\downarrow a = \{x \in P \mid x \le a\} \ (a \in P).$ For $A \subseteq P$,

 $\downarrow A = \{x \in P \mid x \leq a, \text{ for some } a \in A\}$ denotes the smallest lower set containing A.

The set $\mathcal{L}(\mathbf{P})$ of lower sets of \mathbf{P} ordered by set inclusion is a complete lattice; the join is the set-union, and the meet is the set-intersection.

Abstract Themes

Join-Completions Join-Extensions Meets Lower Sets Representation Abstract Descript. (1) Abstract Descript. (2) Operators (1) Operators (2) Join-Completions (1)

Ordered Structures

Applications I

Applications II

C. Tsinakis - slide #7

Lower and Upper Sets

A subset *I* of a poset **P** is said to be a lower set of **P** if whenever $y \in P$, $x \in I$, and $y \leq x$, then $y \in I$. Note that the empty set \emptyset is a lower set.

A principal lower set is a lower set of the form

 $\downarrow a = \{x \in P \mid x \le a\} \ (a \in P).$ For $A \subseteq P$,

 $\downarrow A = \{x \in P \mid x \le a, \text{ for some } a \in A\}$ denotes the smallest lower set containing A.

The set $\mathcal{L}(\mathbf{P})$ of lower sets of \mathbf{P} ordered by set inclusion is a complete lattice; the join is the set-union, and the meet is the set-intersection.

The upper sets of P are defined dually. Further, we write $\mathcal{U}(\mathbf{P})$ for the lattice of upper sets of P, $\uparrow a = \{x \in P \mid a \leq x\}$ for $a \in P$, and $\uparrow A = \{x \in P \mid a \leq x, \text{ for some } a \in A\}$ for $A \subseteq P$. Abstract Themes

Join-Completions Join-Extensions Meets Lower Sets Representation Abstract Descript. (1) Abstract Descript. (2) Operators (1) Operators (2) Join-Completions (1)

Ordered Structures

Applications I

Applications II

Join-completions

C. Tsinakis - slide #7

Canonical Representation of Join-Extensions

Each join-extension ${\bf Q}$ of a poset ${\bf P}$ can be identified with its canonical image $\dot{{\bf Q}}$:

 $\mathbf{Q} = \{ \downarrow x \cap P : x \in Q \}.$

In particular, P can be identified with the poset $\dot{\mathbf{P}}$ of its principal lower sets:

$$\dot{\mathbf{P}} = \{ \downarrow x : x \in P \}.$$

Abstract Themes

Join-Completions Join-Extensions Meets Lower Sets Representation Abstract Descript. (1) Abstract Descript. (2) Operators (1) Operators (2) Join-Completions (1)

Ordered Structures

Applications I

Applications II

C. Tsinakis - slide #8

Canonical Representation of Join-Extensions

Each join-extension ${\bf Q}$ of a poset ${\bf P}$ can be identified with its canonical image $\dot{{\bf Q}}$:

 $\mathbf{Q} = \{ \downarrow x \cap P : x \in Q \}.$

In particular, P can be identified with the poset $\dot{\mathbf{P}}$ of its principal lower sets:

 $\mathbf{P} = \{ \downarrow x : x \in P \}.$

The largest join-extension of P is $\mathcal{L}(P)$. Thus, for any join-extension Q of P, we have $\dot{P} \subseteq \dot{Q} \subseteq \mathcal{L}(P)$.

Abstract Themes

```
Join-Completions
Join-Extensions
Meets
Lower Sets
Representation
Abstract Descript. (1)
Abstract Descript. (2)
Operators (1)
Operators (2)
Join-Completions (1)
```

Applications I

Applications II

C. Tsinakis - slide #8

Canonical Representation of Join-Extensions

Each join-extension ${\bf Q}$ of a poset ${\bf P}$ can be identified with its canonical image $\dot{{\bf Q}}$:

 $\dot{\mathbf{Q}} = \{ \downarrow x \cap P : x \in Q \}.$

In particular, P can be identified with the poset $\dot{\mathbf{P}}$ of its principal lower sets:

 $\mathbf{P} = \{ \downarrow x : x \in P \}.$

The largest join-extension of ${\bf P}$ is $\mathcal{L}({\bf P}).$ Thus, for any join-extension ${\bf Q}$ of ${\bf P},$ we have

 $\dot{\mathbf{P}} \subseteq \dot{\mathbf{Q}} \subseteq \mathcal{L}(\mathbf{P}).$

The smallest join-completion of P, is the so called Dedekind-MacNeille completion $\mathcal{N}(\mathbf{P})$. Its canonical image consists of all lower sets that are intersections of principal lower sets. Lastly, we will have an occasion to consider the ideal completion $\mathcal{I}(\mathbf{P})$ of a join-semilattice P.

Abstract Themes

```
Join-Completions
Join-Extensions
Meets
Lower Sets
Representation
Abstract Descript. (1)
Abstract Descript. (2)
Operators (1)
Operators (2)
Join-Completions (1)
Ordered Structures
Applications I
```

C. Tsinakis - slide #8

We often wish to look at the elements a joinextension of P as just elements – such as the elements of P itself – rather than certain lower sets of P.

Abstract Themes

Join-Completions

Join-Extensions Meets Lower Sets Representation Abstract Descript. (1) Abstract Descript. (2) Operators (1) Operators (2) Join-Completions (1)

Ordered Structures

Applications I

Applications II

C. Tsinakis - slide #9

We often wish to look at the elements a joinextension of P as just elements – such as the elements of P itself – rather than certain lower sets of P.

E.g., $\mathcal{L}(\mathbf{P})$ can be described abstractly as a bi-algebraic distributive lattice whose poset of completely join-prime elements is isomorphic to \mathbf{P} . $\mathcal{N}(\mathbf{P})$, has an equally satisfying abstract description due to Banaschewski: it is the only join and meet-completion of P. Abstract Themes

Join-Completions

Join-Extensions Meets Lower Sets Representation Abstract Descript. (1) Abstract Descript. (2) Operators (1) Operators (2) Join-Completions (1)

Ordered Structures

Applications I

Applications II

C. Tsinakis - slide #9

We often wish to look at the elements a joinextension of P as just elements – such as the elements of P itself – rather than certain lower sets of P.

E.g., $\mathcal{L}(\mathbf{P})$ can be described abstractly as a bi-algebraic distributive lattice whose poset of completely join-prime elements is isomorphic to \mathbf{P} . $\mathcal{N}(\mathbf{P})$, has an equally satisfying abstract description due to Banaschewski: it is the only join and meet-completion of P.

The ideal completion $\mathcal{I}(\mathbf{P})$ of a join-semilattice (lattice) \mathbf{P} can be described abstractly as an algebraic lattice whose join-semilattice (lattice) of compact elements is isomorphic to \mathbf{P} . Abstract Themes

Join-Completions

Join-Extensions Meets Lower Sets Representation Abstract Descript. (1) Abstract Descript. (2) Operators (1) Operators (2) Join-Completions (1)

Ordered Structures

Applications I

Applications II

000

C. Tsinakis - slide #9

Note that the inclusion map $i : \mathbf{P} \to \mathcal{N}(\mathbf{P})$ preserves all existing joins and meets. The **Crawley completion** $\mathcal{C}(\mathbf{P})$ – with canonical image consisting of all complete lower sets of \mathbf{P} , that is, lower sets that are closed with respect to any existing joins of their elements – is the largest join-completion with this property.

Abstract Themes

Join-Completions

Join-Extensions Meets Lower Sets Representation Abstract Descript. (1) Abstract Descript. (2) Operators (1) Operators (2) Join-Completions (1)

Ordered Structures

Applications I

Applications II

C. Tsinakis - slide #10

Recall that a closure operator on a poset P is a map $\gamma : \mathbf{P} \to \mathbf{P}$ with the usual properties of being order-preserving ($x \leq y \Rightarrow \gamma(x) \leq \gamma(y)$), enlarging ($x \leq \gamma(x)$), and idempotent ($\gamma(\gamma(x)) = \gamma(x)$). It is completely determined by its image \mathbf{P}_{γ} by virtue of the formula

 $\gamma(x) = \min\{c \in P_{\gamma} : x \le c\}.$

Abstract Themes

Join-Completions Join-Extensions Meets Lower Sets Representation Abstract Descript. (1)

Abstract Descript. (2) Operators (1) Operators (2) Join-Completions (1)

Ordered Structures

Applications I

Applications II

C. Tsinakis - slide #11

Recall that a closure operator on a poset P is a map $\gamma : \mathbf{P} \to \mathbf{P}$ with the usual properties of being order-preserving ($x \leq y \Rightarrow \gamma(x) \leq \gamma(y)$), enlarging ($x \leq \gamma(x)$), and idempotent ($\gamma(\gamma(x)) = \gamma(x)$). It is completely determined by its image \mathbf{P}_{γ} by virtue of the formula

 $\gamma(x) = \min\{c \in P_{\gamma} : x \le c\}.$

An opposite direction also holds: Let us call a closure retraction of P, a subposet C of P that satisfies:

 $\min\{a \in C : x \leq a\}$ exists for all $x \in P$.

Abstract Themes

Join-Completions
Join-Extensions
Meets
Lower Sets
Representation
Abstract Descript. (1)
Abstract Descript. (2)
Operators (1)
Operators (2)
Join-Completions (1)
Ordered Structures

Applications I

Applications II

Join-completions

Bijective Correspondence

- ★ If C is a closure retraction of P, then $\gamma_{C} : P \to P$ defined by $\gamma_{C}(x) = \min\{c \in C : x \leq c\}$ is a closure operator.
- ★ Conversely, if $\gamma : \mathbf{P} \to \mathbf{P}$ is a closure operator, then $\mathbf{P}_{\gamma} = \gamma[\mathbf{P}]$ is a closure retraction of P.
- \star Moreover, $\mathbf{P}_{\gamma_{\mathbf{C}}} = \mathbf{C}$ and $\gamma_{\mathbf{P}_{\gamma}} = \gamma$.

Abstract Themes

Join-Completions

Join-Extensions Meets Lower Sets Representation Abstract Descript. (1) Abstract Descript. (2) Operators (1) Operators (2) Join-Completions (1)

Ordered Structures

Applications I

Applications II

C. Tsinakis - slide #12

Bijective Correspondence

- ★ If C is a closure retraction of P, then $\gamma_{C} : P \to P$ defined by $\gamma_{C}(x) = \min\{c \in C : x \leq c\}$ is a closure operator.
- ★ Conversely, if $\gamma : \mathbf{P} \to \mathbf{P}$ is a closure operator, then $\mathbf{P}_{\gamma} = \gamma[\mathbf{P}]$ is a closure retraction of P.
- * Moreover, $\mathbf{P}_{\gamma_{\mathbf{C}}} = \mathbf{C}$ and $\gamma_{\mathbf{P}_{\gamma}} = \gamma$.

If Q is a join-completion of P, then Q is a closure retraction of $\mathcal{L}(\mathbf{P})$ and of $\wp(P)$. In what follows, we write $\gamma_{\mathbf{Q}}$ for the associated closure operator on $\mathcal{L}(\mathbf{P})$ and $\delta_{\mathbf{Q}}$ for the one on $\wp(P)$.

Abstract Themes

Join-Completions

Join-Extensions Meets Lower Sets Representation Abstract Descript. (1) Abstract Descript. (2) Operators (1) Operators (2) Join-Completions (1)

Ordered Structures

Applications I

Applications II

Back to Join-Completions

Abstract Themes

Join-Completions Join-Extensions Meets Lower Sets Representation Abstract Descript. (1) Abstract Descript. (2) Operators (1) Operators (2) Join-Completions (1)

Ordered Structures

Applications I

Applications II

Join-completions

Back to Join-Completions

There is a bijective correspondence between join-completions of \mathbf{P} and closure operators γ on $\mathcal{L}(\mathbf{P})$ with $P \subseteq \mathcal{L}(P)_{\gamma}$ Abstract Themes Join-Completions Join-Extensions Meets Lower Sets Representation Abstract Descript. (1) Abstract Descript. (2) Operators (1) Operators (2) Join-Completions (1)

Ordered Structures

Applications I

Applications II

C. Tsinakis - slide #13

Back to Join-Completions

Abstract Themes

Join-Completions Join-Extensions Meets Lower Sets Representation Abstract Descript. (1) Abstract Descript. (2) Operators (1) Operators (2) Join-Completions (1)

Ordered Structures

Applications I

Applications II

There is a bijective correspondence between join-completions of **P** and closure operators γ on $\mathcal{L}(\mathbf{P})$ with $P \subseteq \mathcal{L}(P)_{\gamma}$

There is a bijective correspondence between join-completions of **P** and closure operators δ on $\wp(P)$ with $P \subseteq \wp(P)_{\delta} \subseteq \mathcal{L}(P)$.

Join-completions

Join-Extensions of Ordered Structures

Join-completions

Given a partially ordered monoid – pom for short – P, the following question arises: Which join-completions of P are residuated lattices with respect to a, necessarily unique, multiplication that extends the multiplication of P?

Abstract Themes

Join-Completions

Ordered Structures Poms (1) Poms (2) Poms (3) Nuclei & Subacts Main Theorem Lemma

Applications I

Applications II

Join-completions

Given a partially ordered monoid – pom for short – P, the following question arises: Which join-completions of P are residuated lattices with respect to a, necessarily unique, multiplication that extends the multiplication of P?

Let $\mathbf{P} = \langle P, \cdot, \leq \rangle$ be a pom and let $x, y \in P$. We set: $x \setminus z = \max\{y \in P : xy \leq z\}$, and $z/x = \max\{y \in P : yx \leq z\}$, Abstract Themes

Join-Completions

Ordered Structures
Poms (1)
Poms (2)
Poms (3)
Nuclei $\&$ Subacts
Main Theorem
Lemma
Applications I
Applications II

Join-completions

Given a partially ordered monoid – pom for short – P, the following question arises: Which join-completions of P are residuated lattices with respect to a, necessarily unique, multiplication that extends the multiplication of P?

Let $\mathbf{P} = \langle P, \cdot, \leq \rangle$ be a pom and let $x, y \in P$. We set: $x \setminus z = \max\{y \in P : xy \leq z\}$, and $z/x = \max\{y \in P : yx \leq z\}$,

whenever these maxima exist.

Abstract Themes

Join-Completions

Ordered Structures
Poms (1)
Poms (2)
Poms (3)
Nuclei $\&$ Subacts
Main Theorem
Lemma
Applications I
Applications II

Join-completions

Given a partially ordered monoid – pom for short – P, the following question arises: Which join-completions of P are residuated lattices with respect to a, necessarily unique, multiplication that extends the multiplication of P?

Let $\mathbf{P} = \langle P, \cdot, \leq \rangle$ be a pom and let $x, y \in P$. We set: $x \setminus z = \max\{y \in P : xy \leq z\}$, and $z/x = \max\{y \in P : yx \leq z\}$,

whenever these maxima exist.

 $x \setminus z$ is read as "x under z" z/x is read as "z over x" Abstract Themes

Join-Completions

Ordered Structures
Poms (1)
Poms (2)
Poms (3)
Nuclei $\&$ Subacts
Main Theorem
Lemma
Applications I
Applications II
Applications I Applications II

A residuated partially ordered monoid – residuated pom – P is one in which all quotients $x \setminus z$ and z/xexist. In particular, the binary operations \setminus and / are defined everywhere on P.

Abstract Themes

Join-Completions

Ordered Structures
Poms (1)
Poms (2)
Poms (3)
Nuclei $\&$ Subacts
Main Theorem
Lemma
Applications I

Applications II

Join-completions

A residuated partially ordered monoid – residuated pom – P is one in which all quotients $x \setminus z$ and z/xexist. In particular, the binary operations \setminus and / are defined everywhere on P.

Alternatively, a residuated pom P is one in which the binary operation \cdot is residuated. This means that there exist binary operations \setminus and / on Psuch that for all $x, y, z \in P$,

 $xy \leq z$ iff $x \leq z/y$ iff $y \leq x \setminus z$.

Abstract Themes

Join-Completions

Ordered Structures Poms (1) Poms (2) Poms (3) Nuclei & Subacts Main Theorem Lemma

Applications II

A residuated partially ordered monoid – residuated pom – P is one in which all quotients $x \setminus z$ and z/xexist. In particular, the binary operations \setminus and / are defined everywhere on P.

Alternatively, a residuated pom P is one in which the binary operation \cdot is residuated. This means that there exist binary operations \setminus and / on Psuch that for all $x, y, z \in P$,

 $xy \le z$ iff $x \le z/y$ iff $y \le x \setminus z$.

We think of a residuated pom as a relational structure $\mathbf{P} = \langle P, \cdot, \backslash, /, 1, \leq \rangle$

Abstract Themes

Join-Completions

Ordered Structures Poms (1) Poms (2) Poms (3) Nuclei & Subacts Main Theorem Lemma Applications I

Applications II

Join-completions

A residuated partially ordered monoid – residuated pom – P is one in which all quotients $x \setminus z$ and z/xexist. In particular, the binary operations \setminus and / are defined everywhere on P.

Alternatively, a residuated pom P is one in which the binary operation \cdot is residuated. This means that there exist binary operations \setminus and / on Psuch that for all $x, y, z \in P$,

 $xy \le z$ iff $x \le z/y$ iff $y \le x \setminus z$.

We think of a residuated pom as a relational structure $\mathbf{P} = \langle P, \cdot, \backslash, /, 1, \leq \rangle$

A residuated lattice is a residuated lattice-ordered monoid $\mathbf{P} = \langle P, \wedge, \vee, \cdot, \backslash, /, 1 \rangle$

Abstract Themes

Join-Completions

Ordered Structures
Poms (1)
Poms (2)
Poms (3)
Nuclei $\&$ Subacts
Main Theorem
Lemma
Applications I
Applications II

Join-completions

Let P be a monoid. Then $\wp(\mathbf{P}) = \langle \wp(P), \cap, \cup, \cdot, \setminus, /, \{1\} \rangle$ is a residuated lattice where:

$$X \cdot Y = \{x \cdot y \mid x \in X, y \in Y\},\$$

$$X \setminus Y = \{z \mid X \cdot \{z\} \subseteq Y\}, \text{ and }$$

$$Y/X = \{z \mid \{z\} \cdot X \subseteq Y\}.$$

Abstract Themes

Join-Completions

Ordered Structures Poms (1) Poms (2) Poms (3) Nuclei & Subacts Main Theorem Lemma

Applications I

Applications II

Join-completions

Let P be a monoid. Then $\wp(\mathbf{P}) = \langle \wp(P), \cap, \cup, \cdot, \setminus, /, \{1\} \rangle$ is a residuated lattice where:

$$X \cdot Y = \{x \cdot y \mid x \in X, y \in Y\},\$$

$$X \setminus Y = \{z \mid X \cdot \{z\} \subseteq Y\}, \text{ and }$$

$$Y/X = \{z \mid \{z\} \cdot X \subseteq Y\}.$$

Let P be a pom. Then $\mathcal{L}(\mathbf{P}) = \langle \mathcal{L}(P), \cap, \cup, \cdot, \setminus, /, \{1\} \rangle$ is a residuated lattice where:

$$\begin{aligned} X \cdot Y = &\downarrow \{x \cdot y \mid x \in X, y \in Y\}, \\ X \setminus Y = \{z \mid X \cdot \{z\} \subseteq Y\}, \text{ and} \\ Y/X = \{z \mid \{z\} \cdot X \subseteq Y\}. \end{aligned}$$

Note: $(\downarrow x) \cdot (\downarrow y) = \downarrow (x \cdot y)$; hence $\dot{\mathbf{P}}$, is a submonoid of $\mathcal{L}(\mathbf{P})$

Abstract Themes

Join-Completions

Ordered Structures
Poms (1)
Poms (2)
Poms (3)
Nuclei & Subacts
Main Theorem
Lemma
Applications I
Applications II

Join-completions

A nucleus on a pom P is a closure operator γ on P such that $\gamma(a)\gamma(b) \leq \gamma(ab)$ (equivalently, $\gamma(\gamma(a)\gamma(b)) = \gamma(ab)$), for all $a, b \in P$.

Abstract Themes

Join-Completions

Ordered Structures Poms (1) Poms (2) Poms (3) Nuclei & Subacts Main Theorem Lemma

Applications I

Applications II

Join-completions

A nucleus on a pom P is a closure operator γ on P such that $\gamma(a)\gamma(b) \leq \gamma(ab)$ (equivalently, $\gamma(\gamma(a)\gamma(b)) = \gamma(ab)$), for all $a, b \in P$.

A closure retraction C of a residuated poset P is called a subact of P if x/y, $y \setminus x \in C$, for all $x \in C$ and $y \in P$.

Abstract Themes

Join-Completions

Ordered Structures
Poms (1)
Poms (2)
Poms (3)
Nuclei $\&$ Subacts
Main Theorem
Lemma
Applications I

Applications II

Join-completions

A nucleus on a pom P is a closure operator γ on P such that $\gamma(a)\gamma(b) \leq \gamma(ab)$ (equivalently, $\gamma(\gamma(a)\gamma(b)) = \gamma(ab)$), for all $a, b \in P$.

A closure retraction C of a residuated poset P is called a subact of P if x/y, $y \setminus x \in C$, for all $x \in C$ and $y \in P$.

Let γ be a closure operator on a residuated pom P, and let P_{γ} be the closure retraction associated with γ . Then γ is a nucleus iff P_{γ} is a subact of P.

 Join-Completions

 Ordered Structures

 Poms (1)

 Poms (2)

 Poms (3)

 Nuclei & Subacts

 Main Theorem

 Lemma

 Applications I

 Applications II

Abstract

Themes

Join-completions

A nucleus on a pom P is a closure operator γ on P such that $\gamma(a)\gamma(b) \leq \gamma(ab)$ (equivalently, $\gamma(\gamma(a)\gamma(b)) = \gamma(ab)$), for all $a, b \in P$.

A closure retraction C of a residuated poset P is called a subact of P if x/y, $y \setminus x \in C$, for all $x \in C$ and $y \in P$.

Let γ be a closure operator on a residuated pom P, and let \mathbf{P}_{γ} be the closure retraction associated with γ . Then γ is a nucleus iff \mathbf{P}_{γ} is a subact of P.

A subact \mathbf{P}_{γ} of a residuated pom \mathbf{P} is a residuated pom. The product of two elements $x, y \in \mathbf{P}_{\gamma}$ is given by $x \circ_{\gamma} y = \gamma(x \cdot y)$, and the residuals are the restrictions on \mathbf{P}_{γ} of the residuals of \mathbf{P} . In particular, if \mathbf{P} is a residuated lattice, then so is \mathbf{P}_{γ} , with $x \vee_{\gamma} y = \gamma(x \vee y)$ and $x \wedge_{\gamma} y = x \wedge y$ Abstract Themes

Join-Completions

```
Ordered Structures

Poms (1)

Poms (2)

Poms (3)

Nuclei & Subacts

Main Theorem

Lemma

Applications I

Applications II
```

Join-completions

Main Theorem

Let Q be a join completion of a pom P, let γ_{Q} be the associated closure operator on $\mathcal{L}(P)$, and let δ_{Q} be the one on $\wp(P)$. TFAE:

(1) Q is a residuated lattice with respect to a multiplication extends the multiplication of P.

(2) $a \setminus_{\mathcal{L}(\mathbf{P})} b \in Q$ and $b /_{\mathcal{L}(\mathbf{P})} a \in Q$, for all $a \in P$ and $b \in Q$.

- (3) $\gamma_{\mathbf{Q}}$ is a nucleus on $\mathcal{L}(\mathbf{P})$ (equivalently, \mathbf{Q} is a subact of $\mathcal{L}(\mathbf{P})$).
- (4) $\delta_{\mathbf{Q}}$ is a nucleus on $\wp(\mathbf{P})$ (equivalently, \mathbf{Q} is a subact of $\wp(\mathbf{P})$).

Furthermore, if the preceding conditions are satisfied, then the inclusion map $P \hookrightarrow Q$ preserves multiplication, all meets and all existing residuals. Abstract Themes

Join-Completions

Ordered Structures
Poms (1)
Poms (2)
Poms (3)
Nuclei & Subacts
Main Theorem
Lemma
Applications I
Applications II

Crucial Lemma

Let P be a pom and let Q be a join-completion of P that is a pom with respect to a multiplication that extends the multiplication of P. Then for all $a, b \in P$, if $a \setminus_{\mathbf{P}} b$ exists, then $a \setminus_{\mathbf{Q}} b$ exists and

$$a\backslash_{\mathbf{P}}b = a\backslash_{\mathbf{Q}}b = a\backslash_{\mathcal{L}(\mathbf{P})}b = a\backslash_{\wp(\mathbf{P})}b$$

Likewise for the other residual.

Abstract Themes

Join-Completions

Ordered Structures Poms (1) Poms (2) Poms (3) Nuclei & Subacts Main Theorem Lemma

Applications I

Applications II

Join-completions

Applications I

Join-completions

The Dedekind-MacNeille Completion

If P be a residuated pom, then its Dedekind-MacNeille completion $\mathcal{N}(\mathbf{P})$ is a residuated lattice. Moreover, the inclusion map $\mathbf{P} \hookrightarrow \mathcal{N}(\mathbf{P})$ preserves products, residuals, and all existing meets and joins.

Abstract Themes

Join-Completions

Ordered Structures

Applications I DM Completion

js-Monoids (1) js-Monoids (2)

Applications II

Join-completions

The Dedekind-MacNeille Completion

If P be a residuated pom, then its Dedekind-MacNeille completion $\mathcal{N}(\mathbf{P})$ is a residuated lattice. Moreover, the inclusion map $\mathbf{P} \hookrightarrow \mathcal{N}(\mathbf{P})$ preserves products, residuals, and all existing meets and joins.

All we need to prove is that if $a \in P$ and $b \in \mathcal{N}(P)$, then $a \setminus_{\mathcal{L}(\mathbf{P})} b \in \mathcal{N}(P)$ and $b /_{\mathcal{L}(\mathbf{P})} a \in \mathcal{N}(P)$.

Join-completions

The Dedekind-MacNeille Completion

If P be a residuated pom, then its Dedekind-MacNeille completion $\mathcal{N}(\mathbf{P})$ is a residuated lattice. Moreover, the inclusion map $\mathbf{P} \hookrightarrow \mathcal{N}(\mathbf{P})$ preserves products, residuals, and all existing meets and joins.

All we need to prove is that if $a \in P$ and $b \in \mathcal{N}(P)$, then $a \setminus_{\mathcal{L}(\mathbf{P})} b \in \mathcal{N}(P)$ and $b /_{\mathcal{L}(\mathbf{P})} a \in \mathcal{N}(P)$.

Let $a \in P$ and $b \in \mathcal{N}(P)$. Since P is meet-dense in $\mathcal{N}(\mathbf{P})$, there exists a family $(b_j \mid j \in J)$ of elements of P such that $b = \bigwedge_{j \in J} b_j$. We have: $a \setminus_{\mathcal{L}(\mathbf{P})} b = a \setminus_{\mathcal{L}(\mathbf{P})} \bigwedge_{j \in J} b_j = \bigwedge_{j \in J} (a \setminus_{\mathcal{L}(\mathbf{P})} b_j)$. Thus, $a \setminus_{\mathcal{L}(\mathbf{P})} b \in \mathcal{N}(P)$, since $a \setminus_{\mathcal{L}(\mathbf{P})} b_j = a \setminus_{\mathbf{P}} b_j$. Likewise, $b /_{\mathcal{L}(\mathbf{P})} a \in \mathcal{N}(P)$. Abstract Themes Join-Completions Ordered Structures Applications I DM Completion js-Monoids (1) js-Monoids (2) Applications II

000

C. Tsinakis - slide #22

A join-semilattice monoid, or simply js-monoid, is a pom that satisfies the equation

 $x(y \lor z)w \approx (xyw) \lor (xzw).$

Note that if a js-monoid P has a least element 0, then x0 = 0 = 0x, for all $x \in P$.

Abstract Themes

Join-Completions

Ordered Structures

Applications I DM Completion js-Monoids (1) js-Monoids (2)

Applications II

Join-completions

A join-semilattice monoid, or simply js-monoid, is a pom that satisfies the equation

 $x(y \lor z)w \approx (xyw) \lor (xzw).$

Note that if a js-monoid P has a least element 0, then x0 = 0 = 0x, for all $x \in P$.

Think of the ideal completion $\mathcal{I}(\mathbf{P})$ of \mathbf{P} as an algebraic lattice whose join-semilattice of compact elements is \mathbf{P} .

Abstract Themes

Join-Completions

Ordered Structures

Applications I DM Completion js-Monoids (1) js-Monoids (2)

Applications II

If P is a js-monoid, then its ideal completion $\mathcal{I}(P)$ is a residuated lattice. Moreover, the inclusion map preserves products, residuals, all existing meets and finite joins.

Abstract Themes Join-Completions Ordered Structures Applications I DM Completion js-Monoids (1) js-Monoids (2) Applications II

Join-completions

If P is a js-monoid, then its ideal completion $\mathcal{I}(P)$ is a residuated lattice. Moreover, the inclusion map preserves products, residuals, all existing meets and finite joins.

By Main Theorem, we need only need show that $a \setminus_{\mathcal{L}(\mathbf{P})} b \in \mathcal{I}(P)$ and $b /_{\mathcal{L}(\mathbf{P})} a \in \mathcal{I}(P)$, whenever $a \in P$ and $b \in \mathcal{I}(P)$. This is again simple:

Abstract Themes Join-Completions Ordered Structures Applications I DM Completion js-Monoids (1) js-Monoids (2) Applications II

Join-completions

If P is a js-monoid, then its ideal completion $\mathcal{I}(P)$ is a residuated lattice. Moreover, the inclusion map preserves products, residuals, all existing meets and finite joins.

By Main Theorem, we need only need show that $a \setminus_{\mathcal{L}(\mathbf{P})} b \in \mathcal{I}(P)$ and $b /_{\mathcal{L}(\mathbf{P})} a \in \mathcal{I}(P)$, whenever $a \in P$ and $b \in \mathcal{I}(P)$. This is again simple:

Let a and b as above. Define

$$< a, b >= \{x \in P : a \cdot x \le b\}, c = \bigvee^{\mathcal{I}(\mathbf{P})} < a, b > .$$

We remark that the product $a \cdot x$ in the definition of the set $\langle a, b \rangle$ takes place in \mathbf{P} – or in $\mathcal{L}(\mathbf{P})$, since \mathbf{P} is a submonoid of $\mathcal{L}(\mathbf{P})$. Is is almost immediate that $\langle a, b \rangle = \downarrow c \cap P$, and so $c = a \setminus_{\mathcal{L}(\mathbf{P})} b$. Abstract Themes Join-Completions Ordered Structures Applications I DM Completion is-Monoids (1)

js-Monoids (2)

Applications II

C. Tsinakis - slide #24

Applications II

Join-completions

An element 0 of a residuated pom P is called cyclic if for all $x \in P, 0/x = x \setminus 0$; it is called dualizing if it satisfies $0/(x \setminus 0) = (0/x) \setminus 0 = x$, for all $x \in P$. If 0 is a cyclic element, we will write $x \to 0$ for $0/x = x \setminus 0$.

Abstract
ThemesJoin-CompletionsOrdered StructuresApplications IApplications IIInvolutive RLs (1)
Involutive RLs (2)
DM Completion
ℓ-Groups (1)

 ℓ -Groups (2)

Join-completions

An element 0 of a residuated pom P is called cyclic if for all $x \in P, 0/x = x \setminus 0$; it is called dualizing if it satisfies $0/(x \setminus 0) = (0/x) \setminus 0 = x$, for all $x \in P$. If 0 is a cyclic element, we will write $x \to 0$ for $0/x = x \setminus 0$.

An involutive residuated lattice is an algebra $Q = \langle Q, \wedge, \vee, \cdot, \backslash, /, 1, 0 \rangle$ such that $Q' = \langle L, \wedge, \vee, \cdot, \backslash, /, 1 \rangle$ is a residuated lattice and 0 is a cyclic dualizing element of Q'.

If in the preceding definition we replace the term 'lattice' by the term 'poset', we obtain the concept of an involutive residuated pom

 $Q = \langle Q, \leq, \cdot, \backslash, /, 1, 0 \rangle.$

An element 0 of a residuated pom P is called cyclic if for all $x \in P, 0/x = x \setminus 0$; it is called dualizing if it satisfies $0/(x \setminus 0) = (0/x) \setminus 0 = x$, for all $x \in P$. If 0 is a cyclic element, we will write $x \to 0$ for $0/x = x \setminus 0$.

An involutive residuated lattice is an algebra $Q = \langle Q, \wedge, \vee, \cdot, \backslash, /, 1, 0 \rangle$ such that $Q' = \langle L, \wedge, \vee, \cdot, \backslash, /, 1 \rangle$ is a residuated lattice and 0 is a cyclic dualizing element of Q'.

If in the preceding definition we replace the term 'lattice' by the term 'poset', we obtain the concept of an involutive residuated pom

 $Q = \langle Q, \leq, \cdot, \backslash, /, 1, 0 \rangle.$

The choice of the term 'involutive' reflects the fact that the map $x \mapsto x \to 0$ is an involution of the underlying order-structure. In fact, we have:

Join-completions

An involutive residuated lattice Q is term equivalent to an algebra $\overline{\mathbf{Q}} = \langle Q, \wedge, \vee, \cdot, 1, ' \rangle$ satisfying: (1) $\langle Q, \cdot, 1 \rangle$ is a monoid; (2) $\langle Q, \wedge, \vee, ' \rangle$ is an involutive lattice; and (3) $xy \leq z \iff y \leq (z'x)' \iff x \leq (yz')'$, for all $x, y, z \in Q$.

Abstract Themes Join-Completions Ordered Structures Applications I Applications II Involutive RLs (1) Involutive RLs (2) DM Completion ℓ -Groups (1) ℓ -Groups (2)

Join-completions

An involutive residuated lattice \mathbf{Q} is term equivalent to an algebra $\overline{\mathbf{Q}} = \langle Q, \wedge, \vee, \cdot, 1, ' \rangle$ satisfying: (1) $\langle Q, \cdot, 1 \rangle$ is a monoid; (2) $\langle Q, \wedge, \vee, ' \rangle$ is an involutive lattice; and (3) $xy \leq z \iff y \leq (z'x)' \iff x \leq (yz')'$, for all $x, y, z \in Q$.

The Glivenko-Frink Theorem for Involutive RLs A subact C of a residuated pom P is an involutive pom iff $C = P_{\gamma_0}$ for some cyclic element 0 of P.

Recall that for a cyclic element 0 of a residuated pom P, γ_0 denotes the nucleus $x \mapsto (x \to 0) \to 0$ on P. Abstract Themes

Join-Completions

Ordered Structures

Applications I

Applications IIInvolutive RLs (1)Involutive RLs (2)DM Completion ℓ -Groups (1) ℓ -Groups (2)

Join-completions

The Join-Completion of an Inv. Res. Pom

Let P be a residuated poset and let Q be a join-completion of P that is a residuated lattice with respect to a multiplication that extends the multiplication of P. Then for every cyclic element 0 of P, \mathbf{Q}_{γ_0} is the Dedekind-MacNeille completion $\mathcal{N}(\mathbf{P}_{\gamma_0})$ of \mathbf{P}_{γ_0} .

Abstract Themes Join-Completions Ordered Structures Applications I Applications II Involutive RLs (1) Involutive RLs (2) DM Completion ℓ -Groups (1) ℓ -Groups (2)

The Join-Completion of an Inv. Res. Pom

Let P be a residuated poset and let Q be a join-completion of P that is a residuated lattice with respect to a multiplication that extends the multiplication of P. Then for every cyclic element 0 of P, \mathbf{Q}_{γ_0} is the Dedekind-MacNeille completion $\mathcal{N}(\mathbf{P}_{\gamma_0})$ of \mathbf{P}_{γ_0} .

In particular:

(1) $\mathcal{L}(\mathbf{P})_{\gamma_0}$ is the Dedekind-MacNeille completion of \mathbf{P}_{γ_0} .

(2) The Dedekind-MacNeille completion $\mathcal{N}(\mathbf{P})$ of an involutive residuated pom P is an involutive residuated lattice, and the only join-completion of P. Furthermore, the inclusion map $\mathbf{P} \hookrightarrow \mathcal{N}(\mathbf{P})$ preserves products, residuals, and all existing meets and joins. Abstract Themes Join-Completions Ordered Structures Applications I Applications II Involutive RLs (1) Involutive RLs (2) DM Completion ℓ -Groups (1) ℓ -Groups (2)

Join-completions

A partially ordered group G is an involutive residuated pom, and hence its Dedekind-MacNeille completion $\mathcal{N}(G)$ is an involutive residuated lattice. This completion is of little interest, since the presence of least and greatest elements prevents $\mathcal{N}(G)$ from being a partially ordered group.

Abstract Themes

Join-Completions

Ordered Structures

Applications I

Applications II Involutive RLs (1) Involutive RLs (2) DM Completion ℓ -Groups (1)

 ℓ -Groups (2)

Join-completions

A partially ordered group G is an involutive residuated pom, and hence its Dedekind-MacNeille completion $\mathcal{N}(G)$ is an involutive residuated lattice. This completion is of little interest, since the presence of least and greatest elements prevents $\mathcal{N}(G)$ from being a partially ordered group.

Let $\mathcal{N}(\mathbf{G})^{\sharp}$ denote the involutive pom obtained from $\mathcal{N}(\mathbf{G})$ by removing its least and greatest elements. Note that $\mathcal{N}(\mathbf{G})^{\sharp}$ is conditionally complete, and it is a lattice precisely when G is directed.

Abstract
Themes
lain Canadatiana
Join-Completions
Ordered Structures
Applications I
Applications II
Involutive RLs (1)
Involutive RLs (2)
DM Completion
ℓ -Groups (1)
ℓ -Groups (2)

A partially ordered group G is an involutive residuated pom, and hence its Dedekind-MacNeille completion $\mathcal{N}(G)$ is an involutive residuated lattice. This completion is of little interest, since the presence of least and greatest elements prevents $\mathcal{N}(G)$ from being a partially ordered group.

Let $\mathcal{N}(\mathbf{G})^{\sharp}$ denote the involutive pom obtained from $\mathcal{N}(\mathbf{G})$ by removing its least and greatest elements. Note that $\mathcal{N}(\mathbf{G})^{\sharp}$ is conditionally complete, and it is a lattice precisely when G is directed.

It is well-known that $\mathcal{N}(\mathbf{G})^{\sharp}$ is a conditionally complete ℓ -group iff \mathbf{G} is integrally closed (Krull, Lorenzen, Clifford, Everett and Ulam). [\mathbf{G} is said to be integrally closed if whenever $x, y \in G$ such that $y \leq x^n \ (n = 1, 2, ...)$, then $x \geq 1$.] Abstract Themes Join-Completions

Ordered Structures

Applications I

Applications II Involutive RLs (1) Involutive RLs (2) DM Completion ℓ -Groups (1) ℓ -Groups (2)

Join-completions

It is easy to verify that if $\mathcal{N}(\mathbf{G})^{\sharp}$ is conditionally complete, then \mathbf{G} is integrally closed (Kantorovitch).

Abstract Themes

Join-Completions

Ordered Structures

Applications I

Applications IIInvolutive RLs (1)Involutive RLs (2)DM Completion ℓ -Groups (1) ℓ -Groups (2)

Join-completions

It is easy to verify that if $\mathcal{N}(\mathbf{G})^{\sharp}$ is conditionally complete, then \mathbf{G} is integrally closed (Kantorovitch). Suppose next that \mathbf{G} is integrally closed. We observed that the map $x \mapsto x' = x \to 1$ is an involution of $\mathcal{N}(\mathbf{G})^{\sharp}$. Set $L_x = \downarrow x \cap G$, $U_x = \uparrow x \cap G$.

Abstract Themes

Join-Completions

Ordered Structures

Applications I

Applications IIInvolutive RLs (1)Involutive RLs (2)DM Completion ℓ -Groups (1) ℓ -Groups (2)

Join-completions

It is easy to verify that if $\mathcal{N}(\mathbf{G})^{\sharp}$ is conditionally complete, then G is integrally closed (Kantorovitch). Suppose next that G is integrally closed. We observed that the map $x \mapsto x' = x \to 1$ is an involution of $\mathcal{N}(\mathbf{G})^{\sharp}$. Set $L_x = \downarrow x \cap G$, $U_x = \uparrow x \cap G$. We wish to show that each $a \in \mathcal{N}(G)^{\sharp}$ is invertible, or equivalently that $1 \leq aa'$, for all $a \in \mathcal{N}(G)^{\sharp}$. This reduces to $1 < x, \forall x \in U_{aa'}$. Fix a and x. We have $a = \bigwedge U_a$, and hence, $a' = \bigvee U_a^{-1}$. Now aa' < $x \Rightarrow (a \bigvee U_a^{-1} < x \Rightarrow au^{-1} < x, \forall u \in U_a \Rightarrow a < u$ $xu, \forall u \in U_a \Rightarrow a \leq \bigwedge \{xu \mid u \in U_a\} = x(\bigwedge U_a) = xa$ (since multiplication by an invertible element is an order-automorphism of $\mathcal{N}(\mathbf{G})^{\sharp}$). We have $a \leq xa$, and hence $a \leq x^n a$ (for n = 1, 2, ...). Fix $u \in U_a$ and $w \in L_a$. Then $w \leq x^n u$, and so $wu^{-1} \leq x^n$ (for n = 1, 2, ...). Since G is integrally closed, $x \ge 1$.

Abstract Themes Join-Completions Ordered Structures Applications I Applications II Involutive RLs (1) Involutive RLs (2) DM Completion ℓ -Groups (1) ℓ -Groups (2)

Join-completions

C. Tsinakis - slide #30