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Abstract-Motivation

The aim of this talk is to present a systematic study
of join-extensions of ordered structures.
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Abstract-Motivation

The aim of this talk is to present a systematic study
of join-extensions of ordered structures.

H. Ono, Completions of Algebras and
Completeness of Modal and Substructural
Logics, Advances in Modal Logics 4 (2002),
1- 20.

H. Ono, Closure Operators and Complete
Embeddings of Residuated Lattices, Studia
Logica 74 (3) (2003), 427 - 440.
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Featured Themes

(1) Abstract treatment of join-extensions
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Featured Themes

(1) Abstract treatment of join-extensions

(2) The role of nuclei and co-nuclei in logic
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Featured Themes

(1) Abstract treatment of join-extensions

(2) The role of nuclei and co-nuclei in logic

(3) Interaction of residuals with join extensions
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Featured Themes

(1) Abstract treatment of join-extensions

(2) The role of nuclei and co-nuclei in logic

(3) Interaction of residuals with join extensions

(4) Applications to important classes of ordered
structures
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Join-Completions
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Join-Extensions and Join-Completions

A poset Q is called be an extension of a poset P
provided P ⊆ Q and the order of Q restricts to that
of P. In case every element of Q is a join (in Q) of
elements of P, we say that Q is a join-extension of
P and that P is join-dense in Q. We use the term
join-completion for a join-extension that is a
complete lattice. The concepts of a meet-extension
and a meet-completion are defined dually.
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Join-Extensions and Join-Completions

A poset Q is called be an extension of a poset P
provided P ⊆ Q and the order of Q restricts to that
of P. In case every element of Q is a join (in Q) of
elements of P, we say that Q is a join-extension of
P and that P is join-dense in Q. We use the term
join-completion for a join-extension that is a
complete lattice. The concepts of a meet-extension
and a meet-completion are defined dually.

Join-completions, introduced by B. Banaschewski,
are intimately related to representations of
complete lattices studied systematically by J.R.
Büchi.

B. Banaschewski, Hüllensysteme und Erweiterungen von Quasi-Ordunungen, Z.
math. Logik Grundl. Math. 2 (1956), 117 - 130.

J. R. Büchi, Representations of complete lattices by sets, Portugaliae Math. 11

(1952), 151 - 167.
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Preservation of Meets

If Q is a join-extension of P, then the inclusion
map i : P → Q preserves all existing meets.

Equivalently, if X ⊆ P and
∧P X exists, then

∧QX

exists and
∧PX =

∧Q X
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Preservation of Meets

If Q is a join-extension of P, then the inclusion
map i : P → Q preserves all existing meets.

Equivalently, if X ⊆ P and
∧P X exists, then

∧QX

exists and
∧PX =

∧Q X

Dually, If Q is a meet-extension of P, then the
inclusion map i : P → Q preserves all existing
joins.
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Lower and Upper Sets

A subset I of a poset P is said to be a lower set of
P if whenever y ∈ P , x ∈ I, and y ≤ x, then y ∈ I.
Note that the empty set ∅ is a lower set.
A principal lower set is a lower set of the form

↓ a = {x ∈ P | x ≤ a} (a ∈ P ).
For A ⊆ P ,

↓ A = {x ∈ P | x ≤ a, for some a ∈ A}
denotes the smallest lower set containing A.
The set L(P) of lower sets of P ordered by set
inclusion is a complete lattice; the join is the
set-union, and the meet is the set-intersection.
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Lower and Upper Sets

A subset I of a poset P is said to be a lower set of
P if whenever y ∈ P , x ∈ I, and y ≤ x, then y ∈ I.
Note that the empty set ∅ is a lower set.
A principal lower set is a lower set of the form

↓ a = {x ∈ P | x ≤ a} (a ∈ P ).
For A ⊆ P ,

↓ A = {x ∈ P | x ≤ a, for some a ∈ A}
denotes the smallest lower set containing A.
The set L(P) of lower sets of P ordered by set
inclusion is a complete lattice; the join is the
set-union, and the meet is the set-intersection.

The upper sets of P are defined dually. Further, we
write U(P) for the lattice of upper sets of P,

↑ a = {x ∈ P | a ≤ x} for a ∈ P , and
↑A = {x ∈ P | a ≤ x, for some a ∈ A} for A ⊆ P .
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Canonical Representation of Join-Extensions

Each join-extension Q of a poset P can be
identified with its canonical image Q̇ :

Q̇ = {↓ x ∩ P : x ∈ Q}.

In particular, P can be identified with the poset Ṗ
of its principal lower sets:

Ṗ = {↓ x : x ∈ P}.
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Canonical Representation of Join-Extensions

Each join-extension Q of a poset P can be
identified with its canonical image Q̇ :

Q̇ = {↓ x ∩ P : x ∈ Q}.

In particular, P can be identified with the poset Ṗ
of its principal lower sets:

Ṗ = {↓ x : x ∈ P}.

The largest join-extension of P is L(P). Thus, for
any join-extension Q of P, we have

Ṗ ⊆ Q̇ ⊆ L(P).
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Canonical Representation of Join-Extensions

Each join-extension Q of a poset P can be
identified with its canonical image Q̇ :

Q̇ = {↓ x ∩ P : x ∈ Q}.

In particular, P can be identified with the poset Ṗ
of its principal lower sets:

Ṗ = {↓ x : x ∈ P}.

The largest join-extension of P is L(P). Thus, for
any join-extension Q of P, we have

Ṗ ⊆ Q̇ ⊆ L(P).

The smallest join-completion of P, is the so called
Dedekind-MacNeille completion N (P). Its
canonical image consists of all lower sets that are
intersections of principal lower sets. Lastly, we will
have an occasion to consider the ideal completion
I(P) of a join-semilattice P.
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Abstract Description of Join-Extensions

We often wish to look at the elements a join-
extension of P as just elements – such as the ele-
ments of P itself – rather than certain lower sets of
P.
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Abstract Description of Join-Extensions

We often wish to look at the elements a join-
extension of P as just elements – such as the ele-
ments of P itself – rather than certain lower sets of
P.

E.g., L(P) can be described abstractly as a
bi-algebraic distributive lattice whose poset of
completely join-prime elements is isomorphic to P.

N (P), has an equally satisfying abstract
description due to Banaschewski: it is the only join
and meet-completion of P .
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Abstract Description of Join-Extensions

We often wish to look at the elements a join-
extension of P as just elements – such as the ele-
ments of P itself – rather than certain lower sets of
P.

E.g., L(P) can be described abstractly as a
bi-algebraic distributive lattice whose poset of
completely join-prime elements is isomorphic to P.

N (P), has an equally satisfying abstract
description due to Banaschewski: it is the only join
and meet-completion of P .
The ideal completion I(P) of a join-semilattice
(lattice) P can be described abstractly as an
algebraic lattice whose join-semilattice (lattice) of
compact elements is isomorphic to P.
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Abstract Description of Join-Extensions

Note that the inclusion map i : P → N (P)
preserves all existing joins and meets. The
Crawley completion C(P) – with canonical image
consisting of all complete lower sets of P, that is,
lower sets that are closed with respect to any
existing joins of their elements – is the largest
join-completion with this property.
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Closure Operators and Closure Retractions

Recall that a closure operator on a poset P is a
map γ : P → P with the usual properties of being
order-preserving (x ≤ y ⇒ γ(x) ≤ γ(y)), enlarging
(x ≤ γ(x)), and idempotent (γ(γ(x)) = γ(x)). It is
completely determined by its image Pγ by virtue of
the formula

γ(x) = min{c ∈ Pγ : x ≤ c}.
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Closure Operators and Closure Retractions

Recall that a closure operator on a poset P is a
map γ : P → P with the usual properties of being
order-preserving (x ≤ y ⇒ γ(x) ≤ γ(y)), enlarging
(x ≤ γ(x)), and idempotent (γ(γ(x)) = γ(x)). It is
completely determined by its image Pγ by virtue of
the formula

γ(x) = min{c ∈ Pγ : x ≤ c}.

An opposite direction also holds: Let us call a
closure retraction of P, a subposet C of P that
satisfies:
min{a ∈ C : x ≤ a} exists for all x ∈ P .
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Closure Operators and Closure Retractions

Bijective Correspondence

⋆ If C is a closure retraction of P, then γC : P → P

defined by γC(x) = min{c ∈ C : x ≤ c} is a
closure operator.

⋆ Conversely, if γ : P → P is a closure operator,
then Pγ = γ[P] is a closure retraction of P .

⋆ Moreover, Pγ
C
= C and γ

Pγ
= γ.
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Closure Operators and Closure Retractions

Bijective Correspondence

⋆ If C is a closure retraction of P, then γC : P → P

defined by γC(x) = min{c ∈ C : x ≤ c} is a
closure operator.

⋆ Conversely, if γ : P → P is a closure operator,
then Pγ = γ[P] is a closure retraction of P .

⋆ Moreover, Pγ
C
= C and γ

Pγ
= γ.

If Q is a join-completion of P, then Q is a closure
retraction of L(P) and of ℘(P ). In what follows, we
write γ

Q
for the associated closure operator on

L(P) and δ
Q

for the one on ℘(P ).
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Back to Join-Completions

    L"!#!
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Back to Join-Completions

    L"!#!
!

"#

P"!#!

!#

!!!

!!!!!δL"!#!

 

δ"#

γ"#
!

There is a bijective correspondence between join-completions of P

and closure operators γ on L(P) with P ⊆ L(P )γ
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Back to Join-Completions

    L"!#!
!

"#

P"!#!

!#
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δ"#

γ"#
!

There is a bijective correspondence between join-completions of P

and closure operators γ on L(P) with P ⊆ L(P )γ

There is a bijective correspondence between join-completions of P

and closure operators δ on ℘(P ) with P ⊆ ℘(P )δ ⊆ L(P ).
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Join-Extensions of Ordered Structures
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Residuals in Partially Ordered Monoids

Given a partially ordered monoid – pom for short –
P, the following question arises: Which
join-completions of P are residuated lattices with
respect to a, necessarily unique, multiplication that
extends the multiplication of P?
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Residuals in Partially Ordered Monoids

Given a partially ordered monoid – pom for short –
P, the following question arises: Which
join-completions of P are residuated lattices with
respect to a, necessarily unique, multiplication that
extends the multiplication of P?

Let P = 〈P, ·,≤〉 be a pom and let x, y ∈ P . We set:
x\z = max{y ∈ P : xy ≤ z}, and
z/x = max{y ∈ P : yx ≤ z},
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Residuals in Partially Ordered Monoids

Given a partially ordered monoid – pom for short –
P, the following question arises: Which
join-completions of P are residuated lattices with
respect to a, necessarily unique, multiplication that
extends the multiplication of P?

Let P = 〈P, ·,≤〉 be a pom and let x, y ∈ P . We set:
x\z = max{y ∈ P : xy ≤ z}, and
z/x = max{y ∈ P : yx ≤ z},

whenever these maxima exist.



Abstract
Themes

Join-Completions

Ordered Structures
Poms (1)
Poms (2)
Poms (3)
Nuclei & Subacts
Main Theorem
Lemma

Applications I

Applications II

Join-completions C. Tsinakis - slide #15

Residuals in Partially Ordered Monoids

Given a partially ordered monoid – pom for short –
P, the following question arises: Which
join-completions of P are residuated lattices with
respect to a, necessarily unique, multiplication that
extends the multiplication of P?

Let P = 〈P, ·,≤〉 be a pom and let x, y ∈ P . We set:
x\z = max{y ∈ P : xy ≤ z}, and
z/x = max{y ∈ P : yx ≤ z},

whenever these maxima exist.

x\z is read as “x under z”

z/x is read as “z over x”
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Residuals in Partially Ordered Monoids

A residuated partially ordered monoid – residuated
pom – P is one in which all quotients x\z and z/x
exist. In particular, the binary operations \ and /
are defined everywhere on P .
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Residuals in Partially Ordered Monoids

A residuated partially ordered monoid – residuated
pom – P is one in which all quotients x\z and z/x
exist. In particular, the binary operations \ and /
are defined everywhere on P .

Alternatively, a residuated pom P is one in which
the binary operation · is residuated. This means
that there exist binary operations \ and / on P
such that for all x, y, z ∈ P ,

xy ≤ z iff x ≤ z/y iff y ≤ x\z.
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Residuals in Partially Ordered Monoids

A residuated partially ordered monoid – residuated
pom – P is one in which all quotients x\z and z/x
exist. In particular, the binary operations \ and /
are defined everywhere on P .

Alternatively, a residuated pom P is one in which
the binary operation · is residuated. This means
that there exist binary operations \ and / on P
such that for all x, y, z ∈ P ,

xy ≤ z iff x ≤ z/y iff y ≤ x\z.

We think of a residuated pom as a relational
structure P = 〈P, ·, \, /, 1,≤〉
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Residuals in Partially Ordered Monoids

A residuated partially ordered monoid – residuated
pom – P is one in which all quotients x\z and z/x
exist. In particular, the binary operations \ and /
are defined everywhere on P .

Alternatively, a residuated pom P is one in which
the binary operation · is residuated. This means
that there exist binary operations \ and / on P
such that for all x, y, z ∈ P ,

xy ≤ z iff x ≤ z/y iff y ≤ x\z.

We think of a residuated pom as a relational
structure P = 〈P, ·, \, /, 1,≤〉

A residuated lattice is a residuated lattice-ordered
monoid P = 〈P,∧,∨, ·, \, /, 1〉
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Residuals in Partially Ordered Monoids
Let P be a monoid. Then
℘(P) = 〈℘(P ),∩,∪, ·, \, /, {1}〉 is a residuated
lattice where:

X · Y = {x · y | x ∈ X, y ∈ Y },

X\Y = {z | X · {z} ⊆ Y }, and

Y/X = {z | {z} ·X ⊆ Y }.
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Residuals in Partially Ordered Monoids
Let P be a monoid. Then
℘(P) = 〈℘(P ),∩,∪, ·, \, /, {1}〉 is a residuated
lattice where:

X · Y = {x · y | x ∈ X, y ∈ Y },

X\Y = {z | X · {z} ⊆ Y }, and

Y/X = {z | {z} ·X ⊆ Y }.

Let P be a pom. Then
L(P) = 〈L(P ),∩,∪, ·, \, /, {1}〉 is a residuated
lattice where:

X · Y =↓ {x · y | x ∈ X, y ∈ Y },

X\Y = {z | X · {z} ⊆ Y }, and

Y/X = {z | {z} ·X ⊆ Y }.

Note: (↓ x) · (↓ y) =↓ (x · y); hence Ṗ, is a
submonoid of L(P)
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Nuclei and Subacts

A nucleus on a pom P is a closure operator γ on P

such that γ(a)γ(b) ≤ γ(ab) (equivalently,
γ(γ(a)γ(b)) = γ(ab)), for all a, b ∈ P .
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Nuclei and Subacts

A nucleus on a pom P is a closure operator γ on P

such that γ(a)γ(b) ≤ γ(ab) (equivalently,
γ(γ(a)γ(b)) = γ(ab)), for all a, b ∈ P .
A closure retraction C of a residuated poset P is
called a subact of P if x/y, y\x ∈ C, for all x ∈ C
and y ∈ P .
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Nuclei and Subacts

A nucleus on a pom P is a closure operator γ on P

such that γ(a)γ(b) ≤ γ(ab) (equivalently,
γ(γ(a)γ(b)) = γ(ab)), for all a, b ∈ P .
A closure retraction C of a residuated poset P is
called a subact of P if x/y, y\x ∈ C, for all x ∈ C
and y ∈ P .
Let γ be a closure operator on a residuated pom
P, and let Pγ be the closure retraction associated
with γ. Then γ is a nucleus iff Pγ is a subact of P.
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Nuclei and Subacts

A nucleus on a pom P is a closure operator γ on P

such that γ(a)γ(b) ≤ γ(ab) (equivalently,
γ(γ(a)γ(b)) = γ(ab)), for all a, b ∈ P .
A closure retraction C of a residuated poset P is
called a subact of P if x/y, y\x ∈ C, for all x ∈ C
and y ∈ P .
Let γ be a closure operator on a residuated pom
P, and let Pγ be the closure retraction associated
with γ. Then γ is a nucleus iff Pγ is a subact of P.

A subact Pγ of a residuated pom P is a residuated
pom. The product of two elements x, y ∈ Pγ is
given by x ◦γ y = γ(x · y), and the residuals are the
restrictions on Pγ of the residuals of P. In
particular, if P is a residuated lattice, then so is Pγ,
with x ∨γ y = γ(x ∨ y) and x ∧γ y = x ∧ y
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Main Theorem

Let Q be a join completion of a pom P, let γ
Q

be
the associated closure operator on L(P), and let
δ
Q

be the one on ℘(P). TFAE:
(1) Q is a residuated lattice with respect to a

multiplication extends the multiplication of P.

(2) a\
L(P)

b ∈ Q and b/
L(P)

a ∈ Q, for all a ∈ P and
b ∈ Q.

(3) γ
Q

is a nucleus on L(P) (equivalently, Q is a
subact of L(P)).

(4) δ
Q

is a nucleus on ℘(P) (equivalently, Q is a
subact of ℘(P)).

Furthermore, if the preceding conditions are sat-
isfied, then the inclusion map P →֒ Q preserves
multiplication, all meets and all existing residuals.
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Crucial Lemma

Let P be a pom and let Q be a join-completion of
P that is a pom with respect to a multiplication that
extends the multiplication of P. Then for all
a, b ∈ P , if a\

P
b exists, then a\

Q
b exists and

a\
P
b = a\

Q
b = a\

L(P)
b = a\

℘(P)
b.

Likewise for the other residual.



Join-completions C. Tsinakis - slide #21

Applications I



Abstract
Themes

Join-Completions

Ordered Structures

Applications I
DM Completion
js-Monoids (1)
js-Monoids (2)

Applications II

Join-completions C. Tsinakis - slide #22

The Dedekind-MacNeille Completion

If P be a residuated pom, then its Dedekind-
MacNeille completion N (P) is a residuated lat-
tice. Moreover, the inclusion map P →֒ N (P) pre-
serves products, residuals, and all existing meets
and joins.



Abstract
Themes

Join-Completions

Ordered Structures

Applications I
DM Completion
js-Monoids (1)
js-Monoids (2)

Applications II

Join-completions C. Tsinakis - slide #22

The Dedekind-MacNeille Completion

If P be a residuated pom, then its Dedekind-
MacNeille completion N (P) is a residuated lat-
tice. Moreover, the inclusion map P →֒ N (P) pre-
serves products, residuals, and all existing meets
and joins.

All we need to prove is that if a ∈ P and b ∈ N (P ),
then a\

L(P)
b ∈ N (P ) and b/

L(P)
a ∈ N (P ).
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The Dedekind-MacNeille Completion

If P be a residuated pom, then its Dedekind-
MacNeille completion N (P) is a residuated lat-
tice. Moreover, the inclusion map P →֒ N (P) pre-
serves products, residuals, and all existing meets
and joins.

All we need to prove is that if a ∈ P and b ∈ N (P ),
then a\

L(P)
b ∈ N (P ) and b/

L(P)
a ∈ N (P ).

Let a ∈ P and b ∈ N (P ). Since P is meet-dense in
N (P), there exists a family (bj | j ∈ J) of elements
of P such that b =

∧
j∈J bj . We have:

a\
L(P)

b = a\
L(P)

∧
j∈J bj =

∧
j∈J(a\L(P)

bj).

Thus, a\
L(P)

b ∈ N (P ), since a\
L(P)

bj = a\
P
bj.

Likewise, b/
L(P)

a ∈ N (P ).
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Join-Semilattice Monoids

A join-semilattice monoid, or simply js-monoid, is a
pom that satisfies the equation

x(y ∨ z)w ≈ (xyw) ∨ (xzw).

Note that if a js-monoid P has a least element 0,
then x0 = 0 = 0x, for all x ∈ P.
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Join-Semilattice Monoids

A join-semilattice monoid, or simply js-monoid, is a
pom that satisfies the equation

x(y ∨ z)w ≈ (xyw) ∨ (xzw).

Note that if a js-monoid P has a least element 0,
then x0 = 0 = 0x, for all x ∈ P.

Think of the ideal completion I(P) of P as an
algebraic lattice whose join-semilattice of compact
elements is P.
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Join-Semilattice Monoids

If P is a js-monoid, then its ideal completion I(P )
is a residuated lattice. Moreover, the inclusion map
preserves products, residuals, all existing meets
and finite joins.
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Join-Semilattice Monoids

If P is a js-monoid, then its ideal completion I(P )
is a residuated lattice. Moreover, the inclusion map
preserves products, residuals, all existing meets
and finite joins.

By Main Theorem, we need only need show that
a\

L(P)
b ∈ I(P ) and b/

L(P)
a ∈ I(P ), whenever a ∈ P

and b ∈ I(P ). This is again simple:
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Join-Semilattice Monoids

If P is a js-monoid, then its ideal completion I(P )
is a residuated lattice. Moreover, the inclusion map
preserves products, residuals, all existing meets
and finite joins.

By Main Theorem, we need only need show that
a\

L(P)
b ∈ I(P ) and b/

L(P)
a ∈ I(P ), whenever a ∈ P

and b ∈ I(P ). This is again simple:

Let a and b as above. Define
< a, b >= {x ∈ P : a · x ≤ b}, c =

∨
I(P) < a, b > .

We remark that the product a · x in the definition of
the set < a, b > takes place in P – or in L(P), since
P is a submonoid of L(P). Is is almost immediate
that < a, b >=↓ c ∩ P, and so c = a\

L(P)
b.
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Applications II
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Involutive Residuated Lattices

An element 0 of a residuated pom P is called cyclic
if for all x ∈ P, 0/x = x\0; it is called dualizing if it
satisfies 0/(x\0) = (0/x)\0 = x, for all x ∈ P. If 0 is
a cyclic element, we will write x → 0 for 0/x = x\0.
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Involutive Residuated Lattices

An element 0 of a residuated pom P is called cyclic
if for all x ∈ P, 0/x = x\0; it is called dualizing if it
satisfies 0/(x\0) = (0/x)\0 = x, for all x ∈ P. If 0 is
a cyclic element, we will write x → 0 for 0/x = x\0.

An involutive residuated lattice is an algebra
Q = 〈Q,∧,∨, ·, \, /, 1, 0〉 such that
Q′ = 〈L,∧,∨, ·, \, /, 1〉 is a residuated lattice and 0
is a cyclic dualizing element of Q′.
If in the preceding definition we replace the term
‘lattice’ by the term ‘poset’, we obtain the concept
of an involutive residuated pom
Q = 〈Q,≤, ·, \, /, 1, 0〉.
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Involutive Residuated Lattices

An element 0 of a residuated pom P is called cyclic
if for all x ∈ P, 0/x = x\0; it is called dualizing if it
satisfies 0/(x\0) = (0/x)\0 = x, for all x ∈ P. If 0 is
a cyclic element, we will write x → 0 for 0/x = x\0.

An involutive residuated lattice is an algebra
Q = 〈Q,∧,∨, ·, \, /, 1, 0〉 such that
Q′ = 〈L,∧,∨, ·, \, /, 1〉 is a residuated lattice and 0
is a cyclic dualizing element of Q′.
If in the preceding definition we replace the term
‘lattice’ by the term ‘poset’, we obtain the concept
of an involutive residuated pom
Q = 〈Q,≤, ·, \, /, 1, 0〉.

The choice of the term ‘involutive’ reflects the fact
that the map x 7→ x → 0 is an involution of the
underlying order-structure. In fact, we have:
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Involutive Residuated Lattices

An involutive residuated lattice Q is term equivalent
to an algebra Q̄ = 〈Q,∧,∨, ·, 1,′ 〉 satisfying:

(1) 〈Q, ·, 1〉 is a monoid;

(2) 〈Q,∧,∨,′ 〉 is an involutive lattice; and

(3) xy ≤ z ⇐⇒ y ≤ (z′x)′ ⇐⇒ x ≤ (yz′)′, for all
x, y, z ∈ Q.
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Involutive Residuated Lattices

An involutive residuated lattice Q is term equivalent
to an algebra Q̄ = 〈Q,∧,∨, ·, 1,′ 〉 satisfying:

(1) 〈Q, ·, 1〉 is a monoid;

(2) 〈Q,∧,∨,′ 〉 is an involutive lattice; and

(3) xy ≤ z ⇐⇒ y ≤ (z′x)′ ⇐⇒ x ≤ (yz′)′, for all
x, y, z ∈ Q.

The Glivenko-Frink Theorem for Involutive RLs

A subact C of a residuated pom P is an involutive
pom iff C = Pγ0

for some cyclic element 0 of P.

Recall that for a cyclic element 0 of a residuated
pom P, γ0 denotes the nucleus x 7→ (x → 0) → 0
on P.
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The Join-Completion of an Inv. Res. Pom

Let P be a residuated poset and let Q be a
join-completion of P that is a residuated lattice with
respect to a multiplication that extends the
multiplication of P. Then for every cyclic element 0
of P, Qγ0

is the Dedekind-MacNeille completion
N (Pγ0

) of Pγ0
.
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The Join-Completion of an Inv. Res. Pom

Let P be a residuated poset and let Q be a
join-completion of P that is a residuated lattice with
respect to a multiplication that extends the
multiplication of P. Then for every cyclic element 0
of P, Qγ0

is the Dedekind-MacNeille completion
N (Pγ0

) of Pγ0
.

In particular:

(1) L(P)γ0
is the Dedekind-MacNeille completion

of Pγ0
.

(2) The Dedekind-MacNeille completion N (P) of
an involutive residuated pom P is an involutive
residuated lattice, and the only join-completion
of P. Furthermore, the inclusion map
P →֒ N (P) preserves products, residuals, and
all existing meets and joins.
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ℓ-Groups

A partially ordered group G is an involutive
residuated pom, and hence its Dedekind-MacNeille
completion N (G) is an involutive residuated lattice.
This completion is of little interest, since the
presence of least and greatest elements prevents
N (G) from being a partially ordered group.
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ℓ-Groups

A partially ordered group G is an involutive
residuated pom, and hence its Dedekind-MacNeille
completion N (G) is an involutive residuated lattice.
This completion is of little interest, since the
presence of least and greatest elements prevents
N (G) from being a partially ordered group.

Let N (G)♯ denote the involutive pom obtained from
N (G) by removing its least and greatest elements.
Note that N (G)♯ is conditionally complete, and it is
a lattice precisely when G is directed.
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ℓ-Groups

A partially ordered group G is an involutive
residuated pom, and hence its Dedekind-MacNeille
completion N (G) is an involutive residuated lattice.
This completion is of little interest, since the
presence of least and greatest elements prevents
N (G) from being a partially ordered group.

Let N (G)♯ denote the involutive pom obtained from
N (G) by removing its least and greatest elements.
Note that N (G)♯ is conditionally complete, and it is
a lattice precisely when G is directed.

It is well-known that N (G)♯ is a conditionally
complete ℓ-group iff G is integrally closed (Krull,
Lorenzen, Clifford, Everett and Ulam). [G is said to
be integrally closed if whenever x, y ∈ G such that
y ≤ xn (n = 1, 2, . . . ), then x ≥ 1.]
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ℓ-Groups

It is easy to verify that if N (G)♯ is conditionally
complete, then G is integrally closed (Kantorovitch).
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ℓ-Groups

It is easy to verify that if N (G)♯ is conditionally
complete, then G is integrally closed (Kantorovitch).
Suppose next that G is integrally closed. We
observed that the map x 7→ x′ = x → 1 is an
involution of N (G)♯. Set Lx =↓ x∩G, Ux =↑ x∩G.
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ℓ-Groups

It is easy to verify that if N (G)♯ is conditionally
complete, then G is integrally closed (Kantorovitch).
Suppose next that G is integrally closed. We
observed that the map x 7→ x′ = x → 1 is an
involution of N (G)♯. Set Lx =↓ x∩G, Ux =↑ x∩G.

We wish to show that each a ∈ N (G)♯ is invertible,
or equivalently that 1 ≤ aa′, for all a ∈ N (G)♯. This
reduces to 1 ≤ x,∀x ∈ Uaa′. Fix a and x. We have
a =

∧
Ua, and hence, a′ =

∨
Ua

−1. Now aa′ ≤
x ⇒ (a

∨
U−1
a ≤ x ⇒ au−1 ≤ x,∀u ∈ Ua ⇒ a ≤

xu,∀u ∈ Ua ⇒ a ≤
∧
{xu | u ∈ Ua} = x(

∧
Ua) = xa

(since multiplication by an invertible element is an
order-automorphism of N (G)♯). We have a ≤ xa,
and hence a ≤ xna (for n = 1, 2, . . . ). Fix u ∈ Ua

and w ∈ La. Then w ≤ xnu, and so wu−1 ≤ xn (for
n = 1, 2, . . . ). Since G is integrally closed, x ≥ 1.
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