The relationship of nilpotence to supernilpotence

Andrew Moorhead

Vanderbilt University

August 28, 2018

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Overview of Talk

1. Basic Definitions

- 1. Basic Definitions
- 2. Commutator Theory, Nilpotence, and Supernilpotence

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

- 1. Basic Definitions
- 2. Commutator Theory, Nilpotence, and Supernilpotence

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

3. Higher Dimensional Congruence Relations

- 1. Basic Definitions
- 2. Commutator Theory, Nilpotence, and Supernilpotence

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 3. Higher Dimensional Congruence Relations
- 4. A Stronger Term Condition and Commutator

- 1. Basic Definitions
- 2. Commutator Theory, Nilpotence, and Supernilpotence

- 3. Higher Dimensional Congruence Relations
- 4. A Stronger Term Condition and Commutator
- 5. Supernilpotent Taylor Algebras

- 1. Basic Definitions
- 2. Commutator Theory, Nilpotence, and Supernilpotence

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 3. Higher Dimensional Congruence Relations
- 4. A Stronger Term Condition and Commutator
- 5. Supernilpotent Taylor Algebras
- 6. Supernilpotence Need Not Imply Nilpotence

Let {f_i}_{i∈I} be a set of operation symbols and let σ : I → ω be a function that assigns a finite arity to each function symbol. An algebra is a pair

$$\mathbb{A} = \langle \mathsf{A}; \{f_i^{\mathbb{A}}\}_{i \in I} \rangle$$

where

- 1. A is a nonempty set called the **universe** of \mathbb{A} and
- f^A_i: A^{σ(i)} → A for each i ∈ I. These are called the basic operations of A.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Let {f_i}_{i∈I} be a set of operation symbols and let σ : I → ω be a function that assigns a finite arity to each function symbol. An algebra is a pair

$$\mathbb{A} = \langle \mathsf{A}; \{f_i^{\mathbb{A}}\}_{i \in I} \rangle$$

where

- 1. A is a nonempty set called the **universe** of \mathbb{A} and
- f^A_i : A^{σ(i)} → A for each i ∈ I. These are called the basic operations of A.
- ► A variety of algebras is a class V of similar algebras of the form

 $\mathcal{V} = \mathsf{MOD}(\Sigma)$

where $\boldsymbol{\Sigma}$ is a collection of identities, or universally quantified equations.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let {f_i}_{i∈I} be a set of operation symbols and let σ : I → ω be a function that assigns a finite arity to each function symbol. An algebra is a pair

$$\mathbb{A} = \langle \mathsf{A}; \{f_i^{\mathbb{A}}\}_{i \in I} \rangle$$

where

- 1. A is a nonempty set called the **universe** of \mathbb{A} and
- f^A_i : A^{σ(i)} → A for each i ∈ I. These are called the basic operations of A.
- ► A variety of algebras is a class V of similar algebras of the form

 $\mathcal{V} = \mathsf{MOD}(\Sigma)$

where Σ is a collection of **identities**, or universally quantified equations.For example, the variety of groups is axiomatized by the identities

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

1.
$$x(yz) \approx (xy)z$$
,
2. $x(x^{-1}) \approx (x^{-1})x \approx 1$, and

3. $1x \approx x1 \approx x$.

Let {f_i}_{i∈I} be a set of operation symbols and let σ : I → ω be a function that assigns a finite arity to each function symbol. An algebra is a pair

$$\mathbb{A} = \langle A; \{f_i^{\mathbb{A}}\}_{i \in I} \rangle$$

where

- 1. A is a nonempty set called the **universe** of \mathbb{A} and
- f_i^A: A^{σ(i)} → A for each i ∈ I. These are called the basic operations of A.
- ► A variety of algebras is a class V of similar algebras of the form

 $\mathcal{V} = \mathsf{MOD}(\Sigma)$

where Σ is a collection of **identities**, or universally quantified equations.For example, the variety of groups is axiomatized by the identities

1.
$$x(yz) \approx (xy)z$$
,

2.
$$x(x^{-1}) \approx (x^{-1})x \approx 1$$
, and

3. $1x \approx x1 \approx x$.

Varieties are exactly the HSP-closed classes (Birkhoff)

► A **function clone** on a set *A* is a multi-sorted algebraic structure

$$\mathcal{C} = \langle \mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_n, \dots; \circ, \{\pi_i^n : n \ge 1 \text{ and } 0 \le i < n\}
angle$$

where

- 1. each $C_n \subseteq A^{A^n}$,
- 2. C contains all projection operations: $\pi_i^n(x_0, \ldots, x_{n-1}) = x_i$, and
- 3. C is closed under composition, e.g. for $f \in C_n$ and

$$g_0,\ldots,g_{n-1}\in C_m$$

$$f \circ [g_0, \ldots, g_{n-1}] \in C_m.$$

► A **function clone** on a set *A* is a multi-sorted algebraic structure

$$\mathcal{C} = \langle C_1, C_2, \dots, C_n, \dots; \circ, \{\pi_i^n : n \ge 1 \text{ and } 0 \le i < n\} \rangle$$

where

- each C_n ⊆ Aⁿ,
 C contains all projection operations: πⁿ_i(x₀,...,x_{n-1}) = x_i, and
 C is closed under composition, e.g. for f ∈ C_n and g₀,...,g_{n-1} ∈ C_m
 f ∘ [g₀,...,g_{n-1}] ∈ C_m.
- Let A be an algebra. The clone of term operations of A is denoted by Clo(A) and is defined to be the smallest function clone containing all of the basic operations of A. (If A has null-ary operations we replace them by unary constant operations.)

► A **function clone** on a set *A* is a multi-sorted algebraic structure

$$\mathcal{C} = \langle \mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_n, \dots; \circ, \{\pi_i^n : n \ge 1 \text{ and } 0 \le i < n\}
angle$$

where

- each C_n ⊆ A^{Aⁿ},
 C contains all projection operations: πⁿ_i(x₀,..., x_{n-1}) = x_i, and
 C is closed under composition, e.g. for f ∈ C_n and g₀,..., g_{n-1} ∈ C_m
 f ∘ [g₀,..., g_{n-1}] ∈ C_m.
- Let A be an algebra. The clone of term operations of A is denoted by Clo(A) and is defined to be the smallest function clone containing all of the basic operations of A. (If A has null-ary operations we replace them by unary constant operations.)
- ▶ Let A be an algebra. The clone of polynomial operations of A is denoted by Pol(A) and is the smallest function clone containing the basic operations of A and all constants.

▶ Let A be an algebra with universe A and n ≥ 1 a natural number. A subset

$$R \subseteq A^n$$

is called an \mathbb{A} -invariant relation if it is closed under the basic operations of \mathbb{A} , equivalently, if R is a subalgebra of \mathbb{A}^n .

Let A be an algebra with universe A and n ≥ 1 a natural number. A subset

$$R \subseteq A^n$$

is called an A-**invariant relation** if it is closed under the basic operations of A, equivalently, if R is a subalgebra of \mathbb{A}^n .

► The invariant equivalence relations of an algebra A are called congruences. The collection of all congruences of an algebra forms an algebraic lattice under inclusion and is denoted by Con(A).

Commutator Theory

► The classical commutator for a universal algebra A is a binary operation

$$[\cdot,\cdot]:\mathsf{Con}(\mathbb{A})^2\to\mathsf{Con}(\mathbb{A})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

that allows one to define abelianness and generalizations of abelianness such as solvability and nilpotence.

Commutator Theory

► The classical commutator for a universal algebra A is a binary operation

$$[\cdot,\cdot]:\mathsf{Con}(\mathbb{A})^2\to\mathsf{Con}(\mathbb{A})$$

that allows one to define abelianness and generalizations of abelianness such as solvability and nilpotence.

► For example, an algebra A is said to be **abelian** if

$$[1,1] = 0.$$

Commutator Theory

 The classical commutator for a universal algebra A is a binary operation

$$[\cdot,\cdot]:\mathsf{Con}(\mathbb{A})^2\to\mathsf{Con}(\mathbb{A})$$

that allows one to define abelianness and generalizations of abelianness such as solvability and nilpotence.

► For example, an algebra A is said to be **abelian** if

$$[1,1] = 0.$$

The higher commutator is a higher arity operation that generalizes the binary commutator, e.g.

$$[\underbrace{\cdot,\ldots,\cdot}_n]:\mathsf{Con}(\mathbb{A})^n\to\mathsf{Con}(\mathbb{A})$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Definition

Let \mathbb{A} be an algebra and let $\theta \in Con(\mathbb{A})$. Set $[\theta]_0 = (\theta]^0 \coloneqq \theta$ and

$$[\theta]_{i+1} \coloneqq [[\theta]_i, [\theta]_i] \qquad ext{and} \qquad (heta]^{i+1} = [(heta]_i, heta]_{\mathcal{TC}}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

These produce two descending chains of congruences, called the **derived** and **lower central series**, respectively.

Definition

Let A be an algebra and let $\theta \in Con(A)$. Set $[\theta]_0 = (\theta]^0 \coloneqq \theta$ and

$$[\theta]_{i+1} \coloneqq [[\theta]_i, [\theta]_i]$$
 and $(\theta]^{i+1} = [(\theta]_i, \theta]_{TC}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

These produce two descending chains of congruences, called the **derived** and **lower central series**, respectively.

1. If $[\theta]_n = 0$ then θ is said to be *n*-step solvable.

Definition

Let \mathbb{A} be an algebra and let $\theta \in Con(\mathbb{A})$. Set $[\theta]_0 = (\theta]^0 \coloneqq \theta$ and

$$[\theta]_{i+1} \coloneqq [[\theta]_i, [\theta]_i]$$
 and $(\theta)^{i+1} = [(\theta]_i, \theta]_{TC}$.

These produce two descending chains of congruences, called the **derived** and **lower central series**, respectively.

- 1. If $[\theta]_n = 0$ then θ is said to be *n*-step solvable.
- 2. If $(\theta)^n = 0$, then θ is said to be *n*-step nilpotent.

Definition

Let \mathbb{A} be an algebra and let $\theta \in Con(\mathbb{A})$. Set $[\theta]_0 = (\theta]^0 \coloneqq \theta$ and

$$[\theta]_{i+1} \coloneqq [[\theta]_i, [\theta]_i]$$
 and $(\theta]^{i+1} = [(\theta]_i, \theta]_{TC}$.

These produce two descending chains of congruences, called the **derived** and **lower central series**, respectively.

- 1. If $[\theta]_n = 0$ then θ is said to be *n*-step solvable.
- 2. If $(\theta)^n = 0$, then θ is said to be *n*-step nilpotent.

3. If
$$\theta$$
 is such that $\underbrace{[\theta, \dots, \theta]}_{n+1} = 0$, then θ is said to be *n*-step supernilpotent.

 Supernilpotence and nilpotence are the same for groups and rings but in general they are different, even for expanded groups.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Supernilpotence and nilpotence are the same for groups and rings but in general they are different, even for expanded groups.
- Supernilpotence has received attention lately, partly because of theorems of the type 'nice property of finite nilpotent groups holds for finite supernilpotent algebras of finite type,' for example:

- Supernilpotence and nilpotence are the same for groups and rings but in general they are different, even for expanded groups.
- Supernilpotence has received attention lately, partly because of theorems of the type 'nice property of finite nilpotent groups holds for finite supernilpotent algebras of finite type,' for example:
 - 1. A finite Mal'cev algebra of finite type is supernilpotent if and only it is the product of prime power order nilpotent algebras. (Freese & McKenzie, Kearnes, Aichinger & Mudrinski)

- Supernilpotence and nilpotence are the same for groups and rings but in general they are different, even for expanded groups.
- Supernilpotence has received attention lately, partly because of theorems of the type 'nice property of finite nilpotent groups holds for finite supernilpotent algebras of finite type,' for example:
 - 1. A finite Mal'cev algebra of finite type is supernilpotent if and only it is the product of prime power order nilpotent algebras. (Freese & McKenzie, Kearnes, Aichinger & Mudrinski)
 - 2. There is a polynomial time algorithm to solve the equation satisfiability problem for a finite supernilpotent Mal'cev algebra of finite type. (Kompatscher)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The commutator is monotonic in each argument, so nilpotence is stronger than solvability.

- The commutator is monotonic in each argument, so nilpotence is stronger than solvability.
- The exact relationship between supernilpotence and nilpotence has been unclear.

- The commutator is monotonic in each argument, so nilpotence is stronger than solvability.
- The exact relationship between supernilpotence and nilpotence has been unclear.
- Aichinger and Mudrinski have shown any supernilpotent Mal'cev algebra is nilpotent.

- The commutator is monotonic in each argument, so nilpotence is stronger than solvability.
- The exact relationship between supernilpotence and nilpotence has been unclear.
- Aichinger and Mudrinski have shown any supernilpotent Mal'cev algebra is nilpotent.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 Kearnes and Szendrei have announced that any finite supernilpotent algebra is nilpotent.

- The commutator is monotonic in each argument, so nilpotence is stronger than solvability.
- The exact relationship between supernilpotence and nilpotence has been unclear.
- Aichinger and Mudrinski have shown any supernilpotent Mal'cev algebra is nilpotent.
- Kearnes and Szendrei have announced that any finite supernilpotent algebra is nilpotent.
- It follows from results of Wires that any supernilpotent algebra generating a modular variety is nilpotent.

- The commutator is monotonic in each argument, so nilpotence is stronger than solvability.
- The exact relationship between supernilpotence and nilpotence has been unclear.
- Aichinger and Mudrinski have shown any supernilpotent Mal'cev algebra is nilpotent.
- Kearnes and Szendrei have announced that any finite supernilpotent algebra is nilpotent.
- It follows from results of Wires that any supernilpotent algebra generating a modular variety is nilpotent.
- We can show any supernilpotent Taylor algebra is nilpotent. (A Taylor algebra is an algebra that satisfies some nontrivial idempotent Mal'cev condition.)

- The commutator is monotonic in each argument, so nilpotence is stronger than solvability.
- The exact relationship between supernilpotence and nilpotence has been unclear.
- Aichinger and Mudrinski have shown any supernilpotent Mal'cev algebra is nilpotent.
- Kearnes and Szendrei have announced that any finite supernilpotent algebra is nilpotent.
- It follows from results of Wires that any supernilpotent algebra generating a modular variety is nilpotent.
- We can show any supernilpotent Taylor algebra is nilpotent. (A Taylor algebra is an algebra that satisfies some nontrivial idempotent Mal'cev condition.)
- Moore and M. have constructed a supernilpotent algebra that is not solvable and hence not nilpotent. Note, this algebra is necessarily infinite and not Taylor.

Commutator Definition

The modular commutator can be equivalently defined by means of either

 The modular commutator can be equivalently defined by means of either

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

1. the term condition, or

- The modular commutator can be equivalently defined by means of either
 - 1. the term condition, or
 - 2. properties of a special invariant relation, usually called $\Delta.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- The modular commutator can be equivalently defined by means of either
 - 1. the term condition, or
 - 2. properties of a special invariant relation, usually called Δ .

Definition (Term Condition)

Let \mathbb{A} be an algebra and take $\alpha, \beta, \delta \in \text{Con}(\mathbb{A})$. We say that α **centralizes** β **modulo** δ when the following condition is met:

- The modular commutator can be equivalently defined by means of either
 - 1. the term condition, or
 - 2. properties of a special invariant relation, usually called Δ .

Definition (Term Condition)

Let \mathbb{A} be an algebra and take $\alpha, \beta, \delta \in \text{Con}(\mathbb{A})$. We say that α centralizes β modulo δ when the following condition is met:

► For all
$$t \in Pol(\mathbb{A})$$
 and $\mathbf{a}_0 \equiv_{\alpha} \mathbf{b}_0$ and $\mathbf{a}_1 \equiv_{\beta} \mathbf{b}_1$ with $|\mathbf{a}_0| + |\mathbf{a}_1| = \sigma(t)$,

$$\left(t(\mathbf{a}_0,\mathbf{a}_1)\equiv_{\delta} t(\mathbf{a}_0,\mathbf{b}_1)\implies t(\mathbf{b}_0,\mathbf{a}_0)\equiv_{\delta} t(\mathbf{b}_0,\mathbf{b}_1)\right)$$

- The modular commutator can be equivalently defined by means of either
 - 1. the term condition, or
 - 2. properties of a special invariant relation, usually called Δ .

Definition (Term Condition)

Let \mathbb{A} be an algebra and take $\alpha, \beta, \delta \in \text{Con}(\mathbb{A})$. We say that α centralizes β modulo δ when the following condition is met:

► For all
$$t \in Pol(\mathbb{A})$$
 and $\mathbf{a}_0 \equiv_{\alpha} \mathbf{b}_0$ and $\mathbf{a}_1 \equiv_{\beta} \mathbf{b}_1$ with $|\mathbf{a}_0| + |\mathbf{a}_1| = \sigma(t)$,

$$\left(t(\mathbf{a}_0,\mathbf{a}_1)\equiv_{\delta} t(\mathbf{a}_0,\mathbf{b}_1)\implies t(\mathbf{b}_0,\mathbf{a}_0)\equiv_{\delta} t(\mathbf{b}_0,\mathbf{b}_1)\right)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We write $C_{TC}(\alpha, \beta; \delta)$ whenever this is true.

- The modular commutator can be equivalently defined by means of either
 - 1. the term condition, or
 - 2. properties of a special invariant relation, usually called Δ .

Definition (Term Condition)

Let \mathbb{A} be an algebra and take $\alpha, \beta, \delta \in \text{Con}(\mathbb{A})$. We say that α centralizes β modulo δ when the following condition is met:

► For all
$$t \in Pol(\mathbb{A})$$
 and $\mathbf{a}_0 \equiv_{\alpha} \mathbf{b}_0$ and $\mathbf{a}_1 \equiv_{\beta} \mathbf{b}_1$ with $|\mathbf{a}_0| + |\mathbf{a}_1| = \sigma(t)$,

$$\left(t(\mathbf{a}_0,\mathbf{a}_1)\equiv_{\delta} t(\mathbf{a}_0,\mathbf{b}_1)\implies t(\mathbf{b}_0,\mathbf{a}_0)\equiv_{\delta} t(\mathbf{b}_0,\mathbf{b}_1)\right)$$

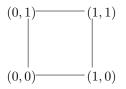
We write $C_{TC}(\alpha, \beta; \delta)$ whenever this is true.

The term condition may be described as a condition that is quantified over a certain invariant relation of A which is called the algebra of (α, β)-matrices and is denoted M(α,β).

A square is the graph (2²; E), where two functions f, g ∈ 2² are connected by an edge if and only if their outputs differ in exactly one argument.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

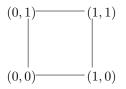
A square is the graph (2²; E), where two functions f, g ∈ 2² are connected by an edge if and only if their outputs differ in exactly one argument.



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We say that a relation R on a set A is 2-dimensional if R ⊆ A^{2²} (R is a set of squares whos vertices are labeled by elements of A.)

A square is the graph (2²; E), where two functions f, g ∈ 2² are connected by an edge if and only if their outputs differ in exactly one argument.

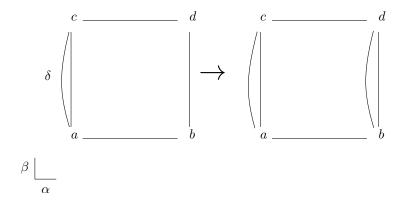


- We say that a relation R on a set A is 2-dimensional if R ⊆ A^{2²} (R is a set of squares whos vertices are labeled by elements of A.)
- $M(\alpha, \beta)$ is the subalgebra of \mathbb{A}^{2^2} with generators

$$\left\{ \left[\begin{array}{cc} x & y \\ x & y \end{array} \right] : x \equiv_{\alpha} y \right\} \bigcup \left\{ \left[\begin{array}{cc} y & y \\ x & x \end{array} \right] : x \equiv_{\beta} y \right\}$$

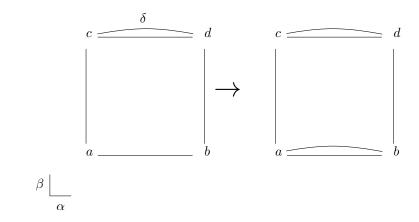
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For $\delta \in Con(\mathbb{A})$ we have that α centralizes β modulo δ if the implication



holds for all (α, β) -matrices. This condition is abbreviated $C_{TC}(\alpha, \beta; \delta)$.

Similarly, we have that $\ \beta$ centralizes α modulo δ if the implication



holds for all (α, β) -matrices. This condition is abbreviated $C_{TC}(\beta, \alpha; \delta)$.

The binary commutator is defined to be

$$[\alpha,\beta]_{TC} = \bigwedge \{\delta : C(\alpha,\beta;\delta)\}$$

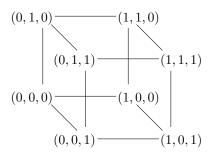
(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

The notions of matrices and centrality for three congruences are defined similarly.

- The notions of matrices and centrality for three congruences are defined similarly.
- ► A cube is the graph (2³; E), where two functions f, g ∈ 2³ are connected by an edge if and only if their outputs differ in exactly one argument.

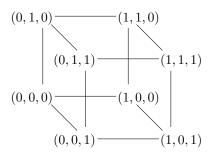
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- The notions of matrices and centrality for three congruences are defined similarly.
- ► A cube is the graph (2³; E), where two functions f, g ∈ 2³ are connected by an edge if and only if their outputs differ in exactly one argument.



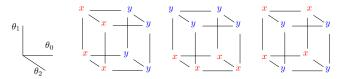
We say that a relation R on a set A is 3-dimensional if R ⊆ A^{3²} (R is a set of cubes whos vertices are labeled by elements of A.)

- The notions of matrices and centrality for three congruences are defined similarly.
- ► A cube is the graph (2³; E), where two functions f, g ∈ 2³ are connected by an edge if and only if their outputs differ in exactly one argument.



We say that a relation R on a set A is 3-dimensional if R ⊆ A^{3²} (R is a set of cubes whos vertices are labeled by elements of A.)

For congruences θ₀, θ₁, θ₂ ∈ Con(A), set M(θ₀, θ₁, θ₂) ≤ A^{2³} to be the subalgebra generated by the following labeled cubes:



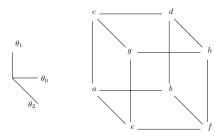
 $M(\theta_0, \theta_1, \theta_2)$ is called the algebra of $(\theta_0, \theta_1, \theta_2)$ -matrices.

・ロト ・雪ト ・ヨト ・

For δ ∈ Con(A), we say that θ₀, θ₁ centralize θ₂ modulo δ if the following implication holds for all (θ₀, θ₁, θ₂)-matrices:

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

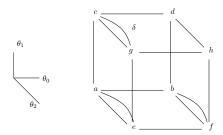
▶ For $\delta \in \text{Con}(\mathbb{A})$, we say that θ_0, θ_1 centralize θ_2 modulo δ if the following implication holds for all $(\theta_0, \theta_1, \theta_2)$ -matrices:



(日)

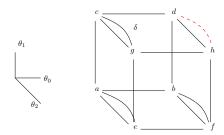
э

▶ For $\delta \in \text{Con}(\mathbb{A})$, we say that θ_0, θ_1 centralize θ_2 modulo δ if the following implication holds for all $(\theta_0, \theta_1, \theta_2)$ -matrices:



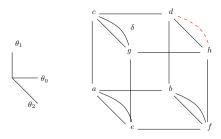
イロト イヨト イヨト

▶ For $\delta \in \text{Con}(\mathbb{A})$, we say that θ_0, θ_1 centralize θ_2 modulo δ if the following implication holds for all $(\theta_0, \theta_1, \theta_2)$ -matrices:



イロト イヨト イヨト

For δ ∈ Con(A), we say that θ₀, θ₁ centralize θ₂ modulo δ if the following implication holds for all (θ₀, θ₁, θ₂)-matrices:

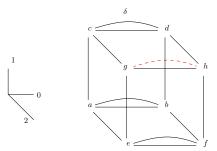


・ロト ・ 同ト ・ ヨト ・ ヨト

э

• This condition is abbreviated $C_{TC}(\theta_0, \theta_1, \theta_2; \delta)$.

• Here is a picture of $C_{TC}(\theta_1, \theta_2, \theta_0; \delta)$:



・ロト ・ 理 ト ・ ヨ ト ・

医▶ 医

• For congruences $\theta_0, \theta_1, \theta_2$ we set

$$[\theta_0, \theta_1, \theta_2]_{TC} = \bigwedge \{ \delta : C_{TC}(\theta_0, \theta_1, \theta_2; \delta) \}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

▶ For congruences $\theta_0, \theta_1, \theta_2$ we set

$$[\theta_0, \theta_1, \theta_2]_{TC} = \bigwedge \{ \delta : C_{TC}(\theta_0, \theta_1, \theta_2; \delta) \}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

► Higher centrality and the commutator for arity ≥ 4 are similarly defined.

An *n*-dimensional hypercube is the graph 𝔅_n = ⟨2ⁿ; 𝔅⟩, where two functions f, g ∈ 2ⁿ are connected by an edge if and only if their outputs differ in exactly one argument.

An *n*-dimensional hypercube is the graph 𝔅_n = ⟨2ⁿ; 𝔅⟩, where two functions f, g ∈ 2ⁿ are connected by an edge if and only if their outputs differ in exactly one argument.

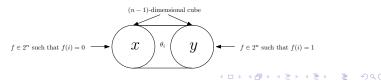
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We say that a relation R on a set A is n-dimensional if R ⊆ A^{2ⁿ}

- An *n*-dimensional hypercube is the graph 𝔅_n = ⟨2ⁿ; 𝔅⟩, where two functions f, g ∈ 2ⁿ are connected by an edge if and only if their outputs differ in exactly one argument.
- We say that a relation R on a set A is n-dimensional if R ⊆ A^{2ⁿ}
- ► Observation: The term condition definition of centrality involving *n*-many congruences θ₀,...,θ_{n-1} is a condition that is quantified over (θ₀,...,θ_{n-1})-matrices, which are certain *n*-dimensional invariant relations

$$M(\theta_0,\ldots,\theta_{n-1}) \leq \mathbb{A}^{2^n}$$

that have generators of the form



▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

1.
$$(\mathbb{H}_n)_i^0 = \langle \{f \in 2^n : f(i) = 0\}; E \rangle$$
 and

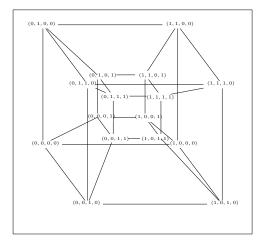
・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

1.
$$(\mathbb{H}_n)_i^0 = \langle \{f \in 2^n : f(i) = 0\}; E \rangle$$
 and

2.
$$(\mathbb{H}_n)_i^1 = \langle \{f \in 2^n : f(i) = 1\}; E \rangle.$$

1.
$$(\mathbb{H}_n)_{i=1}^0 = \langle \{f \in 2^n : f(i) = 0\}; E \rangle$$
 and

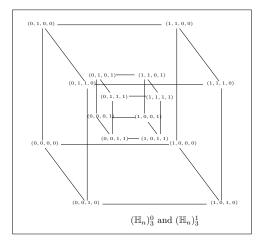
2.
$$(\mathbb{H}_n)_i^1 = \langle \{f \in 2^n : f(i) = 1\}; E \rangle.$$



▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

1.
$$(\mathbb{H}_n)_i^0 = \langle \{f \in 2^n : f(i) = 0\}; E \rangle$$
 and

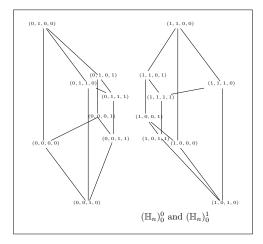
2.
$$(\mathbb{H}_n)_i^1 = \langle \{ f \in 2^n : f(i) = 1 \}; E \rangle.$$



▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

1.
$$(\mathbb{H}_n)_{i=1}^0 = \langle \{f \in 2^n : f(i) = 0\}; E \rangle$$
 and

2.
$$(\mathbb{H}_n)_i^1 = \langle \{f \in 2^n : f(i) = 1\}; E \rangle.$$



▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

► Take h ∈ A^{2ⁿ}. We consider h as a vertex labeled n-dimensional hypercube. For any coordinate i ∈ n, there are two (n − 1)-dimensional vertex labeled hyperfaces that are perpendicular to i, which we denote

► Take h ∈ A^{2ⁿ}. We consider h as a vertex labeled n-dimensional hypercube. For any coordinate i ∈ n, there are two (n − 1)-dimensional vertex labeled hyperfaces that are perpendicular to i, which we denote

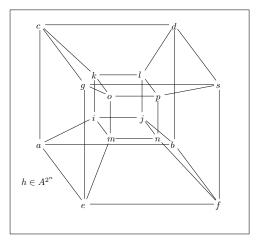
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

1.
$$h_i^0$$
 and

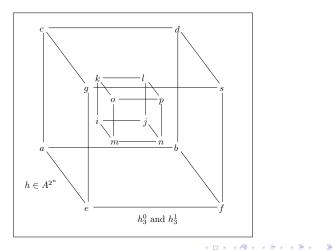
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

1.
$$h_i^0$$
 and
2. h_i^1 .

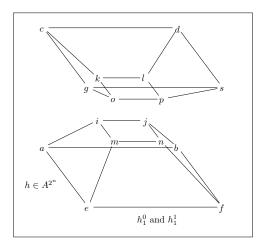
1.
$$h_i^0$$
 and
2. h_i^1 .



1.
$$h_i^0$$
 and
2. h_i^1 .



1.
$$h_i^0$$
 and
2. h_i^1 .



For
$$R \subseteq A^{2^n}$$
, set

$$R_i = \{ \langle h_i^0, h_i^1 \rangle : h \in R \}.$$

▶ For
$$R \subseteq A^{2^n}$$
, set

$$R_i = \{ \langle h_i^0, h_i^1 \rangle : h \in R \}.$$

Fact: Suppose A is a member of a permutable variety, and take (θ₀,...,θ_{n-1}) ∈ Con(A)ⁿ. Then,

$$M(\theta_0,\ldots,\theta_{n-1})_i$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

is a congruence relation, for all $i \in n$.

▶ For
$$R \subseteq A^{2^n}$$
, set

$$R_i = \{ \langle h_i^0, h_i^1 \rangle : h \in R \}.$$

Fact: Suppose A is a member of a permutable variety, and take (θ₀,...,θ_{n-1}) ∈ Con(A)ⁿ. Then,

$$M(\theta_0,\ldots,\theta_{n-1})_i$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

is a congruence relation, for all $i \in n$.

 This leads to a nice characterization of the commutator for permutable varieties.

Let \mathcal{V} be a permutable variety and let $\mathbb{A} \in \mathcal{V}$. For $\alpha, \beta \in Con(\mathbb{A})$, the following are equivalent:

Let \mathcal{V} be a permutable variety and let $\mathbb{A} \in \mathcal{V}$. For $\alpha, \beta \in Con(\mathbb{A})$, the following are equivalent:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

1. $\langle x, y \rangle \in [\alpha, \beta]_{TC}$

Let \mathcal{V} be a permutable variety and let $\mathbb{A} \in \mathcal{V}$. For $\alpha, \beta \in Con(\mathbb{A})$, the following are equivalent:

1.
$$\langle x, y \rangle \in [\alpha, \beta]_{TC}$$

2. $\begin{bmatrix} x & y \\ x & x \end{bmatrix} \in M(\alpha, \beta)$

Let \mathcal{V} be a permutable variety and let $\mathbb{A} \in \mathcal{V}$. For $\alpha, \beta \in Con(\mathbb{A})$, the following are equivalent:

1.
$$\langle x, y \rangle \in [\alpha, \beta]_{TC}$$

2. $\begin{bmatrix} x & y \\ x & x \end{bmatrix} \in M(\alpha, \beta)$
3. $\begin{bmatrix} a & y \\ a & x \end{bmatrix} \in M(\alpha, \beta)$ for some $a \in A$

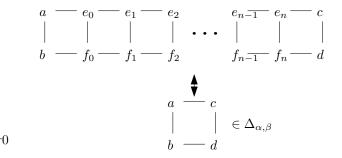
Let \mathcal{V} be a permutable variety and let $\mathbb{A} \in \mathcal{V}$. For $\alpha, \beta \in Con(\mathbb{A})$, the following are equivalent:

1.
$$\langle x, y \rangle \in [\alpha, \beta]_{TC}$$

2. $\begin{bmatrix} x & y \\ x & x \end{bmatrix} \in M(\alpha, \beta)$
3. $\begin{bmatrix} a & y \\ a & x \end{bmatrix} \in M(\alpha, \beta)$ for some $a \in A$
4. $\begin{bmatrix} x & y \\ b & b \end{bmatrix} \in M(\alpha, \beta)$ for some $b \in A$.

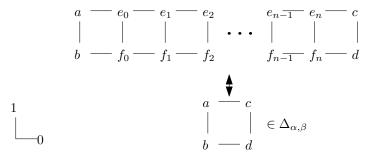
Let V be a modular variety and let A ∈ V. For α, β ∈ Con(A), define Δ_{α,β} to be the transitive closure of M(α, β)₀.

Let V be a modular variety and let A ∈ V. For α, β ∈ Con(A), define Δ_{α,β} to be the transitive closure of M(α, β)₀.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let V be a modular variety and let A ∈ V. For α, β ∈ Con(A), define Δ_{α,β} to be the transitive closure of M(α, β)₀.



• **Fact:** Both $(\Delta_{\alpha,\beta})_0$ and $(\Delta_{\alpha,\beta})_1$ are congruence relations.

Let \mathcal{V} be a modular variety and let $\mathbb{A} \in \mathcal{V}$. For $\alpha, \beta \in Con(\mathbb{A})$, the following are equivalent:

1.
$$\langle x, y \rangle \in [\alpha, \beta]_{TC}$$

2. $\begin{bmatrix} x & y \\ x & x \end{bmatrix} \in \Delta_{\alpha, \beta}$
3. $\begin{bmatrix} a & y \\ a & x \end{bmatrix} \in \Delta_{\alpha, \beta}$ for some $a \in A$
4. $\begin{bmatrix} x & y \\ b & b \end{bmatrix} \in \Delta_{\alpha, \beta}$ for some $b \in A$.

Theorem: Let \mathcal{V} be a permutable variety. Take $\theta_0, \theta_1, \theta_2 \in \operatorname{Con}(\mathbb{A})$ for $\mathbb{A} \in \mathcal{V}$. The following are equivalent:

(1)
$$\langle x, y \rangle \in [\theta_0, \theta_1, \theta_2]$$

(2) $x \xrightarrow{x} y \in M(\theta_0, \theta_1, \theta_2)$

 \overline{x} There exist elements of \mathbb{A} such that

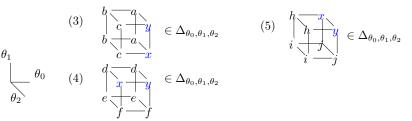
x

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem: Let \mathcal{V} be a modular variety. Take $\theta_0, \theta_1, \theta_2 \in \text{Con}(\mathbb{A})$ for $\mathbb{A} \in \mathcal{V}$. The following are equivalent:

(1)
$$\langle x, y \rangle \in [\theta_0, \theta_1, \theta_2]$$

There exist elements of \mathbb{A} such that



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Definition

Let $R \subseteq A^{2^n}$ be an *n*-dimensional relation on some set A. R is called an *n*-dimensional equivalence relation if for all $i \in n$, each R_i is an equivalence relation.

Definition

Let $R \subseteq A^{2^n}$ be an *n*-dimensional relation on some set A. R is called an *n*-dimensional equivalence relation if for all $i \in n$, each R_i is an equivalence relation.

Definition

Let \mathbb{A} be an algebra with underlying set A. Let $R \in A^{2^n}$ be an *n*-dimensional equivalence relation. R is called an *n*-dimensional congruence if R is preserved by the basic operations of \mathbb{A} .

Definition

Let $R \subseteq A^{2^n}$ be an *n*-dimensional relation on some set A. R is called an *n*-dimensional equivalence relation if for all $i \in n$, each R_i is an equivalence relation.

Definition

Let \mathbb{A} be an algebra with underlying set A. Let $R \in A^{2^n}$ be an *n*-dimensional equivalence relation. R is called an *n*-dimensional congruence if R is preserved by the basic operations of \mathbb{A} .

Fix n ≥ 1. The collection of all n-dimensional congruences of an algebra A is an algebraic lattice, which we denote by Con_n(A).

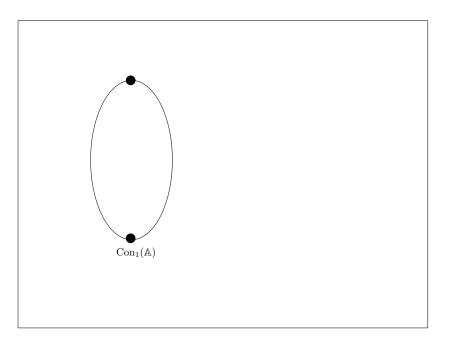
Definition

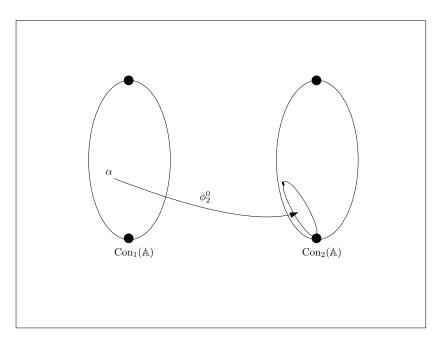
Let $R \subseteq A^{2^n}$ be an *n*-dimensional relation on some set A. R is called an *n*-dimensional equivalence relation if for all $i \in n$, each R_i is an equivalence relation.

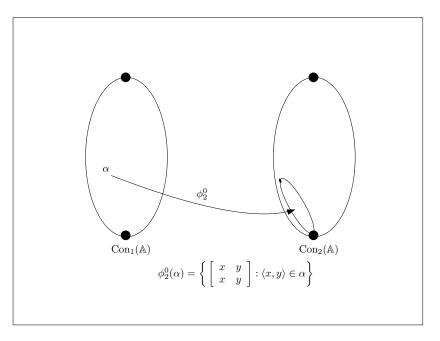
Definition

Let \mathbb{A} be an algebra with underlying set A. Let $R \in A^{2^n}$ be an *n*-dimensional equivalence relation. R is called an *n*-dimensional congruence if R is preserved by the basic operations of \mathbb{A} .

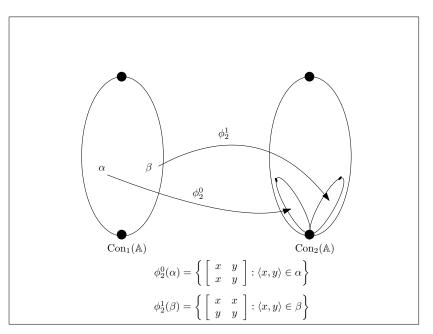
- Fix n ≥ 1. The collection of all n-dimensional congruences of an algebra A is an algebraic lattice, which we denote by Con_n(A).
- There are *n* distinct embeddings from $Con_1(\mathbb{A})$ into $Con_n(\mathbb{A})$.



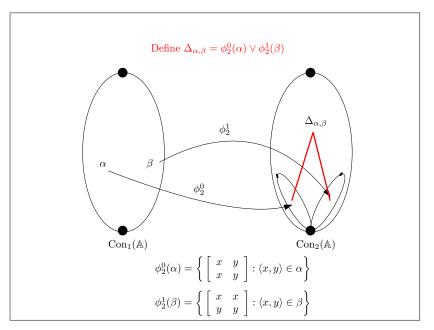




▲□▶▲圖▶▲≧▶▲≧▶ ≧ のQ@



▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 - のへで



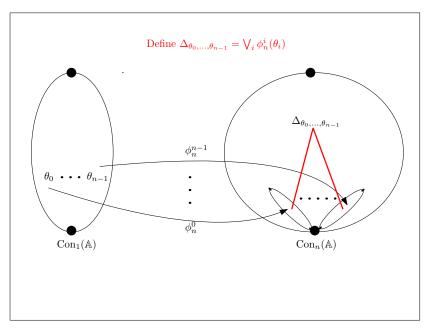
Fix a dimension n and take i ∈ n. For a pair (x, y) ∈ A², let Cube_i((x, y)) ∈ A^{2ⁿ} be such that

- Fix a dimension n and take i ∈ n. For a pair (x, y) ∈ A², let Cube_i((x, y)) ∈ A^{2ⁿ} be such that
 - 1. $(\operatorname{Cube}_i(\langle x, y \rangle))_i^0$ is the (n-1)-dimensional cube with each vertex labeled by x.

- Fix a dimension n and take i ∈ n. For a pair (x, y) ∈ A², let Cube_i((x, y)) ∈ A^{2ⁿ} be such that
 - 1. $(\operatorname{Cube}_i(\langle x, y \rangle))_i^0$ is the (n-1)-dimensional cube with each vertex labeled by x.

- Fix a dimension n and take i ∈ n. For a pair (x, y) ∈ A², let Cube_i((x, y)) ∈ A^{2ⁿ} be such that
 - 1. $(\operatorname{Cube}_i(\langle x, y \rangle))_i^0$ is the (n-1)-dimensional cube with each vertex labeled by x.
 - 2. $(\operatorname{Cube}_i(\langle x, y \rangle))_i^1$ is the (n-1)-dimensional cube with each vertex labeled by y.
- Define $\phi_n^i : \operatorname{Con}_1(\mathbb{A}) \to \operatorname{Con}_n(\mathbb{A})$ by

$$\phi_n^i(\alpha) = \{\mathsf{Cube}_i(\langle x, y \rangle) : \langle x, y \rangle \in \alpha\}$$



Characterizing Joins

Let A be an algebra and let θ be an equivalence relation on A. Then, θ is an admissible relation if and only if θ is compatible with the unary polynomials of A.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

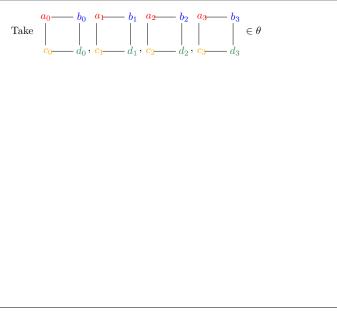
Characterizing Joins

- Let A be an algebra and let θ be an equivalence relation on A.
 Then, θ is an admissible relation if and only if θ is compatible with the unary polynomials of A.
- This generalizes to:

Theorem

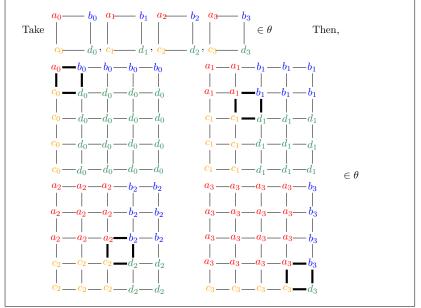
Let \mathbb{A} be an algebra and let $n \ge 1$. An n-dimensional equivalence relation θ is admissible if and only if θ is compatible with the n-ary polynomials of \mathbb{A} .

Proof Idea



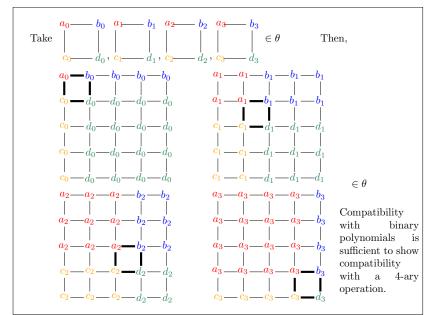
・ロト・日本・日本・日本・日本・日本

Proof Idea



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Proof Idea



Characterizing Joins

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Characterizing Joins

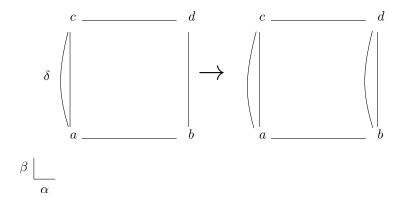
- $\Delta_{\theta_0,...,\theta_{n-1}} = \bigvee_i \phi_n^i(\theta_i)$ is therefore obtained by
 - 1. Closing $\bigcup \phi_n^i(\theta_i)$ under all *n*-ary polynomials and then
 - 2. taking a sequence of transitive closures, cycling through all possible directions possibly ω -many times.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Notice: M(θ₀,...,θ_{n-1}) ≤ Δ_{θ₀,...,θ_{n-1}}. We use this larger collection to define a stronger term condition.

Hypercentrality

For $\delta \in Con(\mathbb{A})$ we have that α hypercentralizes β modulo δ if the implication

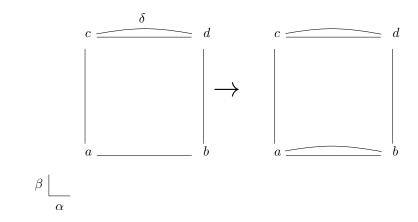


holds for all members of $\Delta_{\alpha,\beta}$. This condition is abbreviated $C_H(\alpha,\beta;\delta)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Hypercentrality

Similarly, we have that $~\beta~{\rm hypercentralizes}~\alpha~{\rm modulo}~\delta~$ if the implication



holds for all members of $\Delta_{\alpha,\beta}$. This condition is abbreviated $C_H(\beta,\alpha;\delta)$.

Hypercentrality

• For congruences θ_0, θ_1 we set

$$[\theta_0,\theta_1]_H = \bigwedge \{\delta : C_H(\theta_0,\theta_1;\delta)\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• For congruences θ_0, θ_1 we set

$$[\theta_0,\theta_1]_H = \bigwedge \{\delta : C_H(\theta_0,\theta_1;\delta)\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 Higher arity hypercentrality and the higher arity hypercommutator similarly defined.

Theorem (Binary Hyper Commutator)

Let \mathbb{A} be an algebra. For $\alpha, \beta \in Con(\mathbb{A})$, the following are equivalent:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1.
$$\langle x, y \rangle \in [\alpha, \beta]_{H}$$

2. $\begin{bmatrix} x & y \\ x & x \end{bmatrix} \in \Delta_{\alpha, \beta}$
3. $\begin{bmatrix} a & y \\ a & x \end{bmatrix} \in \Delta_{\alpha, \beta}$ for some $a \in A$
4. $\begin{bmatrix} x & y \\ b & b \end{bmatrix} \in \Delta_{\alpha, \beta}$ for some $b \in A$.

Theorem (Binary Hyper Commutator)

Let \mathbb{A} be an algebra. For $\alpha, \beta \in Con(\mathbb{A})$, the following are equivalent:

1.
$$\langle x, y \rangle \in [\alpha, \beta]_{H}$$

2. $\begin{bmatrix} x & y \\ x & x \end{bmatrix} \in \Delta_{\alpha, \beta}$
3. $\begin{bmatrix} a & y \\ a & x \end{bmatrix} \in \Delta_{\alpha, \beta}$ for some $a \in A$
4. $\begin{bmatrix} x & y \\ b & b \end{bmatrix} \in \Delta_{\alpha, \beta}$ for some $b \in A$.

 A similar characterization of the higher arity hyper commutator also holds.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Strategy:

Strategy:

 $1. \ \mbox{From the definitions, it follows that}$

$$[\theta_0,\ldots,\theta_{n-1}]_{TC} \leq [\theta_0,\ldots,\theta_{n-1}]_H$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Strategy:
 - 1. From the definitions, it follows that

$$[\theta_0,\ldots,\theta_{n-1}]_{TC} \leq [\theta_0,\ldots,\theta_{n-1}]_H$$

2. Demonstrate the **commutator nesting property** for the hyper commutator:

$$[[\theta_0,\ldots,\theta_{i-1}]_H,\theta_i,\ldots,\theta_{n-1}]_H \leq [\theta_0,\ldots,\theta_{n-1}]_H$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

- Strategy:
 - 1. From the definitions, it follows that

$$[\theta_0,\ldots,\theta_{n-1}]_{TC} \leq [\theta_0,\ldots,\theta_{n-1}]_H$$

2. Demonstrate the **commutator nesting property** for the hyper commutator:

$$[[\theta_0,\ldots,\theta_{i-1}]_H,\theta_i,\ldots,\theta_{n-1}]_H \leq [\theta_0,\ldots,\theta_{n-1}]_H$$

3. Show that $[\theta, \ldots, \theta]_S = [\theta, \ldots, \theta]_H$ in a Taylor variety.

- Strategy:
 - 1. From the definitions, it follows that

$$[\theta_0,\ldots,\theta_{n-1}]_{TC} \leq [\theta_0,\ldots,\theta_{n-1}]_H$$

2. Demonstrate the **commutator nesting property** for the hyper commutator:

$$[[\theta_0,\ldots,\theta_{i-1}]_H,\theta_i,\ldots,\theta_{n-1}]_H \leq [\theta_0,\ldots,\theta_{n-1}]_H$$

3. Show that $[\theta, \ldots, \theta]_S = [\theta, \ldots, \theta]_H$ in a Taylor variety. 4. (2) and (3) imply that

$$[[\theta, \dots, \theta]_{\mathcal{T}C}, \theta, \dots, \theta]_{\mathcal{T}C} = [[\theta, \dots, \theta]_H, \theta, \dots, \theta]_H$$
$$\leq [\theta, \dots, \theta]_H = [\theta, \dots, \theta]_{\mathcal{T}C}$$

Supernilpotent \implies Nilpotent (work with Moore)

(ロ)、(型)、(E)、(E)、(E)、(O)()

Supernilpotent \implies Nilpotent (work with Moore) Define $A = O \cup R \cup G$ with G infinite, $O = \{o_i^j : i, j \in \omega\}$, and $R = \{r_i^j : i, j \in \omega\}$.

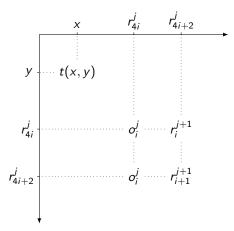
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Supernilpotent \implies Nilpotent (work with Moore)

Define $A = O \cup R \cup G$ with G infinite, $O = \{o_i^j : i, j \in \omega\}$, and $R = \{r_i^j : i, j \in \omega\}$. Let $\mathbb{A} = \langle A; t \rangle$ be the algebra with underlying set A and a binary operation t with the table

Supernilpotent \implies Nilpotent (work with Moore)

Define $A = O \cup R \cup G$ with G infinite, $O = \{o_i^j : i, j \in \omega\}$, and $R = \{r_i^j : i, j \in \omega\}$. Let $\mathbb{A} = \langle A; t \rangle$ be the algebra with underlying set A and a binary operation t with the table



(日)((1))

where t an injection into G otherwise.

 \blacktriangleright A is not solvable and hence not nilpotent.

- ▶ A is not solvable and hence not nilpotent.
- ► A is 2-step supernilpotent. To prove this it suffices to show that

$$h = \begin{vmatrix} a & - b \\ c & - e \\ a & - b \\ c & - d \end{vmatrix} \in M(1, 1, 1)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

implies e = d.

- ▶ A is not solvable and hence not nilpotent.
- ► A is 2-step supernilpotent. To prove this it suffices to show that

$$h = \begin{vmatrix} a & b \\ c & b \\ a & b \\ c & d \end{vmatrix} \in M(1, 1, 1)$$

implies e = d.

► This example generalizes to 'higher dimensions.' There exist algebras A_n that

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- ▶ A is not solvable and hence not nilpotent.
- ► A is 2-step supernilpotent. To prove this it suffices to show that

$$h = \begin{vmatrix} a & b \\ c & b \\ a & b \\ c & d \end{vmatrix} \in M(1, 1, 1)$$

implies e = d.

- ► This example generalizes to 'higher dimensions.' There exist algebras A_n that
 - 1. are not **solvable in dimension** *n* (no term in commutators up to arity *n* evaluated at 1 produces 0)

- \mathbb{A} is not solvable and hence not nilpotent.
- ► A is 2-step supernilpotent. To prove this it suffices to show that

$$h = \begin{vmatrix} a & b \\ c & b \\ a & b \\ c & d \end{vmatrix} \in M(1, 1, 1)$$

implies e = d.

- ► This example generalizes to 'higher dimensions.' There exist algebras A_n that
 - 1. are not **solvable in dimension** *n* (no term in commutators up to arity *n* evaluated at 1 produces 0)

2. but are *n*-step supernilpotent.

- \mathbb{A} is not solvable and hence not nilpotent.
- ► A is 2-step supernilpotent. To prove this it suffices to show that

$$h = \begin{vmatrix} a & b \\ c & b \\ a & b \\ c & d \end{vmatrix} \in M(1, 1, 1)$$

implies e = d.

- ► This example generalizes to 'higher dimensions.' There exist algebras A_n that
 - 1. are not **solvable in dimension** *n* (no term in commutators up to arity *n* evaluated at 1 produces 0)
 - 2. but are *n*-step supernilpotent.
- ► Question: Let [V] be a chapter in the lattice of interpretability of types that does not lie above Olšák's variety. Is there a variety W ∈ [V] with a supernilpotent algebra that is not nilpotent?