SOME RESULTS FOR VISCOSITY SOLUTIONS TO SOME DOUBLY NONLINEAR DEGENERATE PARABOLIC DIFFERENTIAL EQUATIONS

TILAK BHATTACHARYA, WESTERN KENTUCKY UNIVERSITY

Let $\Omega \subset \mathbb{R}^n$, be a bounded domain, $0 < T < \infty$ and $\Omega_T = \Omega \times (0, T)$. In this talk we discuss viscosity solutions to two doubly nonlinear equations

i)
$$\Delta_{\infty} u = 3u^2 u_t$$
, and ii) $\operatorname{div}(|Du|^{p-2}Du) = (p-1)u^{p-2}u_t$, $p \ge 2$,

in Ω_T . Call P_T the parabolic boundary of Ω_T . Suppose that $h \in C(P_T)$ where $h(x, 0), x \in \Omega$ is the initial condition and $h(x, t), \partial \Omega \times [0, T)$ is the side condition.

We show that the above p.d.e's (the second one is Trudinger's equation) have unique positive viscosity solutions u when h > 0. Existence follows by the use of the Perron method. The talk will describe the sub-solutions and the super-solutions needed to achieve existence.

We also include some results on large time asymptotic behavior and a Phragmen-Lindelof type result.

Joint work with Leonardo Marazzi.