Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential

Zhongwei Tang

School of Mathematical Sciences, Beijing Normal University, Beijing 100875 P. R. of China

Abstract

We are concerned with the existence of single- and multi-bump solutions of the equation $-\Delta u + (\lambda a(x) + a_0(x))u = |u|^{p-2}u$, $x \in \mathbb{R}^N$; here p > 2, and $p < \frac{2N}{N-2}$ if $N \ge 3$. We require that $a \ge 0$ is in $L^{\infty}_{loc}(\mathbb{R}^N)$ and has a bounded potential well Ω , i.e. a(x) = 0 for $x \in \Omega$ and a(x) > 0 for $x \in \mathbb{R}^N \setminus \overline{\Omega}$. Unlike most other papers on this problem we allow that $a_0 \in L^{\infty}(\mathbb{R}^N)$ changes sign. Using variational methods we prove the existence of multibump solutions u_{λ} which localize, as $\lambda \to \infty$, near prescribed isolated open subsets $\Omega_1, \ldots, \Omega_k \subset \Omega$. The operator $L_0 := -\Delta + a_0$ may have negative eigenvalues in Ω_j , each bump of u_{λ} may be sign-changing.