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Abstract. Model-Based Engineering of Cyber-Physical Systems (CPS)
needs correct-by-construction design methodologies, hence CPS model-
ing languages require mathematically rigorous, unambiguous, and sound
specifications of their semantics. The main challenge is the formaliza-
tion of the heterogeneous composition and interactions of CPS systems.
Creating modeling languages that support both the acausal and causal
modeling approaches, and which has well-defined and sound behavior
across the heterogeneous time domains is a challenging task. In this pa-
per, we discuss the difficulties and as an example develop the formal
semantics of a CPS-specific modeling language called CyPhyML. We
formalize the structural semantics of CyPhyML by means of constraint
rules and its behavioral semantics by defining a semantic mapping to a
language for differential algebraic equations. The specification language
is based on an executable subset of first-order logic, which facilitates
model conformance checking, model checking and model synthesis.
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1 Introduction

Model-Based Engineering of Cyber-Physical Systems (CPS) needs correct-by-
construction design methodologies, hence CPS modeling languages require math-
ematically rigorous, unambiguous, and sound specifications of their semantics.
Cyber-physical systems are software-integrated physical systems often used in
safety-critical and mission critical applications, for example in automotive, avion-
ics, chemical plants, or medical applications. In these applications sound, unam-
biguous, and formally specified modeling languages can help developing reliable
and correct solutions.

Traditional systems engineering is based on causal modeling (e.g., Simulink),
in which components are functional and a well-defined causal dependency ex-
ists between the inputs and outputs. It is known that such a causal modeling



paradigm is imperfect for physical systems and CPS modeling [31] since physical
laws are inherently acausal.

Recently, acausal modeling has gained traction and several languages have
been introduced for acausal modeling (e.g., Modelica, bond graphs). Every time
a new language is introduced, there is a natural demand to extend it to support
as many features as possible. Unfortunately, this often leads to enormously large
and generic languages, which have many interpretations and variants without a
clear, unambiguous semantics. Because of the size of these languages, there is
not much hope for complete formalization of their semantics.

A fundamental problem is that generic languages provides support for way
more features than a specific problem needs, still they often lack support for
some essential functions that would be otherwise needed. Thus, in most cases
it is more feasible to use Domain Specific Modeling Languages (DSML), which
are designed to support exactly the necessary functions. Additionally, because
DSMLs are usually significantly smaller than generic languages, their formal
specification is feasible.

In this paper, we focus on the semantic specifications of heterogeneous CPS
languages using our CyPhyML DSML as an illustrative example. Our main con-
tribution is an executable specification for CPS languages with a logic-based
language for both the structural and behavioral (operational and denotational)
semantic specifications, which lends itself to model conformance checking, model
finding and Linear Temporal Logic (LTL) model checking. Using the same lan-
guage for both structural and behavioral semantic specifications is an important
step towards better understanding CPS DSMLs and their composition. In previ-
ous practices, structure and behavior were formalized in different languages (e.g.,
OCL and Abstract State Machines) and they were completely separated. Since
in our formalism they are represented using the same logic-based formalism, un-
derstanding their relations becomes a matter of deductive reasoning. While in
this paper we discuss the key concepts for developing the specifications, leverag-
ing these specifications to reason about the connections between structure and
behavior remains a matter of future work.

Our working example will be our Cyber-Physical Modeling Language (Cy-
PhyML), an integration language for composing heterogeneous CPS DSMLs. In
DARPA’s AVM (Adaptive Vehicle Make) program, we required a CPS modeling
language that supports the integration of acausal physical modeling, data-flow
modeling, CAD models, bidirectional parameter propagation and Design Space
Exploration (DSE). While there are several DSMLs that can tackle these prob-
lems individually, we needed an integration language to compose them. There-
fore, we defined the component-based language CyPhyML, which is capable of
representing the integration of heterogeneous components defined in third-party
DSMLs. This allows us to compose heterogeneous physical, data-flow and other
models designed in external languages and tools such as Modelica, our bond
graph language variant or the Embedded Systems Modeling Language (ESMoL).

The organization of the paper is the following: Section 2 describes related
work, while Section 3 provides an overview of the background for CPS design,



semantics and the formal language that we use. In Section 4 we discuss the meta-
model for the compositional sub-language of CyPhyML. Section 5 describes the
structural and behavioral semantics of this sub-language and Section 6 discusses
the formalization of the integration of third-party DSMLs. Section 7 is devoted
to the evaluation and validation of our approach, and Section 8 draws our con-
clusion.

2 Related Work

The logic-based language FORMULA was first proposed by Jackson [13] as a
formal language for specifying the structural semantics of DSMLs and later for
specifying their operational semantics [14]. Our research can be considered the
continuation of these initiatives. In [29, 30], we used FORMULA for specifying
the structural and denotational semantics of a physical modeling language and
in [21], we specified the operational semantics of a state-chart language variant.
FORMULA provides tools for executing these specifications, in particular they
can be used for automated model finding, model conformance checking and LTL
model checking.

A different line of research discussed by Rivera [24,26] uses Maude, an equa-
tional logic and term rewriting-based language to specify the operational be-
havioral and structural semantics of DSMLs. Using Maude’s rewriting engine,
this representation can be used for LTL model checking, and by leveraging the
Real-Time Maude framework it can be used for real-time simulations and anal-
ysis [25]. Furthermore, research by Romero [27], Egea [8], and Rusu [28] uses
Maude-based formalizations for arguing about model sub-typing, type inference,
model conformance and operational semantics of model transformations.

In [6], we introduce a translational approach using the Abstract State Ma-
chines (ASM) and a semantic anchoring framework, and in [7], we show how such
a semantic anchoring framework can be used for compositional behavioral spec-
ifications. Gargantini [10] also introduces an ASM-based semantic framework
that includes translational approaches, semantic mapping, semantic hooking and
semantic meta-hooking, and a weaving approach for semantic specifications.

Esfahasin [9] uses the Z notation to formally specify the behavioral seman-
tics of an activity-oriented DSML modeled in GME. While Z is not executable,
the formal specification provides an unambiguous guideline for automated code
generation for their models.

There are several languages for integrating heterogeneous languages, with
major emphasis on the composition of heterogeneous computational languages.
For example, Ptolemy [11] [12] provides a framework for composing heteroge-
neous actors described by a variety of Models of Computation (MoC), e.g. finite-
state machines, synchronous and dynamic data flows, process networks, discrete
events, continuous-time and synchronous-reactive systems. While Ptolemy does
support continuous-time dynamics, it lacks support for acausal physical systems
modeling.



BIP (Behavior, Interaction and Priority) [2] is a framework that supports the
composition of heterogeneous computational systems. The key idea is the sepa-
ration of component behaviors from component interactions. Such a separation
of concerns facilitates the correct composition of components. In [4], the algebra
of BIP is formulated, and in [5], the SOS style formalization of glue operators is
described.

In this paper, we address the formal semantics of CPS composition languages,
which brings additional challenges because of the integration of acausal physical
models and causal computational models.

3 Background

3.1 Cyber-Physical Systems

There are significant differences between physical and computational systems.
Computational systems are traditionally modeled with the causal modeling ap-
proach: components, blocks, software are functional entities, which produce out-
puts given some inputs. In contrast, physical systems are acausal and the ap-
propriate approach to model them is the acausal modeling approach [31]: inter-
actions are non-directional and there are no input and output ports. Instead,
interactions establish simultaneous constraints on the behavior of the connected
components by means of variable sharing.

For instance, a resistor can be modeled as a two port element, where each port
represents a voltage and a current, and the behavior of the resistor is defined by
the equations U1−U2 = R ·I1 and I1 = I2. Here, it is unreasonable to talk about
the directions of the ports because such a direction is not part of the model: a
resistor can be equally driven by a source of current or a source of voltage.

A different problem of CPS modeling is the semantics of time. Physical sys-
tem models are based on continuous-time (real time), while computational sys-
tems are inherently discrete-time (e.g., discrete event, periodic discrete time,
etc.). The merge of heterogeneous time domains is non-trivial and raises several
questions.

If the system uses the notion of events, at any real time instant several
events may happen simultaneously. To track the causality of these events, we
must expand the time domain: super-dense time and non-standard real time [3]
have been proposed as expansions of the real time for this purpose. Often, such
causally related simultaneous events are the results of the synchronous approach
(i.e., the abstraction that computation and communication take zero time).

Another problem is that algebraic loops (loops without delays or integrators)
in synchronous systems may have ambiguous semantics: there might be no solu-
tions or several solutions for the system equations. There are several approaches
to tackle the problem of algebraic loops: (i) avoid algebraic loops by structural
constraints (e.g., Lustre), (ii) do not consider algebraic loops at the design phase,
detect problems during simulation (does not support correct-by-construction),
(iii) define the least fix-point semantics (Scott semantics) [22].



3.2 Structural and Behavioral Semantics

In general, models represent a structure and associated behaviors. Accordingly,
specification of modeling languages requires support for specifying both struc-
tural and behavioral semantics [14].

Structural semantics (also known as static semantics) describes the mean-
ing of model instances in terms of their structure [6]. Structural semantics is
described by a mapping from model instances into a two-valued domain, which
distinguishes well-formed models from ill-formed models.

Behavioral semantics is represented as a mapping of the model into a math-
ematical domain that is sufficiently rich for capturing essential aspects of the
behavior [7]. In other words, the explicit representation of behavioral semantics
of a DSML requires two distinct components: (i) a mathematical domain and
a formal language for specifying behaviors and (ii) a formal language for speci-
fying transformation between domains. Different types of behavioral semantics
can be distinguished based on the formalism of the description, for instance,
denotational semantics or operational semantics.

Denotational semantics describes the semantics of the language by mapping
its syntactic elements to some well-defined (mathematical) semantic domain.
The key advantage of denotational semantics is its composability.

Operational semantics describes the step-wise execution of models of the
language by an abstract machine. The operational semantics can be formalized
as a transformation that specifies how the system evolves through its states.

3.3 FORMULA notation

FORMULA is a constraint logic programming tool developed at Microsoft Re-
search [1] based on first-order logic and fixed-point semantics [15, 16]. It has
found many application in Model-Based Engineering such as reasoning about
meta-modeling [17] or finding specification errors by constraints [18]. Further-
more, it has been proposed as a formal language for specifying the structural
and behavioral semantics of DSMLs as discussed in the related work.

Although we use the newer syntax of FORMULA 2.0, the general principles
of the language are unchanged and described in more detail in [15,16].

The domain keyword specifies a domain (analogous to a meta-model) which
is composed of type definitions, data constructors and rules. A model of the
domain consists of a set of facts (also called initial knowledge) that are defined
using the data constructors of the domain, and the well-formed models of the
domain are distinguished from the ill-formed models by the conformance rules.

FORMULA has a complex type system based on built-in types (e.g., Natural,
Integer, Real, String, Bool), enumerations, data constructors and union types.
Enumerations are sets of constants defined by enumerating all their elements,
for example, bool ::= {true,false} denotes the usual 2-valued Boolean type.

Data constructors can be used for constructing algebraic data types. Such
terms can represent sets, relations, partial and total functions, injections, sur-
jections and bijections. Consider the following type definitions:



A ::= new (x:Integer, y:String).

B ::= fun (x:Integer -> y:String).

C ::= fun (x:A => y:String).

D ::= inj (x:Integer -> y:String).

E ::= bij (x:A => y:B).

F ::= (x:Integer, y:String).

Data constructor A is used for defining A-terms by pairing Integers and Strings,
where the optional x and y are the accessors for the respective values (for ex-
ample, A(5,"f") is an A-term). Data constructor B is used for defining a partial
function (functional relation) from the domain of Integers to the codomain of
Strings. Similarly, C is used to define a total function from A-terms to Strings,
D is used to define a partial injective function, and E is used to define a bijective
function between A-terms and B-terms.

While the previous data constructors are used for defining initial facts in
models, derived data constructors are used for representing facts derived from
the initial knowledge by means of rules. For example, derived data constructor
F defines a term over pairs of Integers and Strings.

Union types are unions of types in the set-theoretical sense, i.e., the elements
of a union type are defined by the union of the elements of the constituent types.
FORMULA uses the notation of T ::= A + B to define type T as the union of
type A and type B.

FORMULA supports the notation of set comprehension in the form of {head|body},
which denotes the set of elements formed by head that satisfies body. Set com-
prehension is most useful when using built-in operators such as count or max. For
instance, given a relation Pair ::= new (State,State), the expression State(X),

n = count({Y|Pair(X,Y)}) counts the number of states paired with state X.

Rules allow information to be deduced. They have the form:

A0(X) :- A1(X), · · ·, An(X), no B1(X), · · ·, no Bm(X).

Whenever these is a substitution for X where all A1, · · ·, An are derivable and
all B1, · · ·, Bm are not derivable, then A0(X) becomes derivable. The use of
negation (no) is stratified, which implies that rules generate a unique minimal
set of derivations, i.e., a least-fix point.

To help writing multiple rules with the same left-hand side term, the semi-
colon operator is used, whose meaning is logical disjunction. For instance, in
A(X) :- S(X); T(X). any substitution for X, such that S(X) or T(X) is derivable,
makes A(X) derivable.

Type constraint x:A is true if and only if variable x is of type A, while x

is A is satisfied for all derivations of type A. The special symbol _ denotes an
anonymous variable, which cannot be referred to elsewhere.

The well-formed models of a domain conforms to the domain specifications.
Each FORMULA domain contains a special conforms rule, which determines its
well-formed models.

Domain composition is supported through the keywords extends and includes.
Both denote the inheritance of all types, data constructors and rules, but while
domain A extends B ensures that all the well-formed models of A are well-formed



models of B, definition domain A includes B might contain well-formed models
in A which are ill-formed models of B.

Finally, FORMULA transformations define rules for creating output models
from input models and parameters. Transformations are specified as sets of rules,
where the left-hand side terms are the data constructors of the output domain,
whereas the right-hand side of the rules can contain a mixture of the terms
from the input and output domains, and the transformation parameters. The
semantics of these transformation rules is simple: if a data constructor term of
the output domain is deducible using the transformation rules, it will be a fact
in the output domain.

4 A Cyber-Physical Modeling Language

A CPS modeling language should, at least, contain structures for defining com-
ponents with physical and computational behaviors, support both acausal and
causal modeling and facilitate hierarchical composition. The Cyber-Physical
Modeling Language (CyPhyML) we introduce in this section is a minimal lan-
guage with support for these functions, therefore it serves as a case study for
building such languages. The GME meta-model [20] of CyPhyML is shown in
Fig. 1.

Fig. 1. GME meta-model for the composition sub-language of CyPhyML

Components are the main building blocks of CyPhyML. A CPS component
represents a physical or computational element with a number of exposed ports.
Hierarchical composition is provided by means of component assemblies, which
also facilitate component encapsulation and port hiding. There are two types of
ports: acausal power ports, denoting the interaction points through which phys-
ical energy flows and signal ports, through which causal information flows. Cy-
PhyML is interpreted in continuous (physical) time, thus signals are continuous-
time functions. CyPhyML distinguishes several types of power ports, such as



electrical power ports, mechanical power ports, hydraulic power ports and ther-
mal power ports.

We can formalize CyPhyML the following way. A CyPhyML model M is a
tuple M = 〈C,A, P, parent, portOf, EP , ES〉 with the following interpretation:

– C is a set of components,
– A is a set of component assemblies,
– (D = C ∪A is the set of design elements),
– P is the union of the following sets of ports: ProtMech is a set of rotational

mechanical power ports, PtransMech is a set of translational mechanical power
ports, Pmultibody is a set of multi-body power ports, Phydraulic is a set of
hydraulic power ports, Pthermal is a set of thermal power ports, Pelectrical is
a set of electrical power ports, Pin is a set of continuous time input signal
ports, Pout is a set of continuous time output signal ports. Furthermore, PP

is the union of all the power ports and PS is the union of all the signal ports,
– parent : D → A∗ is a containment function, whose range is A∗ = A∪ {root},

the set of design elements extended with a special root element root,
– portOf : P → D is a port containment function, which uniquely determines

the container of any port,
– EP ⊆ PP × PP is the set of power flow connections between power ports,
– ES ⊆ PS × PS is the set of information flow connections between signal

ports.

We can model these concepts with FORMULA using data constructors and
union data types. Thus, the abstract syntax for CyPhyML in FORMULA is the
following:

C ::= new (id:UID).

A ::= new (id:UID).

D ::= C + A.

P_rotMech ::= new (id:UID).

P_transMech ::= new (id:UID).

...

P_mechanical ::= P_rotMech + P_transMech.

P_power ::= P_mechanical + P_electrical + P_thermal + P_hydraulic.

P_signal ::= P_in + P_out.

P ::= P_power + P_signal.

parent ::= fun (D => A + {root}).

portOf ::= fun (P => D).

Ep ::= new (P_power,P_power).

Es ::= new (P_signal,P_signal).

Note that UID stands for a unique identifier, which is needed for distinguishing
individual members of the sets.

5 Formalization of Semantics

5.1 Structural Semantics

The structural semantics of a language describes the well-formedness rules for its
models. We can define the structural semantics of a language using logic rules:



the two-valued semantic domain that distinguishes well-formed and ill-formed
models is then equivalent to the deducibility of a special conforms constant.
To develop the structural semantics of CyPhyML, we define some helper data
constructors: Dangling ports are not connected to any other ports:

dangling(X) :- X is P_power, no Ep(X,_), no Ep(_,X).

dangling(X) :- X is P_signal, no Es(X,_), no Es(_,X).

A distant connection connects two ports belonging to different components, such
that the components have different parents, and neither component is parent of
the other one:

distant(E) :- E is Es(X,Y), portOf(X,PX), portOf(Y,PY), PX != PY,

Parent(PX,PPX), Parent(PY,PPY), PPX != PPY, PPX != PY, PX != PPY.

distant(E) :- E is Ep(X,Y), portOf(X,PX), portOf(Y,PY), PX != PY,

Parent(PX,PPX), Parent(PY,PPY), PPX != PPY, PPX != PY, PX != PPY.

A power port connection is valid if it connects power ports of same types:

validEp(E) :- E is Ep(X,Y), X:P_rotMech, Y:P_rotMech.

...

invalidEp :- E is Ep, no validEp(E).

A signal port connection is invalid if a signal port receives signals from multiple
sources, or an input port is the source of an output port:

invalidEs :- E is Es(X,Y), Es(Z,Y), X!=Z.

invalidEs :- E is Es(X,Y), X:P_in, Y:P_out.

Note that output ports can be connected to output ports.
Finally, we can express the well-formedness of a CyPhyML model: a model

is structurally valid if and only if it does not contain any dangling ports, distant
connections and invalid port connections, hence it conforms to the domain:

conforms :- no dangling(_), no distant(_), no invalidEp, no invalidEs.

5.2 Denotational Semantics

The denotational semantics of a language is described by a semantic domain and
a mapping that maps the syntactic elements of the language to this semantic
domain. In this section, we define a semantic domain for CPS, and specify the
semantic mapping from CyPhyML to this domain.

Semantic Domain Continuing our example, the denotational semantics of Cy-
PhyML is described by a semantic mapping from the domain of CyPhyML mod-
els to a well-defined mathematical domain, the domain of differential algebraic
equations (DAE) extended with periodic discrete-time variables.

Such a semantic domain is reusable: for any CPS language that combines
continuous-time physical systems with periodic discrete-time controllers, it can
be used as a semantic domain. Furthermore, it facilitates the composition of
such languages by establishing a common semantic domain.

We represent the domain of (semi-explicit) differential algebraic equations
using the following signature:



domain DAEs

{

term ::= cvar + Real + op.

op ::= neg + inv + mul + sum.

equation ::= eq + diffEq.

cvar ::= new (UID).

neg ::= new (term).

inv ::= new (term).

mul ::= new (term, term).

// sum and its addends
sum ::= new (UID).

addend ::= new (sum, term).

// predicates
eq ::= new (term, term).

diffEq ::= new (cvar, term).

}

A term is a (continuous time) variable, a real number, or the application of
an operator on a term. We define two unary operators: negation and inversion; a
binary operator, multiplication; and an n-ary operator, summation. The addends of
sums are represented as relations between sums and terms. An equation is either
a predicate eq that denotes the equality of the left-hand side and the right-
hand side, or a predicate diffEq that denotes the differential equation where the
derivative of the left-hand side variable equals the right-hand side term.

We extend the DAE domain by adding periodic discrete-time variables, and
sample and zero-order hold operators:

domain Hybrid extends DAEs

{

dvar ::= new (UID,Real,Real).

sample ::= new (dvar,cvar).

hold ::= new (cvar,dvar).

}

A hybrid equation extends the differential algebraic equations by periodic discrete-
time variables D ∈ UID×R×R. A discrete-time variable has a unique identifier,
a sampling period p and an initial phase p0. The discrete-time variable has a
well-defined value at real times {p0 +n · p | n ∈ N}, everywhere else it is absent.

A model of the hybrid domain is a set of equations E, which represents a
set of trajectories over the variables: a trajectory is a function ν that assigns
a value to each variable in the system such that ν |= E, i.e., ν simultaneously
satisfies all the equations of E. In particular, trajectory ν assigns a real number
ν(t, x) ∈ R to each continuous variable x and continuous time t, and ν assigns a
value ν(t, x) ∈ R ∪ ⊥ to each discrete variable x, such that ν(t, x) = ⊥ when x
is absent.

We can extend the valuation function ν to terms: ν(t, neg(u))
def
= −ν(t, u) and

ν(t, inv(u))
def
= 1/ν(t, u) and ν(t, mul(u,v))

def
= ν(t, u)·ν(t, u) and ν(t, sum(i))

def
=∑

ν(t, x), where the sum is over each x for which addend(sum(i),x) is a fact.



Finally, the interpretation for the predicates are the following:

ν |= eq(u,v) if ν(t, u) = ν(t, v) for all t
ν |= diffEq(u,v) if d

dt (ν(t, u)) = ν(t, v) for all t

ν |= sample(u,v) if

{
ν(t, u) = ν(t, v) if t = p+ n · p0 for some n ∈ N
ν(t, u) = ⊥ otherwise

ν |= hold(u,v) if ν(t, u) = ν(t0, v)

where p, p0 are the period and initial phase of the discrete variable and t0 is the
greatest upper bound such that t0 ≤ t and t0 = p+ n · p0 for some n ∈ N.

Semantic Mapping Acausal CPS modeling languages distinguish acausal power
ports and causal signal ports. In CyPhyML, each power port contributes two
variables to the equations, and the denotational semantics of CyPhyML is de-
fined as equations over these variables. Signal ports transmit signals with strict
causality. Consequently, if we associate a signal variable with each signal port,
the variable of a destination port is enforced to denote the same value as the
variable of the corresponding source port. This relationship is one-way: the value
of the variable at the destination port cannot affect the source variable along
the connection in question.

Next, we create helper functions to generate unique identifiers for variables
and summations in the DAE domain:

pV(P,cvar(ID("e",P.id)),cvar(ID("f",P.id))) :- P is P_power.

sV(P,cvar(ID("s",P.id))) :- P is P_signal.

sumName(P,sum(ID("sum",P.id))) :- P is P_power.

Relation pV maps each power port to a pair of continuous-time variables, sV

maps signal ports to continuous-time variables and sumName assigns a summation
operator to each power port. Note the usage of ID that is a data constructor for
UIDs; its first argument is a string and its second argument is another UID.

Denotational Semantics of Power Port Connections The semantics of
power port connections is defined through their transitive closure. Using fixed-
point logic, we can easily express the transitive closure of connections as the
least fixed point solution for Ept:

EpT(X,Y) :- Ep(X,Y); Ep(Y,X).

EpT(X,Y) :- EpT(X,Z), Ep(Z,Y), X!=Y;

EpT(X,Z), Ep(Y,Z), X!=Y.

Using Ept, we can express the denotational semantics of power ports: power port
connections make the effort variables equal and make the flow variables to sum
up to zero across the transitively connected power ports (but only those power
ports which are contained within a component).

eq(S,0), addend(S,F1), addend(S,F2),

eq(E1,E2) :- EpT(P1,P2),

portOf(P1,C1), C1:Component,

portOf(P2,C2), C2:Component,

pV(P1,E1,F1), pV(P2,E2,F2), sumName(P1,S).



The explanation, why such a pair of power variables (effort and flow) is
used for describing physical connections, is out of scope in this paper, but the
interested reader can find a great introduction to the topic in [31].

Denotational Semantics of Signal Port Connections A signal connection
path (EsT) is a directed path along signal connections. We can use fixed-point
logic to find the transitive closure by solving for the least fixed point of EsT:

EsT(X,Y) :- Es(X,Y).

EsT(X,Y) :- EsT(X,Z), Es(Z,Y).

A signal path (SP) is a signal connection path EsT such that its end-points
are signal ports of components (therefore leaving out any signal ports that are
ports of component assemblies).

SP(X,Y) :- EsT(X,Y), portOf(X,CX), portOf(Y,CY), CX:C, CY:C.

The semantics of signal connection is simply the equality of signal variables:

eq(S1,S2) :- EsT(P1,P2), sV(P1,S1), sV(P2,S2).

6 Formalization of Language Integration

In the previous section, we have formally defined the semantics of CyPhyML
composition, but we have not specified, how components are integrated into Cy-
PhyML. In this section, we develop the semantics for the integration of external
languages: a bond graph language and the SignalFlow (ESMoL) language. Note
that in the future we can easily augment the list by additional languages (for ex-
ample, we have developed the integration of a subset of the Modelica language).

Bond Graphs are multi-domain graphical representations for physical sys-
tems describing the structure of power flows [19]. Regardless of the domain –
electrical, mechanical, thermal, magnetic or hydraulic – the same graphical rep-
resentation is used to describe the flows. A bond graph contains nodes and
bonds (links) between the nodes, where bonds represent the flow of energy be-
tween components. This energy flow is represented by power variables: the effort
and the flow variables, which are bijectively associated with bonds. Note that
these effort and flow variables are different from the effort and flow variables of
CyPhyML: they denote different entities in different domains.

Previously, we have introduced a bond graph language along with its formal
semantics [30]. In this work, we consider a bond graph language that defines
power ports in addition: these are ports through which a bond graph component
interacts with its environment. Each power port is connected through exactly
one bond, therefore a power port represents a pair of power variables: the power
variables of its bond. Our bond graph language also contains output signal ports
for measuring effort and flows at bond graph junctions, and modulated bond
graph elements that are controlled by input signals through input signal ports.

SignalFlow (ESMoL [23]) is a language and tool-suite for designing and
implementing computational and communication models. SignalFlow is based on
a periodic time-triggered execution, and its components expose periodic discrete-
time signal ports on their interface.



Structural Integration

The role of CyPhyML in the integration process is to establish semantic matching
between the languages. Component integration is an error-prone task because of
the slight differences between different languages. During the formalization we
found the following issues: (i) power ports have different meaning in different
modeling languages, (ii) even if the semantics is the same, there are differences
in the naming conventions, (iii) the discrete-time signals of SignalFlow must be
aligned with the continuous-time CyPhyML signals.

To formalize the integration of external languages, we have to extend Cy-
PhyML with the semantic interfaces of these languages. Hence, we need lan-
guage elements for representing the external models and their containment in
CyPhyML, the ports of these external models, and the port mapping between
the ports and the CyPhyML ports. The models and their containment are rep-
resented by the following data constructors:

BondGraphModel ::= new (id:UID).

SignalFlowModel ::= new (id:UID, rate:Real).

Model ::= BondGraphModel + SignalFlowModel.

ModelContainer ::= fun (Model => Component).

Note the second argument of SignalFlowModel: since SignalFlow models are pe-
riodic, they have a real value describing their period. The interface ports and
port mappings are the following:

BG_mechanicalRPort ::= new (id:UID).

...

Model_power ::= BG_powerPort.

Model_signal ::= BG_signalPort + SF_signalPort.

ModelPortOf ::= fun (Model_power+Model_signal => Model).

ModelPortMap ::= fun (Model_power+Model_signal, String ->

P_power+P_signal).

Here, the second argument of ModelPortMap is the role of the port mapping. It is
used for denoting special port mappings, such as the positive and negative pins
of an electrical connector.

Finally, the following elements are added to the well-formedness rules of
CyPhyML:

// tm(M) denotes that port mapping M is valid (port types are matched)
tm(M) :- M is ModelPortMap(X,_,Y), X:BG_mechanicalRPort, Y:P_rotMech.

...

// invalid, if port mappings are not within same CyPhyMl component:
inv :- ModelPortMap(X,_,Y), ModelPortOf(X,Z), PortOf(Y,W),

no ModelContainer(Z,W).

// or invalid type matching for any port mapping
inv :- M is ModelPortMap, no tm(M).

// conforms, if both CyPhyML conforms AND port mappings are not ill−formed
conforms :- CyPhyML.conforms, no inv.



We also need to extend the definition of our helper functions with the fol-
lowing rules:

pV(P,cvar(ID("e",P.id)),cvar(ID("f",P.id))) :- P is Model_power.

sV(P,cvar(ID("s",P.id))) :- P is BG_signalPort.

sV(P,dvar(ID("s",P.id),M.rate,0)) :- P is SF_signalPort,

ModelPortOf(P,M).

Note that the SignalFlow ports are converted to discrete-time variables, where
the sampling rate is determined by the containing model, and the initial phase
defaults to zero.

Bond Graph Integration

For hydraulic and thermal power ports the effort and flow variables of bond
graphs and CyPhyML denote the same quantities:

eq(E1,E2), eq(F1,F2) :- ModelPortMap(X,_,Y), X:BG_hydraulicThermal,

pV(X,E1,F1), pV(Y,E2,F2).

In mechanical domains, bond graph efforts denote force and torque and bond
graph flows denote velocity and angular velocity. In the CyPhyML language, ef-
forts are position and angular position, flows are force and torque. Therefore, for
mechanical power ports, the role of effort and flow is swapped and the derivative
of the CyPhyML effort variable is the flow variable of the bond graph:

eq(E1,F2), diffEq(E2,F1) :- ModelPortMap(X,_,Y), X:BG_mechanicalPort,

pV(X,E1,F1), pV(Y,E2,F2).

For the electrical domain, bond graph electrical power ports denote a pair of
physical terminals (electrical pins). They are connected to pairs of CyPhyML
ports, one to the negative, and the other to the positive pin, which are repre-
sented with a plus and minus sign in ModelPortMap.

eq(F1,F2), eq(F1,F3),

eq(add(E1,E2),E3) :- ModelPortMap(X,"-",Y), ModelPortMap(X,"+",Z),

X:BG_electricalPort, pV(X,E1,F1), pV(Y,E2,F2), pV(Z,E3,F3).

Finally, bond graph and CyPhyML signal ports are semantically matching:

eq(U,V) :- ModelPortMap(X,_,Y), sV(X,U), sV(Y,V).

SignalFlow Integration

The discrete signals of SignalFlow output ports are converted to continuous-
time signals in CyPhyML by means of hold:

hold(V,U) :- ModelPortMap(X,_,Y), X:SF_outSignal, sV(X,U), sV(Y,V).

Continuous-time signals of CyPhyML input ports are sampled, when mapped to
SignalFlow input ports:

sample(U,V) :- ModelPortMap(X,_,Y), X:SF_inSignal, sV(X,U), sV(Y,V).

7 Semantic Backplane

The presented approach was used for developing the formal specifications for
a suite of languages in DARPA’s AVM program. These specifications are col-



lectively called the semantic backplane. In this section, we provide some details
about the size of the languages and the specifications.

The evaluation and validation of the languages are performed through DARPA’s
on-going FANG challenge (http://vehicleforge.org), during which more than
1000 systems engineers and 200 design teams are using our tools for building
vehicle designs. It is interesting to see the complexity of this semantic backplane
in terms of its size: CyPhyML, the integration language contains 4121 model
elements, which gets compiled into a FORMULA domain with 1635 lines of
code (63 enumerated types, 437 union types, 670 primitive data constructors
with 2768 attributes). We have developed a code generator that performs this
step automatically. The structural and behavioral specifications of the language
consists of 1113 lines of code. Furthermore, the complete infrastructure specifi-
cation adds an additional 2499 lines of code. Altogether, the specifications for
the complete system consist of 21 domains, 6 transformations, 647 rules, 262 de-
rived data constructors and 3612 lines of manually written code. On one hand,
these numbers indicate the non-trivial size of the project, and on the other hand,
it shows that the approach still results in a reasonably compact specification,
which – we believe – is comprehensible and relatively easily maintainable.

8 Conclusion

Safety-critical CPS applications call for sound modeling languages, hence we
need mathematically rigorous and unambiguous formal specifications for the
structural and behavioral semantics of CPS DSMLs. In this paper, we discussed
how a logic-based language can be used for specifying both the structural and
the denotational behavioral semantics of a CPS language. Our approach has
two advantages: (i) we used an executable formal specification language, which
lends itself to model conformance checking, model checking and model synthesis;
(ii) both the structural and behavioral specifications are written using the same
logic-based language, therefore both can be used for deductive reasoning: in
particular, structure-based proofs about behaviors become feasible.

So far, we have formally specified the structural and behavioral semantics for
CyPhyML, Hybrid Bond Graphs and ESMoL. However, it remains a matter of
future work to use these formalizations for model checking, deductive reasoning
and correctness proofs.
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