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ABSTRACT 
One of the primary goals of the Adaptive Vehicle Make 

(AVM) program of DARPA is the construction of a model-

based design flow and tool chain, META, that will provide 

significant productivity increase in the development of complex 

cyber-physical systems. In model-based design, modeling 

languages and their underlying semantics play fundamental role 

in achieving compositionality.  A significant challenge in the 

META design flow is the heterogeneity of the design space. 

This challenge is compounded by the need for rapidly evolving 

the design flow and the suite of modeling languages supporting 

it. Heterogeneity of models and modeling languages is 

addressed by the development of a model integration language 

– CyPhy – supporting constructs needed for modeling the 

interactions among different modeling domains. CyPhy targets 

simplicity: only those abstractions are imported from the 

individual modeling domains to CyPhy that are required for 

expressing relationships across sub-domains. This “semantic 

interface” between CyPhy and the modeling domains is 

formally defined, evolved as needed and verified for essential 

properties (such as well-formedness and invariance). Due to the 

need for rapid evolvability, defining semantics for CyPhy is not 

a “one-shot” activity; updates, revisions and extensions are 

ongoing and their correctness has significant implications on the 

overall consistency of the META tool chain.    The focus of this 

paper is the methods and tools used for this purpose: the META 

Semantic Backplane.   The Semantic Backplane is based on a 

mathematical framework provided by term algebra and logics, 

incorporates a tool suite for specifying, validating and using 

formal structural and behavioral semantics of modeling 

languages, and includes a library of metamodels and 

specifications of model transformations.  

 

INTRODUCTION 
The META design flow is implemented as a model 

composition/synthesis process that incrementally shapes and 

refines the design space using formal models that can be 

manipulated. The model composition and refinement process is 

intertwined with testing, analysis, and verification steps to 

validate and verify requirements and to guide the design process 

toward the least complex, therefore the least risky and least 

expensive solutions.  One of the crucial preconditions of 

achieving DARPA’s Adaptive Vehicle Make (AVM) [1] goal of 

compressing five-fold the development timeline is the 

availability of a quality-controlled model library for system 

components, system contexts, and manufacturing models. The 

model library includes the basic, reusable building blocks 

defining a multi-dimensional design space. It serves as a 

foundation for compositional design strategies where system 

level properties are computed from properties of components. 

 
The success of the META approach depends on a sufficient 

body of composable, multi-domain, and accurate model 

repository as well as composition and analysis technology that 

enable: 

•  Categorization/Taxonomy: Searching for components within a 

component database. 

• Modular Design: Insertion into existing and new designs 

(common/mappable interfaces). 

• Analysis: Both as a component, and as an assembly of 

components, supporting all relevant physical/control 

properties to determine how the actual component will work.  

Analysis will span from simple properties, through dynamics, 

to detailed first order analysis. 

• Build/Assemble: data necessary to construct and/or assemble 

the actual component into a system. 

 

In META, as well as in all other approaches to model- 

based design, modeling languages and their underlying 

semantics play fundamental role in achieving compositionality.  

The tremendous heterogeneity of the AVM design space, and 

the need for rapidly evolving/updating the design flow requires 

a rich set of modeling languages usually determined by existing 

and emerging model-based design, verification and simulation 
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technologies and tools. Consequently, the META language suite 

and the related infrastructure cannot be assumed to be static; it 

will continuously evolve.  To address both heterogeneity and 

evolvability simultaneously, we departed from the most 

frequently used approach to address heterogeneity: the 

development or adoption of a very broad and necessarily hugely 

complex language standard covering all aspects of the AVM 

domain (and more). Instead, we place emphasis on the 

development of a model integration language – CyPhy – with 

constructs limited to modeling the interactions among different 

modeling aspects. CyPhy targets multi-modeling – it advances 

multi-modeling from a mere “ensemble” of models to a 

formally and precisely integrated, mathematically sound suite of 

models. Integration of the  modeling language suite by CyPhy is 

minimal in a sense that  only those abstractions are imported 

from the individual languages to CyPhy that are required for 

expressing coupling across sub-domains. This “semantic 

interface” between CyPhy and the domain specific modeling 

languages (DSML) is carefully (and formally) defined, evolved 

as needed and verified for essential properties (such as well-

formedness and consistency) using the methods and tools  of 

formal metamodeling. By design, CyPhy is moving in the 

opposite direction to unified system design languages, such as 

SySML [28] or AADL [29]. Its goal is specificity as opposed to 

generality and heavy weight standardization is replaced by 

layered language architecture and specification of explicit 

semantics. 

The goal of this paper is to describe thes key components 

of the META Semantic Backplane, our language engineering 

infrastructure. Details of CyPhy and the structure of the overall 

META tool chain are presented elsewhere. We start by 

discussing characteristics of the AVM design flow and AVM 

components from model integration point of view. We follow 

this by providing an overview of the Semantic Backplane. The 

paper will provide details on the selected method of formal 

modeling of the semantics of modeling languages and presents 

examples for specifications. The central message of this paper is 

that formal semantic foundations for designing and composing 

DSMLs are sufficiently mature to support an agile approach to 

design automation, one that can be tailored to actual needs 

without sacrificing soundness.   

 

AVM DESIGN FLOW IMPACT ON THE META MODEL 

INTEGRATION LANGUAGE 
The META design flow proceeds in the following main 

phases: 

1. Combinatorial Design Space Exploration using static finite 

domain constraints and architecture evaluation. 

2. Behavioral Design Space Exploration by progressively 

deepening from qualitative discrete behaviors to precisely 

formulated relational abstractions and to quantitative multi-

physics, lumped parameter hybrid dynamic models using 

both deterministic and probabilistic approaches. 

3. Geometric/Structural Design Space Exploration coupled 

with physics-based nonlinear PDE analysis of thermal, 

mechanical and mobility properties. 

4. Cyber Design Space Exploration (both HW and SW) 

tightly coupled to continuous system dynamics. 

The design space exploration phases are linked to 

probabilistic and deterministic verification methods and are 

guided by complexity metrics. The META design flow 

introduces heterogeneity in multiple dimensions: 

1. Heterogeneity caused by multiple physics domains 

(structural, mechanical, electrical, hydraulic, pneumatic and 

others). 

2. Abstraction heterogeneity across implementation layers 

(continuous/hybrid dynamics, logical time dynamics (automata 

models), discrete event dynamics). 

3. Heterogeneity across behavioral abstractions developed for 

describing the same dynamic phenomenon (e.g. hybrid 

dynamics abstracted to concurrent state machines using precise 

relational abstractions). 

The modeling domains across these design dimensions are 

not closed: they continuously evolve; new modeling and 

analysis methods are developed and need to be incorporated in 

the design flow. In order to achieve the required flexibility in 

the META language design without sacrificing precision, we 

developed the CyPhy Model Integration Language. The 

approach followed in CyPhy is demonstrated in Figure 1. 

 

 
Figure 1.   Model integration language concept 

 

The domain-specific modeling languages addressing 

various aspects of the heterogeneous design space are 

introduced by a variety of tools (such as Simulink [23], 

Modelica [24], TrueTime [25], Pro/ENGINEER [26], 

ThermalDesktop [27], etc.) with their own syntax and 

semantics. Many of these languages are complex, not 

necessarily because of the innate domain complexity, but 

auxiliary complexities caused by an insatiable push for 

generality or various incidental tool functions. The CyPhy 
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approach filters these complexities out and abstracts in the 

CyPhy integration domain only those concepts that are essential 

for cross-domain integration. This approach enables keeping 

CyPhy semantics simple, but sufficient for creating meaningful 

cross-domain integration models. The languages are represented 

in the CyPhy domain via their semantic interface defined by 

metamodels. These metamodels are specified using the META 

Semantic Backplane tools. The bridge between CyPhy and the 

integrated domain specific tools’ modeling space is created by 

semantic translators. The semantic translators extract and 

transform the domain specific models into the CyPhy model 

integration space according to their semantic interface.  The 

same technique is used to integrate with CyPhy highly complex, 

heavyweight modeling languages, such as SySML, AADL or 

others. 

 

AVM COMPONENT IMPACT ON THE META MODEL 

INTEGRATION LANGUAGE 
META Components span a broad range as can be seen in 

Figure 2. Components are modeled using a variety of domain 

tools with their own domain specific notations, for example, 

component physical dynamics may often be modeled in 

Simulink or Modelica, while software models may range from 

AADL models to UML class diagrams and to Simulink 

Stateflow models. 

 

 
Figure 2.   Heterogeneous components in AVM 

 

Our CyPhy integration language approach can handle this 

diversity by not attempting to integrate all information within 

the integration model itself, rather keeping the model artifacts in 

their native format, but maintaining links to the relevant 

information encoded within the CyPhy model. By linking the 

component models with the CyPhy integration models the 

detailed models can be recalled for deep analysis, while the 

information in CyPhy about the component is used in the 

composition and execution of the analysis. 

SEMANTIC BACKPLANE 
Our modeling language and tool integration strategy has been 

built on Vanderbilt’s Meta-Level Tool Architecture and the 

Model Integrated Computing (MIC) metaprogrammable tool 

suite [30]. In the Meta-Level Tool Architecture (see Figure 3), 

domain-specific modeling, modeling languages and tool chains 

(top layer) are specified and integrated using the Meta-Level 

methods and tools (middle layer). The Meta-Level includes 

metamodels of component DSMLs, and metaprogrammable 

tools for modeling (Generic Modeling Environment – GME), 

model data management (Unified Data Model tool – UDM), 

model transformation (Graph Rewriting and Transformation 

tool - GReAT), and tool integration (Open Tool Integration 

Framework – OTIF). These tools are part of Vanderbilt’s open 

source Model- Integrated Computing tool suite [12] that have 

been developed over two decades and have been matured in a 

wide range of applications from process engineering to 

automotive, manufacturing to defense.  

 

 
Figure 3.   Meta-level tool architecture 

 

The META Semantic Backplane constitutes a “language 

engineering environment”, where DSMLs and tool chains can 

be rapidly designed and evolved. The Meta Level (mid-layer) is 

built on the Semantic Level (lower layer) that includes the 

theories, methods and tools required for making the overall 

Meta-Level architecture sound. 

 
Figure 4.   Components of the META semantic backplane 

 

The structure of the META Semantic Backplane is shown 

in Figure 4. The META design flow is manifested on the 

Semantic Backplane as a suite of formal specifications: 
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specification of DSMLs using metamodels and specification of 

model transformations as mappings among metamodels. The 

primary functionalities of the META Semantic Backplane are 

Metamodeling, Metamodel Analysis and Verification and 

Metageneration. These functionalities are supported by 

Languages, Models and Tools as shown in Figure 4. 

 

1. Tools: The Semantic Backplane includes the  MIC tool 

suite: (a) GME configured for building metamodels using 

the metamodeling language MetaGME [10][11], (b) the 

GReAT model transformation tool suite  for specifying 

model transformations using the transformation 

specification language (UMTL) and compiling the 

specifications into executable Model Transformation Tools 

[17], (c) the Unified Data Model (UDM) tool suite for 

specifying and generating model management backends 

and (d) the Open Tool Integration Framework [12]. A 

recently completed component of the Semantic Backplane 

tool suite is the translator toward FORMULA [4], a tool 

that can be used for formally verifying and validating 

metamodels and specifications of model transformations. 

FORMULA [3] is the result of the continuation of research 

at Microsoft Research started at Vanderbilt on structural 

semantics. There is ongoing collaboration between 

Vanderbilt and MSR in developing and using FORMULA 

in various foundational aspects of model-based design, 

particularly as a formalism for describing formal semantics 

of modeling languages.  

2. Languages: The Semantic Backplane includes language for 

metamodeling – MetaGME – and language for specifying 

model transformations – GReAT. The languages are 

functionally complete: metamodels specified in MetaGME 

are used for configuring metaprogrammable tools and can 

be translated into alternative metamodeling languages 

(used in the Eclipse Modeling Framework, the UML tool 

suites or MOF). Model transformations specified in GReAT 

can be compiled into fast Model Transformation Tools. For 

metamodel analysis and verification we use FORMULA. 

The Meta-Level tools include a translator that translates 

metamodels (and GReAT model transformations in the 

future) into FORMULA. 

3. Models: Modeling languages and model transformations 

deployed in the META tool chain are specified by 

MetaGME metamodels and GReAT. If formal verification 

of metamodels and model transformations is required, the 

metamodels are translated into FORMULA and their 

semantics is refined. The metamodels, transformation 

models and FORMULA specifications provide the core 

semantic foundations that keep the modeling languages 

used in the evolving META   tool chain and design flow 

sound. 

 

It is important to note that the use cases for tools, languages 

and models in the Semantic Backplane are fundamentally 

different from that of the engineering tools in the META design 

flow. Meta Level modeling, and model verification activities are 

highly focused and used only when the META  design flow and 

tool suite is changing (e.g. new modeling languages and 

analysis methods are adopted). It needs to be done by a small 

team responsible for the overall integrity of the tool suite.  

Specifying DSML semantics is an essential task for 

meaningful integration and exchange of models. Without 

semantics, models become loose artifacts open to 

misinterpretation. This problem compounds as models are 

integrated and exchanged. However, providing a framework for 

specifying and composing semantics is challenging for several 

reasons: (1) Unlike traditional programming languages that 

share the Turing machine as a common foundation, DSMLs 

vary in the nature of their semantics. (2) Direct specification of 

semantics as mathematical formulas, e.g. by logic, sequent 

calculi, or trace algebras, requires expertise as a mathematician 

and language designer. (3) Manual composition of DSMLs 

semantics by manipulation and (semi-automated) correctness 

proofs is not practical.  

In general, models represent a structure (e.g. a mechanical 

assembly) and associated behaviors. Accordingly, specification 

of modeling languages requires support for specifying both 

structural and behavioral semantics.  We have developed a 

process, called semantic anchoring that allows the precise 

mapping of highly domain specific notations to mathematically 

sound semantic domains. Given the lack of space, we show only 

a short summary of these results with the purpose of showing 

their role and use in the proposed project. 

 

STRUCTURAL SEMANTICS 
Structural semantics defines the set of well-formed models 

that can be created in a DSML. The set of well-formed models 

can be defined by a type language and a constraint language. 

MetaGME uses UML class diagrams as type language and the 

Object Constraint Language (OCL). We have completed the 

formalization of structural semantics using the mathematical 

framework of Constraint Logic Programming (CLP). The 

degree to which we can reason about metamodels depends on 

the expressiveness of the constraint logic. Some examples we 

used for checking expressiveness are: (1) Models of 

component-to-CPU deployments where legal models must be 

schedulable. (2) Models of dataflow systems where legal 

models never deadlock and always use bounded memory. (3) 

Models of system state where legal models are those states 

satisfying invariants[14][15]. Prior work at Vanderbilt led to the 

first version of FORMULA (Formal Modeling Using Logic 

Programming and Analysis) that used non-recursive Horn logic, 

for deciding well-formedness or malformedness of model 

instances. Lately, this work has been extended at Microsoft 

Research to an extended Horn logic with stratified negation 

[3][16]. 

The current version of FORMULA combines two well-

studied branches of mathematics: algebraic data types (ADTs) 

and first-order logic with fixpoints (FPL). The latter is 

parameterized by background theories including Presburger 
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arithmetic, bit vectors, term algebras, lists, arrays, and sets. It 

employs ADTs for describing the basic structure of models, 

which may include architectural diagrams, abstract states, data 

sets, or lines of code. The semantics of these structures is 

specified by constraint logic programming (CLP), yielding a 

declarative and programmatic means for assigning meaning to 

structures via FPL. This style can be used to attach rich 

constraints to the ADTs for structural semantics, or to describe 

the evolution of structures for behavioral semantics. 

FORMULA provides a first-class module system for composing 

specifications with formal guarantees. 

The key formal method provided by FORMULA is a world 

search procedure: Does there exist an extension of a logic 

program (a world) where a goal is satisfied? This single 

procedure supports many analysis scenarios, including: (1) 

Consistency checking – Does there exist a legal model?, (2) 

Synthesis – Does there exist a model that has a certain 

property?, (3) Design space exploration – Do there exist many 

models that have a property?, (4) Model checking – Does there 

exists an initial model and sequence of steps where a property 

holds over the steps. World search is solved by two state-of-the-

art techniques: Symbolic execution converts a search problem 

into a symbolic constraint satisfaction problem, generating as 

few constraints as possible. A state-of-the-art satisfiability 

modulo theories (SMT) solver is applied to efficiently solve the 

constraint problem [16]. 

 

EXAMPLE FOR DEFINING STRUCTURAL SEMANTICS  

 
We now illustrate these ideas by defining structural 

semantics for a simplified bond graph modeling language 

(Figure 5 and Table 1-2). Bond graphs are graphical 

representations of physical dynamics. The arcs in a bond graph 

Table 1.   Model elements of acausal bond graphs 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

domain AcausalBG_elements 
{ 
  primitive Sf ::= (id: String). 
  primitive Se ::= (id: String). 
  primitive R  ::= (id: String). 
  primitive C  ::= (id: String). 
  primitive I  ::= (id: String). 
  primitive TF ::= (id: String). 
  primitive GY ::= (id: String). 
  primitive ZeroJunction ::= (id: String). 
  primitive OneJunction  ::= (id: String). 
  Source   ::= Sf + Se. 
  Storage  ::= C + I. 
  OnePort  ::= Source + R + Storage. 
  TwoPort  ::= TF + GY. 
  BGElement ::= OnePort + TwoPort. 
  Junction ::= ZeroJunction + OneJunction. 
  BGNode   ::= BGElement + Junction. 
  primitive Bond ::= (id: String).  
  [Closed] primitive Src ::= (Bond,BGNode). 
  [Closed] primitive Dst ::= (Bond,BGNode). 
} 

 

Table 2.   Excerpt from the structural semantics of acausal 

bond graphs 

23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

domain AcausalBG extends AcausalBG_elements 
{ 
  invalidBondDef := a is Bond, no Src(a,_). 
  invalidBondDef := a is Bond, no Dst(a,_). 
  … 
  bondConn(a,x) :- Src(a,x); Dst(a,x). 
  atLeastOneConnection(x) :- bondConn(_,x). 
  atLeastTwoConnections(x) :- 
     bondConn(a,x), bondConn(b,x), a != b.     
  exactlyOneConnection(x) :-    
     atLeastOneConnection(x),  
     no atLeastTwoConnections(x). 
  … 
  invalidBlock := x is OnePort,  
             no exactlyOneConnection(x). 
  invalidBlock := x is TwoPort,  
             no exactlyTwoConnections(x). 
  invalidBlock := x is R, Src(_,x); 
                  x is C, Src(_,x); 
                  x is I, Src(_,x).  
  invalidBlock := x is TwoPort, no Src(_,x); 
                  x is TwoPort, no Dst(_,x). 
  … 
  conforms := !invalidBlock &  
              !invalidBondDef &  
              !invalidSrcDef &  
              !invalidDstDef. 
} 

 

 
Figure 1.   MetaGME metamodel for the simplified bond 
graph language 

 

Figure 5: Bond graph metamodel in metaGME 
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represent bi-directional energy flows and span multiple physical 

domains [22]. Due to their generality, we chose bond graphs as 

one of the formalism for systems dynamics in META. 

In the specification below we separated the domain of 

model elements from the domain of well-formed bond graphs, 

because the separated specification allows easier 

documentation. However, note that the well-formedness rules 

are strictly part of the bond graph domain, so Table 1 and Table 

2 need to be regarded as two parts of the structural semantics. 

(The MetaGME metamodel for the simplified bond graph 

language is shown in Figure 5.) 

  The domain  AcausalBG_elements (Line 1 in Table 1) 

encapsulates the model elements of bond graphs. Simple bond 

graphs have nine types of blocks and bonds between these 

blocks [22]. Basic building elements are specified through ADT 

declarations (lines 3-14, 19-21). Each of these lines represents a 

data constructor, which can be used to construct model 

elements, and each object is identified with a unique string ID. 

The keyword primitive marks constructors that are used as 

modeling elements. The special Closed annotation in lines 

20-21 indicates that constructors Src and Dst only take 

elements that have been placed directly in the model. Lines 

12-18 show type inheritance in bond graphs, where operator + 

denotes the union of sets (cf. Figure 1). 

As we have shown in Figure 4, the META Semantic 

Backplane defines modeling languages in two forms: as 

metamodels defined in MetaGME [12][20] and formal 

metamodels defined in FORMULA. The MetaGME 

metamodels are used by the metaprogrammable tools of the 

MIC tool suite, such as GME, GReAT and UDM [12]. While 

precise and captures all well-formedness rules of languages, this 

formalism is not sufficiently rich for reasoning, and expressing 

more advanced concepts such as well-formedness rules for 

evolving structures. The two formalisms are linked, MetaGME 

metamodels can be translated into FORMULA metamodels.  

The domain of well-formed acausal bond graph models is a 

subset of the domain of AcausalBG_elements as defined in 

Table 2. The subset relation is captured by the extends 
keyword in Line 23. 

The well-formedness rules in Table 2 express the valid 

configurations of the elements, e.g. lines 25-26 state that each 

bond should have a Src and Dst. Line 28 defines a non-

primitive data constructor bondConn, where semi-colon 

represents logical or. bondConn(a,x) expresses the fact that 

bond a is connected to node x. Lines 29-34 count the number of 

connections of each node. Lines 36-39 state that one-port 

elements should have exactly one connecting bond, and two-

port elements should have exactly two connecting bonds. Lines 

40-42 express the rule that resistance and storage elements 

cannot be the sources of bonds. Finally, two port elements 

should act in source and destination roles as well (lines 43-44).  

The keyword conforms (lines 46-49) captures the 

structurally well-formed models of the domain. 

 

BEHAVIORAL SEMANTICS 
Behavioral semantics is represented as a mapping of the 

model into a mathematical domain that is sufficiently rich for 

capturing essential aspects of the behavior (such as dynamics). 

In other words, the explicit representation of behavioral 

semantics of a DSML requires two distinct components: (a) a 

mathematical domain and a formal language for specifying 

behaviors, and (b) a formal language for specifying 

transformation between domains. In our previous work on 

semantic anchoring [20], we followed operational semantics 

style of specifications, where behavior is described by a set of 

rules specifying how the state of an actual or hypothetical 

computer changes while executing a program [18].  We 

formalized behavioral semantics based on Abstract State 

Machines (ASM) [6] and represented model transformations as 

graph transformation [17] (taking advantage of the GReAT 

model transformation tool of the MIC tool suite [12]). Based on 

this approach, we have developed a semantic anchoring tool 

suite [7] that enables the compositional specification of 

behavioral semantics - an essential requirement for creating an 

open DSML-based modeling language framework. However, 

this method had several drawbacks: 

1. The formal framework used for specifying model 

transformation (graph grammars) and operational semantics 

(ASM) were different. Consequently, reasoning across 

these different domains was hard and understanding the 

specification was somewhat complicated. Since we intend 

to use the Semantic Backplane for generating reference 

traces using simulation, proving properties and invariants 

across domains, a unified formal framework is highly 

desirable. 

2. Heterogeneity of AVM artifacts requires using modeling 

languages where behavioral semantics is more naturally 

represented denotationally: by formalizing the meaning of 

modeling languages via mathematical objects (denotations) 

which describe the meaning of modeling constructs. A 

common example in AVM is continuous dynamics, where 

the natural formalism for expressing semantics is 

differential algebraic equations (DAE). The challenge here 

is the specification of the model-to-model translator that 

maps the modeling language to differential equations. 

(With this, we can also separate the specification of formal 

semantics from issues such as full abstraction that examines 

operational equivalence of simulators with the denotational 

specification of dynamics.) 

In recent work we have explored defining behavioral 

semantics fully in FORMULA and found the results promising. 

The primary advantage is that structural and behavioral 

semantics are expressed in the same formal framework greatly 

decreases specification complexity and allow more extensive 

verifications.  
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EXAMPLE FOR DENOTATIONAL SPECIFICATION OF 

BEHAVIORAL SEMANTICS 
The specification of the transformation from bond graph 

models to DAE-s defines denotational semantics for bond 

graphs.  We show the formalization of this specification using 

FORMULA. 

First, we need to specify the target domain, the domain of (a 

subset of) DAE-s. This domain should be generic enough to 

allow the representation of DAE-s arising from the translation 

of bond graphs. Table 3 shows the FORMULA encoding of 

such a domain. 

Variable-s are named and indexed elements (lines 3-4), 

while Parameters are indexed elements (Line 5). In lines 6-8 

two unary operators (negation and inversion) and one binary 

operator (multiplication) are defined. The summation operator 

in lines 9-10 is an n-ary operator identified by a string ID, and n 

Addends, which define the terms over which the Sum is 

interpreted.  A term is a variable, a parameter, or an operator 

(lines 11-12). Finally, three kinds of Equation-s are defined 

(lines 13-16). Eq defines an equation, where the left-hand side 

is a single variable and the right-hand side is an arbitrary term. 

DiffEq defines a differential equation, where the left-hand side 

is the time-derivative of a single variable and the right-hand 

side is an arbitrary term. SumZero makes the specified 

summation zero. 

Bond graph denotational semantic mapping is accomplished 

by specifying the transformation from the domain of acausal 

bond graphs to the domain of differential algebraic equations. 

Each bond determines a pair of power variables, the effort and 

the flow variable. We write ea to denote the effort, and fa to 

denote the flow of bond a. Bond graph nodes define equations 

on the corresponding bond variables, usually using some 

parameter of the node. We write px for the (assumed) parameter 

of node x. Table 4 shows the denotational semantic mapping of 

bond graphs in FORMULA. 

Lines 1-3 define a transformation from the domain of 

AcausalBG to the domain of DAEquations. Line 5 equates 

the effort on a bond connected to a source of effort to the 

(effort) parameter of the source, where Connects(a,x) is a 

derived data constructor, and expresses Src(a,x) or 
Dst(a,x). The denotational meaning of a source of effort is 

fully enclosed in this single line. Similarly, Line 6 defines the 

equality on flow variables connected to source of flows. Line 7 

gives the semantic meaning of resistance by formulating the 

connection between the flow and effort variables on the 

resistance. 

Lines 8-11 show the differential equations imposed by 

capacitance and inductance. These are the only rules expressing 

differential equations in the transformation. Inherently, all the 

states of the physical system are captured by these equations. 

Lines 12-17 define the semantics of transformers and 

gyrators. The meaning of OneJunctions is specified in line 

18-24. In detail, lines 18-21 define 1-junctions by applying 

Kirchoff’s voltage law on the connected bonds. Lines 22-24 

Table 3.   Model elements of differential algebraic equations 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

domain DAEquations 
{ 
  primitive Variable ::= 
    (name: String, id: String). 
  primitive Param ::= (id: String).  
  primitive Neg ::= (Term). 
  primitive Inv ::= (Term). 
  primitive Mul ::= (Term, Term). 
  primitive Sum ::= (id: String). 
  primitive Addend ::= (Sum, Term). 
  Term ::= Variable + Param +  
     Neg + Inv + Mul + Sum. 
  primitive Eq ::= (Variable, Term). 
  primitive DiffEq ::= (Variable, Term). 
  primitive SumZero ::= (Sum). 
  Equation ::= Eq + DiffEq + SumZero. 
} 

 

Table 4.   Denotational semantic mapping of bond graphs 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

transform BG_DenotationalSemantics 
  from in1::AcausalBG  
  to out1::DAEquations 
{ 
  Eq(ea,px) :- x is Se, Connects(a,x). 
  Eq(fa,px) :- x is Sf, Connects(a,x). 
  Eq(ea, Mul(px,fa)) :- x is R, Dst(a,x). 
  DiffEq(ea, Mul(Inv(px),fa)) :-  
    x is C, Dst(a,x). 
  DiffEq(fa, Mul(Inv(px),ea)) :-  
    x is I, Dst(a,x). 
  Eq(ea, Mul(px,eb)), 
  Eq(fb, Mul(px,fa)) :- 
    x is TF, Dst(a,x), Src(b,x). 
  Eq(ea, Mul(px,fb)), 
  Eq(eb, Mul(px,fa)) :-  
    x is GY, Dst(a,x), Src(b,x). 
  Addend(Sum(x.id),ea) :-  
    x is OneJunction, Dst(a,x). 
  Addend(Sum(x.id),Neg(ea)):-  
    x is OneJunction, Src(a,x). 
  EqSumZero(Sum(x.id)) :- x is OneJunction. 
  Eq(fa,fb) :- x is OneJunction,  
    bondConn(a,x), bondConn(b,x). 
  Addend(Sum(x.id),fa) :-  
    x is ZeroJunction, Dst(a,x). 
  Addend(Sum(x.id),Neg(fa)):-  
    x is ZeroJunction, Src(a,x). 
  EqSumZero(Sum(x.id)) :- x is ZeroJunction. 
  Eq(ea,eb) :- x is ZeroJunction,  
    bondConn(a,x), bondConn(b,x). 
} 
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specify the equality of flows between connected bonds. As an 

immediate consequence, 1-junctions are clearly defining 

topological concepts, namely the serial connection of elements. 

Similarly, lines 25-31 define the meaning of ZeroJunction, 

which represent parallel connections. 

 

EXAMPLE FOR OPERATIONAL SPECIFICATION OF 

BEHAVIORAL SEMANTICS 
Similarly to ASM-based specification [21], operational 

semantics for behaviors is accomplished by modeling the 

abstract state and the ways this state can evolve. In FORMULA 

this is accomplished also by ADTs and logic programs. 

However, instead of using the logic program to compute 

whether a model is well-formed, or to specify model 

transformations, the program is used to compute the model’s 

next state from its current state. We illustrate this by defining 

structural semantics and operational semantics for deterministic 

finite state automata defined by the simple language of DFA 

(Table 5).  

The domain block encapsulates the structural semantics of 

the DFA language (Line 1). The majority of the specification is 

a set of ADT declarations (Lines 2-6). Each of these lines 

declares a data constructor, which can be used to construct 

model elements. For example, the State constructor can be used 

to construct states labeled by integers.  

The more interesting constraint is that the DFA must be non-

deterministic. This is specified in Lines 7-8 by a logic 

programming rule that searches for two transitions starting at 

the same state and triggering on the same event, but ending on 

distinct states. If such transitions exist, then the query 

nonDeterTrans evaluates to true; false otherwise. Every 

domain contains a special query called conforms that 

determines if a model is legal. Line 9 shows the conforms rule 

for DFAs; it evaluates to true if the nonDeterTrans query 

evaluate to false, i.e. it does not detect any non-deterministic 

transitions. 

Table 6 shows the FORMULA approach for defining 

operational semantics using model transformations. 

Transformations require vectors of parameters and models as 

inputs, and produce vectors of models as outputs. A parameter 

is an external value used by the transformation. For example, 

the Step transform has one parameter, called fire, requires 

one input DFA model, called in1 (Line 2), and produces one 

output DFA model, called out1 (Line 3). Inside a 

transformation are rules that search over the input modeling 

elements in order to generate the output modeling elements. 

After all the output modeling elements are generated, 

FORMULA collects these elements and emits the resulting 

model. 

The Step transformation captures the operational semantics 

of DFAs by generating a new automaton with an updated 

current state marking, depending on the current state of the 

input automaton and the event fire provided by the 

environment. Lines 5-6 copy the structure of the input 

automaton to the output, since this does not change. Notice the 

use of the in1 and out1 prefixes to distinguish between input 

and output elements. The FORMULA compiler also performs 

type inference to automatically coerce elements from inputs to 

outputs. For example, the variable s in Line 7 appears under a 

in1.Transition(,,) constructor. It must have the type 

in1.State on the right-hand side of the rule. On the left-hand 

side it appears under an out1.Transition(,,) constructor, 

so it must have the type out.State on the left-hand side. The 

compiler detects this mismatch and infers a term-rewrite that 

safely coerces s to the appropriate type. In general, FORMULA 

supports a rich type system including arbitrary union types and 

recursive type declarations, so type inference is useful for 

simplifying specifications. The last two rules (Lines 9-12) 

describe the non-trivial evolution of an automaton. Lines 9-10 

activate if the current state is s and there is a transition from s 
to sp triggered by event fire. In this case the output 

automaton has the current state marking set to sp. Lines 11-12 

handle the case where there is no outgoing transition from the 

current state triggered by fire. In this case, the output automaton 

remains in the same state as the input. 

More generally, model transformations provide a 

mechanism to specify other modeling artifacts, including: (1) 

Compilers/refinements, which generate lower level models from 

higher levels models. (2) Refactorings, which augment models 

Table 5.   Structural semantics of a deterministic finite 

automata modeling language 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 

domain DFA { 
  primitive Event ::= (lbl: Integer). 
  primitive State ::= (lbl: Integer). 
  primitive Transition ::= (src: State,  
                 trg: Event, dst: State). 
  primitive Current    ::= (st: State). 
  nonDeterTrans := Transition(s, e, sp),  
          Transition(s, e, tp), sp != tp. 
  conforms      := !nonDeterTrans. 
} 

 

Table 6.   Operational semantics for FDA 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 

transform Step<fire: in1.Event>  
  from in1::DFA  
  to out1::DFA 
{ 
   out1.State(x) :- in1.State(x). 
   out1.Event(x) :- in1.Event(x). 
   out1.Transition(s, e, sp) :-  
        in1.Transition(s, e, sp). 
   out1.Current(sp) :- in1.Current(s),  
        in1.Transition(s, fire, sp). 
   out1.Current(s) :- in1.Current(s),  
       fail in1.Transition(s, fire, _). 
} 
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to achieve some architectural change. (3) Views, which generate 

smaller slices of large models. For example, a compiler might 

transform a DFA model into a model of a C program.  

The inputs and outputs of transformations are models 

conforming to domains. Therefore, changes in domain 

definitions impact transformations. One important issue is to 

determine when a change in a domain actually changes the 

behavior of a transformation. FORMULA provides static 

analysis to safely upgrade transformations when changes in 

domains have no impact, or to notify the engineer when a 

change in a domain impacts the results of transformations. 

 

CONCLUSION 
Complex, heterogeneous design domains represent major 

challenges for design automation. Today’s organization of the 

design automation industry has led to expensive, monolithic 

tool suites that support islands of automation in complex design 

flows. These stove-piped tool chains do not scale to the large, 

heterogeneous systems that are typified by AVM.  

One strategy to respond to CPS industry needs is based on 

expanding existing monolithic tool suites to cover new design 

domains. However, the high cost of new tool development and 

the slow rate of market acceptance make the implementation of 

this strategy problematic: quite frequently not the needs of 

domains but the pressure of reusing existing tools and methods 

drive the process. This is manifested in standardization efforts 

that are custom designed for specific tool suites, in modeling 

languages that are extremely complicated in the interest of 

accommodating broader coverage and in the lack of explicit 

specification of semantics saying that the fully integrated tool 

suite takes care of this internally. 

The open source META tool suite for the AVM program has 

been challenged to follow a different strategy. Instead of basing 

the tool suite on one or the other the proprietary solutions, the 

tool suite needs to be open and composable using best of breed 

tool components. One of the fundamental conditions of 

achieving this goal is semantic integration of diverse models 

through rigorously defined “semantic interfaces”. The META 

Semantic Backplane creates a framework for doing it. Our 

initial experience with defining key elements of the semantic 

integration - structural and behavioral semantics using 

metamodels, formal metamodels and model transformations – 

using the constraint logic programming framework of 

FORMULA is encouraging.  

In summary, we plan to use the META Semantic Backplane 

for modeling language and model integration the following 

ways in the future: 

1. Syntactic integration: translation of models across language 

variants and syntactically different dialects.   

2. Semantic anchoring: keeping the semantic specification of 

modeling languages explicit by defining their operational 

or denotational semantics as appropriate. 

3. Semantic linking: keeping track of dependencies among 

model elements deployed in multiple tools. 

4. Semantic interfaces: keeping the relationship between the 

semantics of DSMLs used by modeling, analysis and 

simulation tools and their abstracted semantic interface 

toward the CyPhy explicit and sound. 

5. Semantic co-operation:  keeping the relationship between 

the behavioral semantics of domain specific languages used 

by simulation tools and their abstracted semantic interface 

toward simulation composition platform (HLA) explicit 

and sound. 
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