
 1 Copyright © 2012 by ASME

Proceedings of the ASME 2012 International Design Engineering Technical Conferences &

Computers and Information in Engineering Conference

IDETC/CIE 2012

August 12-15, 2012, Chicago, IL,

DETC2012-70534

FOUNDATION FOR MODEL INTEGRATION: SEMANTIC BACKPLANE

Gabor Simko
ISIS-Vanderbilt University

Nashville, TN USA

Tihamer Levendovszky
ISIS-Vanderbilt University

Nashville, TN USA

Sandeep Neema
ISIS-Vanderbilt University

Nashville, TN USA

Ethan Jackson
Microsoft Research
Bellevue, WA USA

Ted Bapty
ISIS-Vanderbilt University

Nashville, TN USA

Joseph Porter
ISIS-Vanderbilt University

Nashville, TN USA

Janos Sztipanovits
ISIS-Vanderbilt University

Nashville, TN USA

ABSTRACT
One of the primary goals of the Adaptive Vehicle Make

(AVM) program of DARPA is the construction of a model-

based design flow and tool chain, META, that will provide

significant productivity increase in the development of complex

cyber-physical systems. In model-based design, modeling

languages and their underlying semantics play fundamental role

in achieving compositionality. A significant challenge in the

META design flow is the heterogeneity of the design space.

This challenge is compounded by the need for rapidly evolving

the design flow and the suite of modeling languages supporting

it. Heterogeneity of models and modeling languages is

addressed by the development of a model integration language

– CyPhy – supporting constructs needed for modeling the

interactions among different modeling domains. CyPhy targets

simplicity: only those abstractions are imported from the

individual modeling domains to CyPhy that are required for

expressing relationships across sub-domains. This “semantic

interface” between CyPhy and the modeling domains is

formally defined, evolved as needed and verified for essential

properties (such as well-formedness and invariance). Due to the

need for rapid evolvability, defining semantics for CyPhy is not

a “one-shot” activity; updates, revisions and extensions are

ongoing and their correctness has significant implications on the

overall consistency of the META tool chain. The focus of this

paper is the methods and tools used for this purpose: the META

Semantic Backplane. The Semantic Backplane is based on a

mathematical framework provided by term algebra and logics,

incorporates a tool suite for specifying, validating and using

formal structural and behavioral semantics of modeling

languages, and includes a library of metamodels and

specifications of model transformations.

INTRODUCTION
The META design flow is implemented as a model

composition/synthesis process that incrementally shapes and

refines the design space using formal models that can be

manipulated. The model composition and refinement process is

intertwined with testing, analysis, and verification steps to

validate and verify requirements and to guide the design process

toward the least complex, therefore the least risky and least

expensive solutions. One of the crucial preconditions of

achieving DARPA’s Adaptive Vehicle Make (AVM) [1] goal of

compressing five-fold the development timeline is the

availability of a quality-controlled model library for system

components, system contexts, and manufacturing models. The

model library includes the basic, reusable building blocks

defining a multi-dimensional design space. It serves as a

foundation for compositional design strategies where system

level properties are computed from properties of components.

The success of the META approach depends on a sufficient

body of composable, multi-domain, and accurate model

repository as well as composition and analysis technology that

enable:

• Categorization/Taxonomy: Searching for components within a

component database.

• Modular Design: Insertion into existing and new designs

(common/mappable interfaces).

• Analysis: Both as a component, and as an assembly of

components, supporting all relevant physical/control

properties to determine how the actual component will work.

Analysis will span from simple properties, through dynamics,

to detailed first order analysis.

• Build/Assemble: data necessary to construct and/or assemble

the actual component into a system.

In META, as well as in all other approaches to model-

based design, modeling languages and their underlying

semantics play fundamental role in achieving compositionality.

The tremendous heterogeneity of the AVM design space, and

the need for rapidly evolving/updating the design flow requires

a rich set of modeling languages usually determined by existing

and emerging model-based design, verification and simulation

 2 Copyright © 2012 by ASME

technologies and tools. Consequently, the META language suite

and the related infrastructure cannot be assumed to be static; it

will continuously evolve. To address both heterogeneity and

evolvability simultaneously, we departed from the most

frequently used approach to address heterogeneity: the

development or adoption of a very broad and necessarily hugely

complex language standard covering all aspects of the AVM

domain (and more). Instead, we place emphasis on the

development of a model integration language – CyPhy – with

constructs limited to modeling the interactions among different

modeling aspects. CyPhy targets multi-modeling – it advances

multi-modeling from a mere “ensemble” of models to a

formally and precisely integrated, mathematically sound suite of

models. Integration of the modeling language suite by CyPhy is

minimal in a sense that only those abstractions are imported

from the individual languages to CyPhy that are required for

expressing coupling across sub-domains. This “semantic

interface” between CyPhy and the domain specific modeling

languages (DSML) is carefully (and formally) defined, evolved

as needed and verified for essential properties (such as well-

formedness and consistency) using the methods and tools of

formal metamodeling. By design, CyPhy is moving in the

opposite direction to unified system design languages, such as

SySML [28] or AADL [29]. Its goal is specificity as opposed to

generality and heavy weight standardization is replaced by

layered language architecture and specification of explicit

semantics.

The goal of this paper is to describe thes key components

of the META Semantic Backplane, our language engineering

infrastructure. Details of CyPhy and the structure of the overall

META tool chain are presented elsewhere. We start by

discussing characteristics of the AVM design flow and AVM

components from model integration point of view. We follow

this by providing an overview of the Semantic Backplane. The

paper will provide details on the selected method of formal

modeling of the semantics of modeling languages and presents

examples for specifications. The central message of this paper is

that formal semantic foundations for designing and composing

DSMLs are sufficiently mature to support an agile approach to

design automation, one that can be tailored to actual needs

without sacrificing soundness.

AVM DESIGN FLOW IMPACT ON THE META MODEL

INTEGRATION LANGUAGE
The META design flow proceeds in the following main

phases:

1. Combinatorial Design Space Exploration using static finite

domain constraints and architecture evaluation.

2. Behavioral Design Space Exploration by progressively

deepening from qualitative discrete behaviors to precisely

formulated relational abstractions and to quantitative multi-

physics, lumped parameter hybrid dynamic models using

both deterministic and probabilistic approaches.

3. Geometric/Structural Design Space Exploration coupled

with physics-based nonlinear PDE analysis of thermal,

mechanical and mobility properties.

4. Cyber Design Space Exploration (both HW and SW)

tightly coupled to continuous system dynamics.

The design space exploration phases are linked to

probabilistic and deterministic verification methods and are

guided by complexity metrics. The META design flow

introduces heterogeneity in multiple dimensions:

1. Heterogeneity caused by multiple physics domains

(structural, mechanical, electrical, hydraulic, pneumatic and

others).

2. Abstraction heterogeneity across implementation layers

(continuous/hybrid dynamics, logical time dynamics (automata

models), discrete event dynamics).

3. Heterogeneity across behavioral abstractions developed for

describing the same dynamic phenomenon (e.g. hybrid

dynamics abstracted to concurrent state machines using precise

relational abstractions).

The modeling domains across these design dimensions are

not closed: they continuously evolve; new modeling and

analysis methods are developed and need to be incorporated in

the design flow. In order to achieve the required flexibility in

the META language design without sacrificing precision, we

developed the CyPhy Model Integration Language. The

approach followed in CyPhy is demonstrated in Figure 1.

Figure 1. Model integration language concept

The domain-specific modeling languages addressing

various aspects of the heterogeneous design space are

introduced by a variety of tools (such as Simulink [23],

Modelica [24], TrueTime [25], Pro/ENGINEER [26],

ThermalDesktop [27], etc.) with their own syntax and

semantics. Many of these languages are complex, not

necessarily because of the innate domain complexity, but

auxiliary complexities caused by an insatiable push for

generality or various incidental tool functions. The CyPhy

 3 Copyright © 2012 by ASME

approach filters these complexities out and abstracts in the

CyPhy integration domain only those concepts that are essential

for cross-domain integration. This approach enables keeping

CyPhy semantics simple, but sufficient for creating meaningful

cross-domain integration models. The languages are represented

in the CyPhy domain via their semantic interface defined by

metamodels. These metamodels are specified using the META

Semantic Backplane tools. The bridge between CyPhy and the

integrated domain specific tools’ modeling space is created by

semantic translators. The semantic translators extract and

transform the domain specific models into the CyPhy model

integration space according to their semantic interface. The

same technique is used to integrate with CyPhy highly complex,

heavyweight modeling languages, such as SySML, AADL or

others.

AVM COMPONENT IMPACT ON THE META MODEL

INTEGRATION LANGUAGE
META Components span a broad range as can be seen in

Figure 2. Components are modeled using a variety of domain

tools with their own domain specific notations, for example,

component physical dynamics may often be modeled in

Simulink or Modelica, while software models may range from

AADL models to UML class diagrams and to Simulink

Stateflow models.

Figure 2. Heterogeneous components in AVM

Our CyPhy integration language approach can handle this

diversity by not attempting to integrate all information within

the integration model itself, rather keeping the model artifacts in

their native format, but maintaining links to the relevant

information encoded within the CyPhy model. By linking the

component models with the CyPhy integration models the

detailed models can be recalled for deep analysis, while the

information in CyPhy about the component is used in the

composition and execution of the analysis.

SEMANTIC BACKPLANE
Our modeling language and tool integration strategy has been

built on Vanderbilt’s Meta-Level Tool Architecture and the

Model Integrated Computing (MIC) metaprogrammable tool

suite [30]. In the Meta-Level Tool Architecture (see Figure 3),

domain-specific modeling, modeling languages and tool chains

(top layer) are specified and integrated using the Meta-Level

methods and tools (middle layer). The Meta-Level includes

metamodels of component DSMLs, and metaprogrammable

tools for modeling (Generic Modeling Environment – GME),

model data management (Unified Data Model tool – UDM),

model transformation (Graph Rewriting and Transformation

tool - GReAT), and tool integration (Open Tool Integration

Framework – OTIF). These tools are part of Vanderbilt’s open

source Model- Integrated Computing tool suite [12] that have

been developed over two decades and have been matured in a

wide range of applications from process engineering to

automotive, manufacturing to defense.

Figure 3. Meta-level tool architecture

The META Semantic Backplane constitutes a “language

engineering environment”, where DSMLs and tool chains can

be rapidly designed and evolved. The Meta Level (mid-layer) is

built on the Semantic Level (lower layer) that includes the

theories, methods and tools required for making the overall

Meta-Level architecture sound.

Figure 4. Components of the META semantic backplane

The structure of the META Semantic Backplane is shown

in Figure 4. The META design flow is manifested on the

Semantic Backplane as a suite of formal specifications:

 4 Copyright © 2012 by ASME

specification of DSMLs using metamodels and specification of

model transformations as mappings among metamodels. The

primary functionalities of the META Semantic Backplane are

Metamodeling, Metamodel Analysis and Verification and

Metageneration. These functionalities are supported by

Languages, Models and Tools as shown in Figure 4.

1. Tools: The Semantic Backplane includes the MIC tool

suite: (a) GME configured for building metamodels using

the metamodeling language MetaGME [10][11], (b) the

GReAT model transformation tool suite for specifying

model transformations using the transformation

specification language (UMTL) and compiling the

specifications into executable Model Transformation Tools

[17], (c) the Unified Data Model (UDM) tool suite for

specifying and generating model management backends

and (d) the Open Tool Integration Framework [12]. A

recently completed component of the Semantic Backplane

tool suite is the translator toward FORMULA [4], a tool

that can be used for formally verifying and validating

metamodels and specifications of model transformations.

FORMULA [3] is the result of the continuation of research

at Microsoft Research started at Vanderbilt on structural

semantics. There is ongoing collaboration between

Vanderbilt and MSR in developing and using FORMULA

in various foundational aspects of model-based design,

particularly as a formalism for describing formal semantics

of modeling languages.

2. Languages: The Semantic Backplane includes language for

metamodeling – MetaGME – and language for specifying

model transformations – GReAT. The languages are

functionally complete: metamodels specified in MetaGME

are used for configuring metaprogrammable tools and can

be translated into alternative metamodeling languages

(used in the Eclipse Modeling Framework, the UML tool

suites or MOF). Model transformations specified in GReAT

can be compiled into fast Model Transformation Tools. For

metamodel analysis and verification we use FORMULA.

The Meta-Level tools include a translator that translates

metamodels (and GReAT model transformations in the

future) into FORMULA.

3. Models: Modeling languages and model transformations

deployed in the META tool chain are specified by

MetaGME metamodels and GReAT. If formal verification

of metamodels and model transformations is required, the

metamodels are translated into FORMULA and their

semantics is refined. The metamodels, transformation

models and FORMULA specifications provide the core

semantic foundations that keep the modeling languages

used in the evolving META tool chain and design flow

sound.

It is important to note that the use cases for tools, languages

and models in the Semantic Backplane are fundamentally

different from that of the engineering tools in the META design

flow. Meta Level modeling, and model verification activities are

highly focused and used only when the META design flow and

tool suite is changing (e.g. new modeling languages and

analysis methods are adopted). It needs to be done by a small

team responsible for the overall integrity of the tool suite.

Specifying DSML semantics is an essential task for

meaningful integration and exchange of models. Without

semantics, models become loose artifacts open to

misinterpretation. This problem compounds as models are

integrated and exchanged. However, providing a framework for

specifying and composing semantics is challenging for several

reasons: (1) Unlike traditional programming languages that

share the Turing machine as a common foundation, DSMLs

vary in the nature of their semantics. (2) Direct specification of

semantics as mathematical formulas, e.g. by logic, sequent

calculi, or trace algebras, requires expertise as a mathematician

and language designer. (3) Manual composition of DSMLs

semantics by manipulation and (semi-automated) correctness

proofs is not practical.

In general, models represent a structure (e.g. a mechanical

assembly) and associated behaviors. Accordingly, specification

of modeling languages requires support for specifying both

structural and behavioral semantics. We have developed a

process, called semantic anchoring that allows the precise

mapping of highly domain specific notations to mathematically

sound semantic domains. Given the lack of space, we show only

a short summary of these results with the purpose of showing

their role and use in the proposed project.

STRUCTURAL SEMANTICS
Structural semantics defines the set of well-formed models

that can be created in a DSML. The set of well-formed models

can be defined by a type language and a constraint language.

MetaGME uses UML class diagrams as type language and the

Object Constraint Language (OCL). We have completed the

formalization of structural semantics using the mathematical

framework of Constraint Logic Programming (CLP). The

degree to which we can reason about metamodels depends on

the expressiveness of the constraint logic. Some examples we

used for checking expressiveness are: (1) Models of

component-to-CPU deployments where legal models must be

schedulable. (2) Models of dataflow systems where legal

models never deadlock and always use bounded memory. (3)

Models of system state where legal models are those states

satisfying invariants[14][15]. Prior work at Vanderbilt led to the

first version of FORMULA (Formal Modeling Using Logic

Programming and Analysis) that used non-recursive Horn logic,

for deciding well-formedness or malformedness of model

instances. Lately, this work has been extended at Microsoft

Research to an extended Horn logic with stratified negation

[3][16].

The current version of FORMULA combines two well-

studied branches of mathematics: algebraic data types (ADTs)

and first-order logic with fixpoints (FPL). The latter is

parameterized by background theories including Presburger

 5 Copyright © 2012 by ASME

arithmetic, bit vectors, term algebras, lists, arrays, and sets. It

employs ADTs for describing the basic structure of models,

which may include architectural diagrams, abstract states, data

sets, or lines of code. The semantics of these structures is

specified by constraint logic programming (CLP), yielding a

declarative and programmatic means for assigning meaning to

structures via FPL. This style can be used to attach rich

constraints to the ADTs for structural semantics, or to describe

the evolution of structures for behavioral semantics.

FORMULA provides a first-class module system for composing

specifications with formal guarantees.

The key formal method provided by FORMULA is a world

search procedure: Does there exist an extension of a logic

program (a world) where a goal is satisfied? This single

procedure supports many analysis scenarios, including: (1)

Consistency checking – Does there exist a legal model?, (2)

Synthesis – Does there exist a model that has a certain

property?, (3) Design space exploration – Do there exist many

models that have a property?, (4) Model checking – Does there

exists an initial model and sequence of steps where a property

holds over the steps. World search is solved by two state-of-the-

art techniques: Symbolic execution converts a search problem

into a symbolic constraint satisfaction problem, generating as

few constraints as possible. A state-of-the-art satisfiability

modulo theories (SMT) solver is applied to efficiently solve the

constraint problem [16].

EXAMPLE FOR DEFINING STRUCTURAL SEMANTICS

We now illustrate these ideas by defining structural

semantics for a simplified bond graph modeling language

(Figure 5 and Table 1-2). Bond graphs are graphical

representations of physical dynamics. The arcs in a bond graph

Table 1. Model elements of acausal bond graphs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

domain AcausalBG_elements
{
 primitive Sf ::= (id: String).
 primitive Se ::= (id: String).
 primitive R ::= (id: String).
 primitive C ::= (id: String).
 primitive I ::= (id: String).
 primitive TF ::= (id: String).
 primitive GY ::= (id: String).
 primitive ZeroJunction ::= (id: String).
 primitive OneJunction ::= (id: String).
 Source ::= Sf + Se.
 Storage ::= C + I.
 OnePort ::= Source + R + Storage.
 TwoPort ::= TF + GY.
 BGElement ::= OnePort + TwoPort.
 Junction ::= ZeroJunction + OneJunction.
 BGNode ::= BGElement + Junction.
 primitive Bond ::= (id: String).
 [Closed] primitive Src ::= (Bond,BGNode).
 [Closed] primitive Dst ::= (Bond,BGNode).
}

Table 2. Excerpt from the structural semantics of acausal

bond graphs

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

domain AcausalBG extends AcausalBG_elements
{
 invalidBondDef := a is Bond, no Src(a,_).
 invalidBondDef := a is Bond, no Dst(a,_).
 …
 bondConn(a,x) :- Src(a,x); Dst(a,x).
 atLeastOneConnection(x) :- bondConn(_,x).
 atLeastTwoConnections(x) :-
 bondConn(a,x), bondConn(b,x), a != b.
 exactlyOneConnection(x) :-
 atLeastOneConnection(x),
 no atLeastTwoConnections(x).
 …
 invalidBlock := x is OnePort,
 no exactlyOneConnection(x).
 invalidBlock := x is TwoPort,
 no exactlyTwoConnections(x).
 invalidBlock := x is R, Src(_,x);
 x is C, Src(_,x);
 x is I, Src(_,x).
 invalidBlock := x is TwoPort, no Src(_,x);
 x is TwoPort, no Dst(_,x).
 …
 conforms := !invalidBlock &
 !invalidBondDef &
 !invalidSrcDef &
 !invalidDstDef.
}

Figure 1. MetaGME metamodel for the simplified bond
graph language

Figure 5: Bond graph metamodel in metaGME

 6 Copyright © 2012 by ASME

represent bi-directional energy flows and span multiple physical

domains [22]. Due to their generality, we chose bond graphs as

one of the formalism for systems dynamics in META.

In the specification below we separated the domain of

model elements from the domain of well-formed bond graphs,

because the separated specification allows easier

documentation. However, note that the well-formedness rules

are strictly part of the bond graph domain, so Table 1 and Table

2 need to be regarded as two parts of the structural semantics.

(The MetaGME metamodel for the simplified bond graph

language is shown in Figure 5.)

 The domain AcausalBG_elements (Line 1 in Table 1)

encapsulates the model elements of bond graphs. Simple bond

graphs have nine types of blocks and bonds between these

blocks [22]. Basic building elements are specified through ADT

declarations (lines 3-14, 19-21). Each of these lines represents a

data constructor, which can be used to construct model

elements, and each object is identified with a unique string ID.

The keyword primitive marks constructors that are used as

modeling elements. The special Closed annotation in lines

20-21 indicates that constructors Src and Dst only take

elements that have been placed directly in the model. Lines

12-18 show type inheritance in bond graphs, where operator +

denotes the union of sets (cf. Figure 1).

As we have shown in Figure 4, the META Semantic

Backplane defines modeling languages in two forms: as

metamodels defined in MetaGME [12][20] and formal

metamodels defined in FORMULA. The MetaGME

metamodels are used by the metaprogrammable tools of the

MIC tool suite, such as GME, GReAT and UDM [12]. While

precise and captures all well-formedness rules of languages, this

formalism is not sufficiently rich for reasoning, and expressing

more advanced concepts such as well-formedness rules for

evolving structures. The two formalisms are linked, MetaGME

metamodels can be translated into FORMULA metamodels.

The domain of well-formed acausal bond graph models is a

subset of the domain of AcausalBG_elements as defined in

Table 2. The subset relation is captured by the extends
keyword in Line 23.

The well-formedness rules in Table 2 express the valid

configurations of the elements, e.g. lines 25-26 state that each

bond should have a Src and Dst. Line 28 defines a non-

primitive data constructor bondConn, where semi-colon

represents logical or. bondConn(a,x) expresses the fact that

bond a is connected to node x. Lines 29-34 count the number of

connections of each node. Lines 36-39 state that one-port

elements should have exactly one connecting bond, and two-

port elements should have exactly two connecting bonds. Lines

40-42 express the rule that resistance and storage elements

cannot be the sources of bonds. Finally, two port elements

should act in source and destination roles as well (lines 43-44).

The keyword conforms (lines 46-49) captures the

structurally well-formed models of the domain.

BEHAVIORAL SEMANTICS
Behavioral semantics is represented as a mapping of the

model into a mathematical domain that is sufficiently rich for

capturing essential aspects of the behavior (such as dynamics).

In other words, the explicit representation of behavioral

semantics of a DSML requires two distinct components: (a) a

mathematical domain and a formal language for specifying

behaviors, and (b) a formal language for specifying

transformation between domains. In our previous work on

semantic anchoring [20], we followed operational semantics

style of specifications, where behavior is described by a set of

rules specifying how the state of an actual or hypothetical

computer changes while executing a program [18]. We

formalized behavioral semantics based on Abstract State

Machines (ASM) [6] and represented model transformations as

graph transformation [17] (taking advantage of the GReAT

model transformation tool of the MIC tool suite [12]). Based on

this approach, we have developed a semantic anchoring tool

suite [7] that enables the compositional specification of

behavioral semantics - an essential requirement for creating an

open DSML-based modeling language framework. However,

this method had several drawbacks:

1. The formal framework used for specifying model

transformation (graph grammars) and operational semantics

(ASM) were different. Consequently, reasoning across

these different domains was hard and understanding the

specification was somewhat complicated. Since we intend

to use the Semantic Backplane for generating reference

traces using simulation, proving properties and invariants

across domains, a unified formal framework is highly

desirable.

2. Heterogeneity of AVM artifacts requires using modeling

languages where behavioral semantics is more naturally

represented denotationally: by formalizing the meaning of

modeling languages via mathematical objects (denotations)

which describe the meaning of modeling constructs. A

common example in AVM is continuous dynamics, where

the natural formalism for expressing semantics is

differential algebraic equations (DAE). The challenge here

is the specification of the model-to-model translator that

maps the modeling language to differential equations.

(With this, we can also separate the specification of formal

semantics from issues such as full abstraction that examines

operational equivalence of simulators with the denotational

specification of dynamics.)

In recent work we have explored defining behavioral

semantics fully in FORMULA and found the results promising.

The primary advantage is that structural and behavioral

semantics are expressed in the same formal framework greatly

decreases specification complexity and allow more extensive

verifications.

 7 Copyright © 2012 by ASME

EXAMPLE FOR DENOTATIONAL SPECIFICATION OF

BEHAVIORAL SEMANTICS
The specification of the transformation from bond graph

models to DAE-s defines denotational semantics for bond

graphs. We show the formalization of this specification using

FORMULA.

First, we need to specify the target domain, the domain of (a

subset of) DAE-s. This domain should be generic enough to

allow the representation of DAE-s arising from the translation

of bond graphs. Table 3 shows the FORMULA encoding of

such a domain.

Variable-s are named and indexed elements (lines 3-4),

while Parameters are indexed elements (Line 5). In lines 6-8

two unary operators (negation and inversion) and one binary

operator (multiplication) are defined. The summation operator

in lines 9-10 is an n-ary operator identified by a string ID, and n

Addends, which define the terms over which the Sum is

interpreted. A term is a variable, a parameter, or an operator

(lines 11-12). Finally, three kinds of Equation-s are defined

(lines 13-16). Eq defines an equation, where the left-hand side

is a single variable and the right-hand side is an arbitrary term.

DiffEq defines a differential equation, where the left-hand side

is the time-derivative of a single variable and the right-hand

side is an arbitrary term. SumZero makes the specified

summation zero.

Bond graph denotational semantic mapping is accomplished

by specifying the transformation from the domain of acausal

bond graphs to the domain of differential algebraic equations.

Each bond determines a pair of power variables, the effort and

the flow variable. We write ea to denote the effort, and fa to

denote the flow of bond a. Bond graph nodes define equations

on the corresponding bond variables, usually using some

parameter of the node. We write px for the (assumed) parameter

of node x. Table 4 shows the denotational semantic mapping of

bond graphs in FORMULA.

Lines 1-3 define a transformation from the domain of

AcausalBG to the domain of DAEquations. Line 5 equates

the effort on a bond connected to a source of effort to the

(effort) parameter of the source, where Connects(a,x) is a

derived data constructor, and expresses Src(a,x) or
Dst(a,x). The denotational meaning of a source of effort is

fully enclosed in this single line. Similarly, Line 6 defines the

equality on flow variables connected to source of flows. Line 7

gives the semantic meaning of resistance by formulating the

connection between the flow and effort variables on the

resistance.

Lines 8-11 show the differential equations imposed by

capacitance and inductance. These are the only rules expressing

differential equations in the transformation. Inherently, all the

states of the physical system are captured by these equations.

Lines 12-17 define the semantics of transformers and

gyrators. The meaning of OneJunctions is specified in line

18-24. In detail, lines 18-21 define 1-junctions by applying

Kirchoff’s voltage law on the connected bonds. Lines 22-24

Table 3. Model elements of differential algebraic equations

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

domain DAEquations
{
 primitive Variable ::=
 (name: String, id: String).
 primitive Param ::= (id: String).
 primitive Neg ::= (Term).
 primitive Inv ::= (Term).
 primitive Mul ::= (Term, Term).
 primitive Sum ::= (id: String).
 primitive Addend ::= (Sum, Term).
 Term ::= Variable + Param +
 Neg + Inv + Mul + Sum.
 primitive Eq ::= (Variable, Term).
 primitive DiffEq ::= (Variable, Term).
 primitive SumZero ::= (Sum).
 Equation ::= Eq + DiffEq + SumZero.
}

Table 4. Denotational semantic mapping of bond graphs

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

transform BG_DenotationalSemantics
 from in1::AcausalBG
 to out1::DAEquations
{
 Eq(ea,px) :- x is Se, Connects(a,x).
 Eq(fa,px) :- x is Sf, Connects(a,x).
 Eq(ea, Mul(px,fa)) :- x is R, Dst(a,x).
 DiffEq(ea, Mul(Inv(px),fa)) :-
 x is C, Dst(a,x).
 DiffEq(fa, Mul(Inv(px),ea)) :-
 x is I, Dst(a,x).
 Eq(ea, Mul(px,eb)),
 Eq(fb, Mul(px,fa)) :-
 x is TF, Dst(a,x), Src(b,x).
 Eq(ea, Mul(px,fb)),
 Eq(eb, Mul(px,fa)) :-
 x is GY, Dst(a,x), Src(b,x).
 Addend(Sum(x.id),ea) :-
 x is OneJunction, Dst(a,x).
 Addend(Sum(x.id),Neg(ea)):-
 x is OneJunction, Src(a,x).
 EqSumZero(Sum(x.id)) :- x is OneJunction.
 Eq(fa,fb) :- x is OneJunction,
 bondConn(a,x), bondConn(b,x).
 Addend(Sum(x.id),fa) :-
 x is ZeroJunction, Dst(a,x).
 Addend(Sum(x.id),Neg(fa)):-
 x is ZeroJunction, Src(a,x).
 EqSumZero(Sum(x.id)) :- x is ZeroJunction.
 Eq(ea,eb) :- x is ZeroJunction,
 bondConn(a,x), bondConn(b,x).
}

 8 Copyright © 2012 by ASME

specify the equality of flows between connected bonds. As an

immediate consequence, 1-junctions are clearly defining

topological concepts, namely the serial connection of elements.

Similarly, lines 25-31 define the meaning of ZeroJunction,

which represent parallel connections.

EXAMPLE FOR OPERATIONAL SPECIFICATION OF

BEHAVIORAL SEMANTICS
Similarly to ASM-based specification [21], operational

semantics for behaviors is accomplished by modeling the

abstract state and the ways this state can evolve. In FORMULA

this is accomplished also by ADTs and logic programs.

However, instead of using the logic program to compute

whether a model is well-formed, or to specify model

transformations, the program is used to compute the model’s

next state from its current state. We illustrate this by defining

structural semantics and operational semantics for deterministic

finite state automata defined by the simple language of DFA

(Table 5).

The domain block encapsulates the structural semantics of

the DFA language (Line 1). The majority of the specification is

a set of ADT declarations (Lines 2-6). Each of these lines

declares a data constructor, which can be used to construct

model elements. For example, the State constructor can be used

to construct states labeled by integers.

The more interesting constraint is that the DFA must be non-

deterministic. This is specified in Lines 7-8 by a logic

programming rule that searches for two transitions starting at

the same state and triggering on the same event, but ending on

distinct states. If such transitions exist, then the query

nonDeterTrans evaluates to true; false otherwise. Every

domain contains a special query called conforms that

determines if a model is legal. Line 9 shows the conforms rule

for DFAs; it evaluates to true if the nonDeterTrans query

evaluate to false, i.e. it does not detect any non-deterministic

transitions.

Table 6 shows the FORMULA approach for defining

operational semantics using model transformations.

Transformations require vectors of parameters and models as

inputs, and produce vectors of models as outputs. A parameter

is an external value used by the transformation. For example,

the Step transform has one parameter, called fire, requires

one input DFA model, called in1 (Line 2), and produces one

output DFA model, called out1 (Line 3). Inside a

transformation are rules that search over the input modeling

elements in order to generate the output modeling elements.

After all the output modeling elements are generated,

FORMULA collects these elements and emits the resulting

model.

The Step transformation captures the operational semantics

of DFAs by generating a new automaton with an updated

current state marking, depending on the current state of the

input automaton and the event fire provided by the

environment. Lines 5-6 copy the structure of the input

automaton to the output, since this does not change. Notice the

use of the in1 and out1 prefixes to distinguish between input

and output elements. The FORMULA compiler also performs

type inference to automatically coerce elements from inputs to

outputs. For example, the variable s in Line 7 appears under a

in1.Transition(,,) constructor. It must have the type

in1.State on the right-hand side of the rule. On the left-hand

side it appears under an out1.Transition(,,) constructor,

so it must have the type out.State on the left-hand side. The

compiler detects this mismatch and infers a term-rewrite that

safely coerces s to the appropriate type. In general, FORMULA

supports a rich type system including arbitrary union types and

recursive type declarations, so type inference is useful for

simplifying specifications. The last two rules (Lines 9-12)

describe the non-trivial evolution of an automaton. Lines 9-10

activate if the current state is s and there is a transition from s
to sp triggered by event fire. In this case the output

automaton has the current state marking set to sp. Lines 11-12

handle the case where there is no outgoing transition from the

current state triggered by fire. In this case, the output automaton

remains in the same state as the input.

More generally, model transformations provide a

mechanism to specify other modeling artifacts, including: (1)

Compilers/refinements, which generate lower level models from

higher levels models. (2) Refactorings, which augment models

Table 5. Structural semantics of a deterministic finite

automata modeling language

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

domain DFA {
 primitive Event ::= (lbl: Integer).
 primitive State ::= (lbl: Integer).
 primitive Transition ::= (src: State,
 trg: Event, dst: State).
 primitive Current ::= (st: State).
 nonDeterTrans := Transition(s, e, sp),
 Transition(s, e, tp), sp != tp.
 conforms := !nonDeterTrans.
}

Table 6. Operational semantics for FDA

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

transform Step<fire: in1.Event>
 from in1::DFA
 to out1::DFA
{
 out1.State(x) :- in1.State(x).
 out1.Event(x) :- in1.Event(x).
 out1.Transition(s, e, sp) :-
 in1.Transition(s, e, sp).
 out1.Current(sp) :- in1.Current(s),
 in1.Transition(s, fire, sp).
 out1.Current(s) :- in1.Current(s),
 fail in1.Transition(s, fire, _).
}

 9 Copyright © 2012 by ASME

to achieve some architectural change. (3) Views, which generate

smaller slices of large models. For example, a compiler might

transform a DFA model into a model of a C program.

The inputs and outputs of transformations are models

conforming to domains. Therefore, changes in domain

definitions impact transformations. One important issue is to

determine when a change in a domain actually changes the

behavior of a transformation. FORMULA provides static

analysis to safely upgrade transformations when changes in

domains have no impact, or to notify the engineer when a

change in a domain impacts the results of transformations.

CONCLUSION
Complex, heterogeneous design domains represent major

challenges for design automation. Today’s organization of the

design automation industry has led to expensive, monolithic

tool suites that support islands of automation in complex design

flows. These stove-piped tool chains do not scale to the large,

heterogeneous systems that are typified by AVM.

One strategy to respond to CPS industry needs is based on

expanding existing monolithic tool suites to cover new design

domains. However, the high cost of new tool development and

the slow rate of market acceptance make the implementation of

this strategy problematic: quite frequently not the needs of

domains but the pressure of reusing existing tools and methods

drive the process. This is manifested in standardization efforts

that are custom designed for specific tool suites, in modeling

languages that are extremely complicated in the interest of

accommodating broader coverage and in the lack of explicit

specification of semantics saying that the fully integrated tool

suite takes care of this internally.

The open source META tool suite for the AVM program has

been challenged to follow a different strategy. Instead of basing

the tool suite on one or the other the proprietary solutions, the

tool suite needs to be open and composable using best of breed

tool components. One of the fundamental conditions of

achieving this goal is semantic integration of diverse models

through rigorously defined “semantic interfaces”. The META

Semantic Backplane creates a framework for doing it. Our

initial experience with defining key elements of the semantic

integration - structural and behavioral semantics using

metamodels, formal metamodels and model transformations –

using the constraint logic programming framework of

FORMULA is encouraging.

In summary, we plan to use the META Semantic Backplane

for modeling language and model integration the following

ways in the future:

1. Syntactic integration: translation of models across language

variants and syntactically different dialects.

2. Semantic anchoring: keeping the semantic specification of

modeling languages explicit by defining their operational

or denotational semantics as appropriate.

3. Semantic linking: keeping track of dependencies among

model elements deployed in multiple tools.

4. Semantic interfaces: keeping the relationship between the

semantics of DSMLs used by modeling, analysis and

simulation tools and their abstracted semantic interface

toward the CyPhy explicit and sound.

5. Semantic co-operation: keeping the relationship between

the behavioral semantics of domain specific languages used

by simulation tools and their abstracted semantic interface

toward simulation composition platform (HLA) explicit

and sound.

ACKNOWLEDGMENTS
This research is supported by the AVM Program of the

Defense Advanced Research Project Agency (DARPA) under

award # HR0011-12-C-0008 and the National Science

Foundation under award # CNS-1035655.

REFERENCES
[1] Eremenko, Paul: “Philosophical Underpinnings of Adaptive

Vehicle Make,” DARPA-BAA-12-15. Appendix 1,

December 5, 2011

[2] G. Karsai, A. Ledeczi, S. Neema, and J. Sztipanovits. The

model integrated computing toolsuite: Metaprogrammable

tools for embedded control system design. In Proceedings

of the IEEE Joint Conference CCA, ISIC and CACSD,

Munich, Germany, 2006.

[3] http://research.microsoft.com/formula

[4] Jackson, E., Sztipanovits, J.: ‘Formalizing the Structural

Semantics of Domain-Specific Modeling Languages,”

Journal of Software and Systems Modeling pp. 451-478,

September 2009

[5] Jackson, E., Porter, J., Sztipanovits, J.: “Semantics of

Domain Specific Modeling Languages” in P. Mosterman,

G. Nicolescu: Model-Based Design of Heterogeneous

Embedded Systems. pp. 437-486, CRC Press, November

24, 2009

[6] Börger, Egon, Stärk, Robert: Abstract State Machines : A

Method for High-Level System Design and Analysis,

Springer, 2003.

[7] Kai Chen, Janos Sztipanovits, Sandeep Neema:

“Compositional Specification of Behavioral Semantics,” in

Design, Automation, and Test in Europe: The Most

Influential Papers of 10 Years DATE, Rudy Lauwereins and

Jan Madsen (Eds), Springer 2008.

[8] J. Sztipanovits and G. Karsai, “Model-Integrated

Computing,” Computer, vol. 30, no. 4, pp. 110–111, 1997.

[9] G. Karsai, G. Nordstrom, A. Ledeczi, and J. Sztipanovits,

“Towards Two-Level Formal Modeling of Computer-Based

Systems,” Journal of Universal Computer Science, vol. 6,

no. 11, pp. 1131–1144, Nov. 2000.

[10] G. Karsai, M. Maroti, A. Ledeczi, J. Gray, and J.

Sztipanovits, “Composition and cloning in modeling and

meta-modeling,” IEEE Transactions on Control Systems

Technology, vol. 12, no. 2, pp. 263– 278, Mar. 2004.

[11] Á. Lédeczi, Á. Bakay, M. Maróti, P. Völgyesi, G.

Nordstrom, J. Sprinkle, and G. Karsai, “Composing

http://research.microsoft.com/formula

 10 Copyright © 2012 by ASME

Domain-Specific Design Environments,” IEEE Computer,

vol. 34, no. 11, pp. 44–51, 2001.

[12] G. Karsai, A. Ledeczi, S. Neema, and J. Sztipanovits, “The

Model-Integrated Computing Toolsuite:

Metaprogrammable Tools for Embedded Control System

Design,” 2006, pp. 50–55.

[13] E. K. Jackson and J. Sztipanovits, “Constructive

Techniques for Meta- and Model-Level Reasoning,” in

Model Driven Engineering Languages and Systems, vol.

4735, G. Engels, B. Opdyke, D. C. Schmidt, and F. Weil,

Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,

pp. 405–419

[14] E. K. Jackson, T. Levendovszky, and D. Balasubramanian,

“Reasoning about Metamodeling with Formal

Specifications and Automatic Proofs,” in Model Driven

Engineering Languages and Systems, vol. 6981, J. Whittle,

T. Clark, and T. Kühne, Eds. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2011, pp. 653–667.

[15] Ethan K. Jackson, Wolfram Schulte, and J. Sztipanovits,

“The Power of Rich Syntax for Model-based

Development,” Microsoft Research (MSR), 2009.

[16] E. K. Jackson and W. Schulte, “Model Generation for Horn

Logic with Stratified Negation,” in Formal Techniques for

Networked and Distributed Systems – FORTE 2008, vol.

5048, K. Suzuki, T. Higashino, K. Yasumoto, and K. El-

Fakih, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,

pp. 1–20.

[17] G. Karsai, A. Agrawal, F. Shi, and J. Sprinkle, “On the use

of graph transformation in the formal specification of

model interpreters,” Journal of Universal Computer

Science, vol. 9, no. 11, 2003.

[18] M. W. Whalen. A parametric structural operational

semantics for stateflow, uml statecharts, and rhapsody.

Technical Report 2010-1:

http://www.umsec.umn.edu/publications, University of

Minnesota Software Engineering Center, 200 Union St.,

Minneapolis, MN 55455, August 2010

[19] K. Balasubramanian, A. Gokhale, G. Karsai, J.

Sztipanovits, and S. Neema, “Developing applications

using model-driven design environments,” Computer, vol.

39, no. 2, pp. 33– 40, Feb. 2006.

[20] E. Jackson, R. Thibodeaux, J. Porter, and J. Sztipanovits,

“Semantics of Domain Specific Modeling Languages,” in

Model-Based Design of Heterogeneous Embedded

Systems, CRC Press, 2009, pp. 437–486

[21] K. Chen, J. Sztipanovits, and S. Abdelwahed, “A Semantic

Unit for Timed Automata Based Modeling Languages,” In

Proceedings 12th IEEE Real-Time and Embedded

Technology and Applications Symposium (RTAS 2006, pp.

347–360, 2006

[22] Karnopp, Dean C., Margolis, Donald L., Rosenberg,

Ronald C., 1990: System dynamics: a unified approach,

Wiley, ISBN 0-471-62171-4

[23] Simulink: http://www.mathworks.com/products/simulink/

[24] Modelica: http://open-modelica.org/

[25] TrueTime: http://www3.control.lth.se/truetime/

[26] Pro/ENGINEER:

http://www.ptc.com/product/creo/parametric

[27] Thermal Desktop:

http://www.crtech.com/thermaldesktop.html

[28] Friedenthal, Sanford (2008). A Practical Guide to SysML:

The Systems Modeling Language. Morgan Kaufmann / The

OMG Press. ISBN 978-0-12-378607-4.

[29] AADL: http://www.aadl.info/aadl/currentsite/

[30] Karsai, G., Ledeczi, A., Neema, S., Sztipanovits, J.: The

Model-Integrated Computing Toolsuite:

Metaprogrammable Tools for Embedded Control System

Design, Proc. of the IEEE Joint Conference CCA, ISIC and

CACSD, Munich, Germany, 2006

http://www.mathworks.com/products/simulink/
http://open-modelica.org/
http://www3.control.lth.se/truetime/
http://www.ptc.com/product/creo/parametric
http://www.crtech.com/thermaldesktop.html
http://www.aadl.info/aadl/currentsite/

