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Brain circuitry underlying cognition, emotion, and perception is abnormal in schizophrenia. There is considerable
evidence that the neuropathology of schizophrenia includes the thalamus, a key hub of cortical-subcortical cir-
cuitry and an important regulator of cortical activity. However, the thalamus is a heterogeneous structure com-
posed of several nuclei with distinct inputs and cortical connections. Limitations of conventional neuroimaging
methods and conflicting findings frompost-mortem investigations havemade it difficult to determine if thalamic
pathology in schizophrenia is widespread or limited to specific thalamocortical circuits. Resting-state fMRI has
proven invaluable for understanding the large-scale functional organization of the brain and investigating neural
circuitry relevant to psychiatric disorders. This article summarizes resting-state fMRI investigations of
thalamocortical functional connectivity in schizophrenia. Particular attention is paid to the course, diagnostic
specificity, and clinical correlates of thalamocortical network dysfunction.
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1. Introduction

There is considerable evidence that the thalamus is abnormal in
schizophrenia (Sim et al., 2006; Glahn et al., 2008; Cronenwett and
Csernansky, 2010; Pergola et al., 2015). The heterogeneous structure
of the thalamus and widespread connectivity with the cortex has
made it difficult to determine if thalamocortical network pathology in
schizophrenia is constrained to specific thalamo-cortical circuits or
widespread. Connectivity-based neuroimagingmethods, including rest-
ing-state fMRI, are critical tools for mapping functional brain networks
and investigating circuit-level pathologies in psychiatry and neurologi-
cal disorders.

This review summarizes resting-state fMRI studies of thalamo-
cortical functional connectivity in schizophrenia. We begin with a
brief overview of the structure and function of the thalamus, and con-
clude with a discussion of the limitations of the existing literature and
significant knowledge gaps that need to be addressed.

1.1. Organization and function of the thalamus

The thalamus is a heterogeneous structure composed of several nu-
clei; each of which has its own distinct inputs and cortical outputs.
Thalamocortical networks are arranged topographically; specific nuclei
project to and receive input from largely non-overlapping cortical areas
(Jones, 2007). Thalamic nuclei can be divided into two categories based
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on their inputs; first order (FO) and higher order (HO) nuclei (Guillery,
1995). FO nuclei receive input from peripheral sensory organs and sub-
cortical structures, and send projections to primary sensory and motor
cortical areas. They include the lateral geniculate nucleus
(LGN: visual), medial geniculate nucleus (MGN: auditory), ventral
posteromedial/lateral nucleus (VPM/VPL: somatosensory), and ventral
lateral nuclei (VL: motor). Sensory and motor information is relayed
to layer 4 of primary sensory and motor cortical areas, which, in turn,
project back to the same thalamic nucleus they receive input from. In
contrast to FO nuclei, HO nuclei, including themediodorsal (MD) nucle-
us and pulvinar, receive most of their input directly from the cortex;
cortical layer 5 of the PFC and posterior parietal association area, respec-
tively. Inputs arriving from sensory organs/subcortical areas, or cortical
layer 5 in the case of HO nuclei, provide the driving excitatory input to
the thalamus. Conversely, reciprocal cortical-thalamic projections orig-
inating from cortical layer 6 inhibit thalamic activity via excitation of
GABAergic neurons in the reticular nucleus, a thin sheet of neurons
that envelops the thalamus. This arrangement allows the cortex tomod-
ulate, or gate, incoming sensory/cortical information. HO nuclei also
play a prominent role in regulating cortical activity and coordinating ac-
tivity between cortical regions given that the driving input to these nu-
clei originates from the cortex itself and thalamocortical projections are
more diffuse than FO relay networks (Sherman, 2016).

Functionally, the thalamus has historically been viewed largely as a
relay station that transmits information from peripheral sensory organs
to the cortex, but performs little information processing itself. Accumu-
lating evidence indicates this view is not entirely accurately (Sherman,
2016). For instance, the LGN, the most studied nucleus of the thalamus,
plays an important role in perception and cognition, far beyond that of a
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relay nuclei, and is considered an early gatekeeper in the control of visu-
al attention and awareness (Kastner et al., 2006). Specifically, human
functonal imaging studies have shown that attention effects in the
LGN are larger than in the striate cortex, suggesting that the LGN not
only relays information, but also influences cortical input (O'Connor et
al., 2002).

Not surprisingly, given that their inputs arise from association corti-
cal areas, HO nuclei are critical for cognitive functioning. Lesions to the
MD nucleus profoundly impair cognitive functioning, especially execu-
tive cognitive abilities and memory, in humans (Kubat-Silman et al.,
2002; Dagenbach et al., 2001; Van der Werf et al., 2003) as well as ani-
mals (Floresco et al., 1999; Mair, 1994). Like the PFC, the MD nucleus
also exhibits sustained WM delay-related activity (Watanabe and
Funahashi, 2012). A recent meta-analysis of over 190 functional neuro-
imaging studies concluded that the thalamus is part of a superordinate
prefrontal-cingulo-parietal “executive control” network that supports
WM and executive functions, including cognitive flexibility, initiation,
and inhibition (Niendam et al., 2012).

2. Thalamocortical pathology in schizophrenia: contributions from
resting-state fMRI

In vivo human neuroimaging investigations have revealed a number
of thalamic abnormalities in schizophrenia, including reduced volume
(McCarley et al., 1999; Shenton et al., 2001; Glahn et al., 2008), altered
activity during cognition (Minzenberg et al., 2009), and diminished ex-
pression of neurochemical markers of neuronal integrity, such asN-ace-
tyl aspartate (NAA) (Kraguljac et al., 2012) Given the centrality of
cognitive impairment, thalamocorticalmodels of schizophrenia empha-
size dysfunction of the MD nucleus and, to a lesser extent, the pulvinar
(Andreasen et al., 1998; Jones, 1997; Swerdlow, 2010; Cronenwett and
Csernansky, 2010). However, evidence for differential involvement of
specific nuclei is inconsistent. Postmortem findings are mixed; some
studies have found reduced volume and/or neuron number in the MD
nucleus (Pakkenberg, 1990, 1992a,b; Popken et al., 2000; Young et al.,
2000; Danos et al., 2005) and pulvinar (Byne et al., 2002), but others
have not (Cullen et al., 2003; Dorph-Petersen et al., 2004;
Kreczmanski et al., 2007). Decreased somal volume of deep cortical
layer 3/4 PFC pyramidal neurons, the primary targets of thalamocortical
projection neurons, indirectly implicates the MD thalamus-PFC path-
way (Lewis et al., 2001; Pierri et al., 2001). A handful of neuroimaging
investigations have found abnormalities in the structure and function
of the MD nucleus and pulvinar (Hazlett et al., 2004, 1999; Mitelman
et al., 2005, 2006; Buchmann et al., 2014). However, the strikingly
small number of such studies relative to the broader schizophrenia neu-
roimaging literature highlights the difficulty in reliably identifying spe-
cific thalamic nuclei and associated cortical connections using
conventional neuroimaging methods. Consequently, while evidence of
thalamic dysfunction is abundant; the anatomical specificity of thala-
mus abnormalities remains unclear.

Innovative connectivity-based neuroimaging approaches have prov-
en useful formapping specific thalamocortical networks. Usingprobabi-
listic diffusion tensor imaging (DTI) tractography, Behrens et al. (2003)
showed that it is possible to map thalamocortical networks in vivo in
humans. In their approach, the cortex is partitioned into large regions-
of-interest (ROIs) (e.g. prefrontal cortex, occipital lobe, etc.) that corre-
spond to the major anatomical connections of specific thalamic nuclei
(e.g. MD nucleus, LGN). The cortical ROIs are then used to map connec-
tivity between cortex and thalamus and indirectly identify specific tha-
lamic nuclei based on their differential patterns of cortical connectivity.
The validity of this approach is supported by the strong correspondence
between connectivity-based in vivo DTI segmentation of the thalamus
and post-mortem histology (Johansen-Berg et al., 2005). This same ap-
proach has been applied to resting-state fMRI to show that different cor-
tical regions are also functionally connected to distinct, largely non-
overlapping regions of the thalamus (Zhang et al., 2008).
Woodward et al. (2012) subsequently used this method to investi-
gate the anatomical specificity of thalamocortical network dysfunction
in schizophrenia (see Fig. 1). Replicating findings from an earlier,
small study of 11 patients (Welsh et al., 2010), Woodward et al.
(2012) found reduced PFC-thalamic connectivity in schizophrenia. The
reduction was most pronounced in dorsal medial regions of the thala-
mus. Unexpectedly, they also found that thalamic connectivity with
motor and somatosensory cortical areas was actually increased in
schizophrenia. Using large cortical ROIs to map connectivity within
the thalamus allows for the examination of multiple thalamocortical
networks; however, this approach has limited spatial specificity at the
level of cortex and rest of the brain. To overcome this limitation,
Anticevic et al. (2014) used a complimentary approach in which the
whole thalamus, rather than large cortical ROIs, is used as a seed. They
replicated the combination of reduced PFC connectivity and increased
somatomotor cortex connectivity in two independent cohorts of schizo-
phrenia patients (see Fig. 2). Specifically, they found that thalamic con-
nectivity with medial and lateral prefrontal areas was reduced, while
thalamic connectivity with somatomotor cortical areas was increased.
Interestingly, Anticevic et al. (2014) also found that thalamic hyper-
connectivity extended to other sensory cortical areas, including superior
temporal gyrus and occipital lobe suggesting that sensory systems in
general are over-connected in schizophrenia.

Since the initial studies by Welsh et al. (2010), Woodward et al.
(2012), and Anticevic et al. (2014), several other groups have found ab-
normal thalamic functional connectivity in schizophrenia (Klingner et
al., 2014; Tu et al., 2015; Lerman-Sinkoff and Barch, 2016; Atluri et al.,
2015; Wang et al., 2015). In almost all cases, the combined pattern of
thalamic under-connectivity with PFC and over-connectivity with sen-
sory and motor areas was replicated. Notably, a recent multi-site inves-
tigation of 415 patients and 405 healthy subjects found that the
combination of increased somatomotor connectivity and reduced PFC
connectivity was the most significant abnormality in schizophrenia
and was reliably detected in the 5 case-control cohorts included in the
study (Cheng et al., 2015). The consistency of findings across studies
that used different methods suggests that thalamocortical functional
dysconnectivity is a core neurobiological abnormality in schizophrenia.
However, numerous questions remain to be addressed. When does
thalamocortical dysconnectivity emerge? Is it progressive? Is thalamo-
cortical dysconnectivity specific to schizophrenia, or is it present in
other psychotic disorders?What are the clinical and cognitive correlates
of thalamocortical dysconnectivity?What are the potentialmechanisms
underlying thalamocortical network dysfunction? Progress towards an-
swering these questions, and remaining challenges, is discussed in the
following sections.

2.1. Course of thalamocortical network dysfunction in schizophrenia

So far, the vast majority of investigations examined patients regard-
less of illness stage. Moreover, no longitudinal investigations have been
carried out. It is not known when in the course of the illness thalamo-
cortical network dysconnectivity emerges and if the abnormalities
worsen over time. Our group and others have hypothesized that tha-
lamic connectivity disturbances in schizophrenia, and functional
dysconnectivity more broadly, is a consequence of abnormal brain mat-
uration (Woodward et al., 2011, 2012; Satterthwaite and Baker, 2015).
In the case of thalamocortical network dysfunction, we have speculated
that the combination of reduced PFC-thalamic connectivity and
somatomotor hyper-connectivity is due to atypical neurodevelopment
during the transition from childhood to adolescence when thalamo-
cortical functional connectivity undergoes significant changes. In normal
development, the changes are characterized bymarked strengthening of
PFC connectivity and a sharpening of somatomotor connectivity (Fair et
al., 2010). Thus, diminished PFC-thalamic connectivity and increased
somatomotor connectivity may result from disruption of normal
thalamocortical development. If correct, the abnormalities observed in



Fig. 1. Functional connectivity of cortical regionswith the thalamus inhealthy individuals and schizophrenia. Using the cortical regions-of-interest (ROI) approach, the cortex is partitioned
into six, non-overlapping ROIs which are used as seeds in a functional connectivity analysis (panel A). Activity in each cortical ROI correlates with distinct areas of the thalamus in both
healthy subjects (panel B) and patients with schizophrenia (panel C). Compared to healthy subjects, prefrontal connectivity is reduced and somatomotor connectivity increased in
schizophrenia (panel D). Figure modified fromWoodward et al. (2012).
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chronic patients should be present, possibly in attenuated form, at the
earliest stages of the illness, perhaps even before the onset of a full-
blown psychotic illness.

Two recent investigations lend support to the dysmaturation hy-
pothesis of thalamocortical dysconnectivity. First, a recent investigation
found similar patterns of thalamocortical connectivity disturbances in
chronic and early-stage psychosis patients (Woodward and Heckers,
2015). Specifically, thalamic connectivity with key regions of the
fronto-parietal or ‘executive control’ network, which includes dorsolat-
eral andmedial PFC, inferior parietal lobe, and cerebellum, was reduced
in both chronic and early stage patients. Additionally, thalamic over-
Fig. 2. Dysconnectivity of the thalamus in schizophrenia. Functional connectivity of the tha
schizophrenia exhibit reduced thalamic connectivity with areas of the prefrontal cortex (blue)
in the bottom inset. Axial slices with corresponding Z-coordinate ranges are presented in Pa
Figure modified from Anticevic et al. (2014).
connectivity with motor cortex observed in chronic patients was also
present in early-stage patients. The second investigation, by Anticevic
and colleagues, examined baseline RS-fMRI data from 243 clinical
high-risk (CHR) individuals and 154 healthy control subjects included
in the North America Prodromal Longitudinal Study (NAPLS)
(Anticevic et al., 2015). They found that the pattern of reduced thalam-
ic-PFC connectivity and sensory/motor-thalamic hyper-connectivity
was present in CHR individuals. Critically, this pattern was more pro-
nounced in the subset of 21 CHR individuals that went on to develop a
full-blown psychotic illness. Both results should be interpreted cau-
tiously until they are replicated in larger samples. However, the findings
lamus with the rest of the brain is altered in schizophrenia (Panel A). Individuals with
and increased connectivity with sensory and motor areas (red). Thalamus seed is shown
nel B. Abbreviations: con = healthy controls; L = left; R = right; scz = schizophrenia.
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suggest that thalamocortical dysconnectivity emerges very early or
even prior to the onset of florid psychosis and may predict conversion
to illness. Conservatively, it seems unlikely that thalamocortical net-
work abnormalities are wholly attributable to factors associated with
having a chronic psychotic illness, such as long-term antipsychotic
treatment and increased substance use.

2.2. Diagnostic specificity of thalamocortical dysconnectivity

Themajority of RS-fMRI studies of thalamic connectivity in psychotic
disorders have focused on schizophrenia spectrum illnesses. Pheno-
types that cut-across diagnoses, including cognitive impairment,
suggest that brain connectivity disturbances may extend to other psy-
chotic disorders, primarily bipolar disorder. The few studies that are
available suggest this may the case. For example, the combination of
PFC-thalamic under-connectivity and somatomotor-thalamic over-con-
nectivity present in schizophrenia has also been detected in bipolar dis-
order, but in attenuated form (Woodward and Heckers, 2015; Anticevic
et al., 2014). Sample size limitations, patient heterogeneity (e.g. inclu-
sion of both psychotic and non-psychotic bipolar patients), andmedica-
tion differences between diagnostic groups makes it difficult to draw
definitive conclusions from the limited data. More work is required to
determine the extent of phenotypic overlap between schizophrenia
and bipolar disorder when it comes to thalamocortical connectivity dis-
turbances. The issue is further complicated by evidence that the trajec-
tory of cognitive impairment may differ between schizophrenia and
bipolar disorder. Based largely on cross-sectional studies, it has been
proposed that, in contrast to schizophrenia which is typically character-
ized as a static neurodevelopmental disorder, bipolar disorder may be a
neuroprogressive illness defined by relatively normal pre-morbid func-
tioning and progressive cognitive decline following illness onset
(Lewandowski et al., 2011;Woodward, 2016). As such, it will be impor-
tant for future neuroimaging investigations comparing schizophrenia
and bipolar disorder to control for illness stage.

2.3. Clinical correlates of thalamocortical dysconnectivity in schizophrenia

Many of the studies reviewed above examined the relationship be-
tween thalamocortical dysconnectivity and clinical symptoms of psy-
chosis, typically summary scores from commonly used clinical scales
such as the Positive and Negative Syndrome Scales (PANSS: Kay et al.,
1987). Findings are mixed. Several studies did not find any significant
relationship (e.g. Woodward et al., 2012; Woodward and Heckers,
2015). Among the handful that did, the consistency and direction of
the correlations varies across studies. Anticevic et al. (2014) found
that mean connectivity extracted from sensory-motor regions that
demonstrated over-connectivity with the thalamus in schizophrenia
correlated positivelywith PANSS total score, but not positive or negative
syndrome scores. Thalamocortical hypo-connectivity was unrelated to
clinical symptoms. Cheng et al. (2015) found similar correlations
between somatomotor-thalamic over-connectivity and clinical symp-
toms; although the association was only detected for negative symp-
toms. However, in contrast to Anticevic et al. (2014), frontal-thalamic
hypo-connectivity was related to negative symptoms (Cheng et al.,
2015). The findings from Anticevic et al.'s (2015) investigation suggest
thalamic dysconnectivity is related to psychosis symptoms in CHR indi-
viduals and the general population. However, the pattern of results dif-
fers from those found in patients. In contrast to their earlier study in
patients, they found that greater thalamic hypo-connectivity was
related to Scale of Prodromal Symptoms (SOPS) total scores across all
subjects and CHR individuals specifically. Similarly, the positive associa-
tion between hyper-connectivity and symptoms detected in their prior
investigation of patients was not present in CHR individuals. The small
magnitude of the correlations, which generally fall below r=0.30, het-
erogeneity of patient samples and imaging methods, and the post-hoc
nature of the analyses may account for the inconsistent findings across
studies.

It's also possible that relatively small, inconsistent correlations may
have to do with the fidelity, or lack thereof, of clinical rating scales for
investigating brain-behavior relationships. Complex clinical phenome-
na assessed via coarse, subjective rating scales may not directly map
on to specific brain circuits. Measures that capture core cognitive and
perceptual processes underlying clinical phenomena may be more use-
ful for uncovering the behavioral and cognitive consequences of
thalamocortical dysconnectivity. For instance, it has been hypothesized
that some of the symptoms of psychosis, hallucinations and delusions
specifically, result from a defect in the efferent copy and corollary dis-
charge systems (Frith and Done, 1989; Frith, 1987). In brief, these two
systems operate together to predict and suppress sensory input gener-
ated from self-initiated actions. For example, during self-vocalization,
an efferent copy of the motor command is sent to the auditory cortex
which results in a corollary discharge that suppresses perception there-
by insuring that sensory experiences related to self-generated vocaliza-
tion are not misattributed to an outside source (Ford and Mathalon,
2012). There is considerable evidence from behavioral and neurophysi-
ological studies supporting efferent copy/corollary discharge dysfunc-
tion in schizophrenia across a variety of motor/sensory modalities
(e.g. Thakkar et al., 2015; Ford et al., 2014; Ford and Mathalon, 2012).
However, evidence for an association between corollary discharge and
specific symptoms, such as auditory hallucinations, is mixed (Rosler et
al., 2015; Ford andMathalon, 2012). The neuralmechanismsunderlying
efferent copy and corollary discharge are incompletely understood;
however, human (Ostendorf et al., 2013) and non-human primate
(Cavanaugh et al., 2016; Sommer andWurtz, 2008) studies have linked
the thalamus, especially the mediodorsal nucleus, to corollary dis-
charge. To date, no study has examined the relationship between corol-
lary discharge and thalamocortical functional connectivity, but this may
be a fruitful avenue for future research.

As reviewed earlier, lesion and functional imaging studies in humans
have repeatedly implicated the thalamus in executive cognitive abilities,
including working memory (Niendam et al., 2012). A recent investiga-
tion in rodents directly linked thalamocortical functional connectivity
to disturbances inworkingmemory (Parnaudeau et al., 2013). Although
the neuropsychological correlates of altered thalamic connectivity have
not been thoroughly investigated,Woodward and Heckers (Woodward
and Heckers, 2015) found that connectivity of the dorsal region of the
thalamuswith fronto-parietal regionswasweakly correlatedwith over-
all cognitive functioning across a combined sample of psychosis patients
and healthy individuals. Interestingly, this relationship was strongest
for a test of memory which is consistent with findings from human
and animal lesions studies linking the mediodorsal nucleus to memory
(Mitchell and Chakraborty, 2013).

2.4. Mechanisms of thalamocortical dysconnectivity in schizophrenia

Multiple lines of evidence support a neural basis for functional con-
nectivity measured at rest (Karbasforoushan and Woodward, 2012).
Electrical cortical recording and stimulation studies have found that
the patterns of brain activity elicited by cortical stimulation correspond
to functional connectivity networks (He et al., 2008; Mitchell et al.,
2013). Functional networks are supported bywhitematter connections;
severing the corpus callosum for example virtually eliminates inter-
hemispheric functional connectivity (Johnston et al., 2008). While not
as extensively studied as functional connectivity, a recent diffusion ten-
sor imaging investigation found reduced PFC-thalamic connectivity and
increased somatosensory-thalamic connectivity in schizophrenia sug-
gesting a structural basis for abnormal functional connectivity
(Marenco et al., 2012). However, regions that are not directly connected
by white matter tracts can be functionally connected (Adachi et al.,
2011; Honey et al., 2009, 2010),which is advantageous for investigating
extended, functional networks (Lee et al., 2013). For example, in
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contrast to individuals that undergo resection of the corpus callosum,
individuals with developmental agenesis of the corpus callosum (CCA)
demonstrate robust inter-hemispheric functional connectivity (Tyszka
et al., 2011; Owen et al., 2013; Tovar-Moll et al., 2014), presumably
due to neuroplastic changes including enlargement of the anterior com-
missure and the development of probst and sigmoidal bundles (Jakab et
al., 2015; Fischer et al., 1992; Tovar-Moll et al., 2007; Barr and Corballis,
2002). This dramatic example indicate that while white matter connec-
tivitymay provide the ‘scaffolding’ for functional connectivity, function-
al networks are not constrained to structural connections and are
inherently plastic.

Functional networks are also sensitive to pharmacological manipu-
lations. Notably, ketamine, an NMDA receptor antagonist that elicits
many of features of psychosis in healthy individuals including cognitive
impairment, produces some of the same changes in thalamocortical
connectivity observed in schizophrenia. Specifically, Hoflich et al.
(2015) found that ketamine increases thalamic connectivity with the
somatosensory cortex in healthy individuals. This finding supports a
role for NMDA receptor function in thalamocortical connectivity and is
consistentwith theNMDAreceptor hypo-functionmodel of schizophre-
nia (Javitt et al., 2012).
3. Conclusions

Altered resting-state functional connectivity between cortex and
thalamus is a consistent finding in schizophrenia. The alterations are
characterized by reduced prefrontal-thalamic connectivity and in-
creased motor and somatosensory connectivity with the thalamus.
This pattern of disturbed thalamocortical connectivity has been detect-
ed in chronic patients, early stage patients, and high-risk individuals.

Despite the consistency of findings across studies, a number of criti-
cal knowledge gaps remain. Diagnostic specificity has not been ade-
quately addressed. There are also technical challenges that need to be
overcome. The findings from connectivity-based imaging studies
reviewed here are consistent with selective dysfunction of specific tha-
lamic nuclei; however, confirmation of the anatomical specificity will
require imaging techniques capable of resolving and reliably identifying
specific thalamic nuclei. Newly developed sequences have produced
promising results, but have yet to be applied to schizophrenia
(Tourdias et al., 2014). There are data suggesting bipolar patients also
exhibit atypical thalamocortical connectivity, but studies with larger
sample sizes are needed. Thalamocortical dysconnectivity is associated
with conversion to psychosis in high-risk individuals, but its usefulness
as a predictive biomarker remains to be confirmed. The role of
thalamocortical dysconnectivity in themanifestation of clinical and cog-
nitive symptoms is poorly understood, as are the biologicalmechanisms
underlying atypical functional connectivity. Progress in these areas will
require not just additional studies in patients, but also a better under-
standing of the role of thalamocortical connectivity in normal cognition
and sensory andmotor functioning, particularly HOorder nuclei such as
the MD nucleus.
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