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Abstract

We present cortical surface parcellation using spherical deep convolutional neural networks. 

Traditional multi-atlas cortical surface parcellation requires inter-subject surface registration using 

geometric features with slow processing speed on a single subject (2–3 hours). Moreover, even 

optimal surface registration does not necessarily produce optimal cortical parcellation as parcel 

boundaries are not fully matched to the geometric features. In this context, a choice of training 

features is important for accurate cortical parcellation. To utilize the networks efficiently, we 

propose cortical parcellation-specific input data from an irregular and complicated structure of 

cortical surfaces. To this end, we align ground-truth cortical parcel boundaries and use their 

resulting deformation fields to generate new pairs of deformed geometric features and parcellation 

maps. To extend the capability of the networks, we then smoothly morph cortical geometric 

features and parcellation maps using the intermediate deformation fields. We validate our method 

on 427 adult brains for 49 labels. The experimental results show that our method outperforms 

traditional multi-atlas and naive spherical U-Net approaches, while achieving full cortical 

parcellation in less than a minute.
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1 Introduction

Regional-based morphological analysis is a widely adapted approach in neurodevelopmental 

studies. For valid regional analysis, cortical surfaces need to be consistently subdivided into 

multi-regions based on cortical parcellation protocols in anatomical or functional fashion 

[5,10,16]. However, consistent labeling of cortical regions is challenging due to the 
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complicated cortical folds and inter-subject variability. Typically, manual labeling is tedious 

and time-consuming, and there exists labeling inconsistency even across experts. In contrast, 

a multi-atlas cortical parcellation approach [7] expedites the labeling task with algorithmic 

consistency. It generally tends to provide better performance as the number of atlases 

increases. Unfortunately, inter-subject registration is unavoidable in this approach to align 

multiple atlases to a target subject with significant computational demands proportional to 

the number of atlases.

With an increasing quantity of imaging data, convolutional neural networks (CNNs) are 

readily available to handle image segmentation problems on a structured grid. Yet, 

traditional CNNs architectures are still immature in handling non-uniform data with high 

complexity. This is mainly because spatial coherence incorporated with existing deep 

architectures is optimized on standard Euclidean image grids in addition to large memory 

requirement. In this regard, spherical CNNs recently emerge with efficient operations on a 

spherical domain. Cohen et al. and Esteves et al. [3,6] proposed spherical CNNs 

architectures to achieve computational efficiency as well as numerical accuracy. Although 

they work effectively on classification or regression tasks, semantic segmentation tasks were 

not fully addressed. Later, general semantic segmentation in a spherical domain was well 

discussed in [9].

Cortical surface mesh is of high complexity that still hampers practical use of existing CNNs 

due to their limited scalability on large size mesh. A few recent pioneering studies led into 

drawing the attention of CNNs to surface parcellation, unlike well-developed volumetric 

segmentation. Cucurull et al. [4] targeted cortical parcellation on only a few ROIs due to 

memory capacity. Gopinath et al. [8] proposed better capability with their graph CNNs for 

full cortical parcellation on adult brains with comparable results to a traditional approach 

[7]. The equal importance of training features is also emphasized in recent studies with the 

central theme being the specific design of the features for accurate cortical parcellation. For 

example, Gopinath et al. [8] utilized spectral features for better cortical alignments. Wu et al. 
[15] proposed geometry-aware spherical features to use a standard image CNNs architecture.

In this paper, we propose a novel cortical parcellation approach using a deep spherical U-Net 

[9] that can naturally encode relatively large surface mesh. In particular, we focus on 

parcellation-specific inputs and their augmentation for efficient utilization of the architecture 

and accurate parcellation results. Specifically, we compute deformation fields to generate 

deformed geometric features that best fit ground-truth parcel boundaries using a spherical 

surface registration method [12]. Since the networks lack generalization of input features, 

we further propose data augmentation driven by intermediate deformation fields rather than 

dipole moment variation that overcomes only rotational invariance. This can thus offer a rich 

set of plausible training samples by leveraging geometric features and their deformation. 

The key contributions include (i) novel features optimized over cortical parcel boundaries 

and (ii) data augmentation driven by their intermediate deformation fields. Figure 1 shows 

an overview of the proposed method.
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2 Methods

2.1 Objective

We denote the ith cortical label by zi ∈ ℤ+. Given N cortical labels L = {z1, …, zN} and a 

cortical surface Ω ∈ ℝ3, our objective is to estimate a mapping F : Ω→ L to determine a 

label for each cortical location.

2.2 Parcel Boundary Alignment

Deformation field.—Let M :𝕊2 𝕊2 denote a continuous spherical deformation field. 

Given x ∈ Ω and its corresponding location x, the deformation field M holds

x = M(x) . (1)

To estimate M, we use a spherical surface registration method [12]1 that reconstructs M by a 

linear combination of spherical harmonics coefficients; i.e., M is a function of spherical 

harmonics degree l. For convenience, let Ml(·) denote a deformation field at degree l in the 

remainder of the paper. An advantage of this method is to easily generate incremental 

deformation fields by adding basis functions due to orthonormality of spherical harmonics 

bases that smoothly morph subjects to a target template (e.g., M0 = rigid body alignment, 

M10 = more local non-rigid deformation). Hence, once the deformation fields are computed 

with a high degree, the intermediate fields can be reconstructed without recomputing low 

degree again. We can then use all intermediate deformation fields for data augmentation by 

adding basis functions later.

Boundary map.—Optimal geometric alignment does not necessarily provide optimal 

cortical parcellation despite their high correlation (see precentral gyrus in Fig. 2 for 

example). Also, it is important in training to have well-shaped features. Therefore, we 

compute deformation fields that align parcel boundaries for more accurate prediction. To 

compute such deformation fields, we need two steps: (1) boundary extraction and (2) the 

extracted boundaries as a continuous function. Given ground-truth parcel labels F, we can 

obtain boundaries by finding points:

∂Ω = s ∈ Ω |F(s) ≠ F(x): ∀x ∈ N(s) , (2)

where N(·) is a set of neighboring vertices on Ω. Now, we need to represent boundaries as a 

continuous function on Ω to allow derivatives required for the objective function in [12]. The 

idea is to compute the geodesic distance between ∂Ω. Let T x :Ω ℝ+ denote the minimum 

travel-time ∂Ω to ∀x ∈ Ω. The travel-time T (x) holds the following eikonal equation with a 

unit propagation speed:

∇T(x) = 1, x ∈ Ω,
T(x) = 0, x ∈ ∂Ω . (3)

1The code is available at https://github.com/ilwoolyu/HSD.
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The solution is thus equivalent to the geodesic distance from ∂Ω. In this work, we use the 

ordered upwind method [14]. The distance map T is of different scale for each region across 

subjects. For better surface registration, we further normalize T with respect to the 

maximum distance per parcel, similar to the distance map normalization in [13], which 

provides consistent measurements across parcellation maps.

Deformed data.—For input features for training, we use standard cortical geometric 

features: mean curvature (iH(x) ∈ ℝ) from inflated surface (for global cortical folding 

agreement), sulcal depth (SD(x) ∈ ℝ) and mean curvature (H(x) ∈ ℝ) from cortical surface 

(for local cortical folding agreement). To create a template, we co-register training samples 

in an iterative averaging manner [11]. Here, we compute a distance map of the mode (most 

frequent) cortical labels across the training set after their registration to the template using 

the three geometric features. We then register the normalized distance map T to the template 

distance map at l = 10, which produces deformation fields M10. Note that we found no 

noticeable improvement of the boundary alignment after l becomes greater than 10 in 

practice. Finally, the deformed data in training are given by a tuple P10(x) = [iH(M10(x)), 

SD(M10(x)), H(M10(x)), F(M10(x))].

2.3 Data Augmentation

The proposed feature deformation is latent. It is valid only if an unseen surface has similar 

geometric patterns to the deformed features. However, it is unlikely to happen unless a fairly 

large number of training data are given, which suggests data augmentation to predict unseen 

data better. Thus, our goal is to generate intermediate deformed features between subjects 

and the target template. In this way, we can include smooth deformation trajectories as 

additional plausible training samples. Specifically, we create all intermediate samples as 

follows:

∪
l = 0

10
iH Ml(x) , SD Ml(x) , H Ml(x) , F Ml(x) . (4)

To exploit more samples, we also compute deformation fields that align the three geometric 

features to the template in a similar manner. Figure 2 illustrates an example of deformed 

features along their deformation trajectory.

2.4 Deep Learning Architecture

We adapt a state-of-the-art spherical U-net architecture designed for segmentation tasks [9] 

that can be naturally extended to cortical spherical parametrization. In this method, the 

convolutional kernels are predefined as differential operators for the 1st and 2nd derivatives, 

which yields fast convolution as well as superior performance over existing spherical 

networks in their benchmarks. In our framework, three geometric features with their 

augmentation are provided to input channels and N labels (after the deformation) to output 

channels. In training, we incrementally reconstruct deformation fields from 0 to 10, which 

generates 11 × 2 times of the original size of the training set (deformation driven by parcel 

boundary and geometric feature). At the end of the testing stage, we refine predicted 
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parcellation maps with a standard graph cut technique [2] to remove potential isolated 

regions and to create smooth parcel boundaries.

3 Experimental Setup

We used T1-weighted scans on healthy adults (n = 427) from 23 to 34 years old, acquired 

from a Phillips 3T scanner. The cortical surfaces and their spherical mapping were 

reconstructed via a standard FreeSurfer pipeline with a large number of vertices (≈160k). 

We used only left hemispheres. The BrainCOLOR protocol [10] (N = 49 ROIs) was used for 

labeling with manual correction.

We trained the spherical U-Net on NVIDIA Titan Xp with a batch size of 4 at level 5 of the 

icosahedral subdivision due to memory capacity. We used the cross-entropy loss, and a total 

of 5,205,008 parameters were optimized by the Adam optimizer. The initial learning rate 

was set to 0.01 with a step decay of 0.9 per 20 epochs. We randomly divided our data into 

three sets: training (80%), validation (10%), and testing (10%). Thus, 385×11×2 = 8, 470 

training samples were used in our framework after data augmentation. The optimal weights 

with the lowest validation loss were chosen up to 100 epochs, and each epoch took about 41 

minutes for training of the 8,470 data. For a fair comparison, we applied the same graph-cut 

technique [2] on all the baseline methods. To avoid potential errors introduced by 

misalignment, we also used the aligned features rigidly to the template, i.e., P0(x) = 

[iH(M0(x)), SD(M0(x)), H(M0(x)), F(M0(x))]).

4 Results

For proof of concept, we trained a spherical U-Net model [9] with the proposed deformed 

features driven by only M10. From the testing set, we then provided the deformed geometric 

features P10 driven by their optimal boundary alignments. The Dice overlap was 88.53 

± 1.05%. This indicates that prediction is quite accurate if boundary-driven geometric 

features P10 are provided, which is a strong assumption in practice. We observed low Dice 

overlap of 78. ± 24 4.48% when we fed the rigid features P0 from the same testing set to the 

networks, which is expected as the networks lack generalization. After the proposed data 

augmentation, we observed Dice overlap of 86.59 ± 1.53% closer to that with the deformed 

features driven optimal boundary alignment.

In comparison, we performed surface parcellation using multi-atlas and spherical U-Net [9] 

with P0. In multi-atlas, we propagated labels from all training samples to a single subject 

after surface registration [12], and their final labels were determined by majority voting. 

Such a large number of atlases (= 385) generally results in accurate parcellation due to less 

bias to atlas selection with computational demands (about a day: registration for 3–5 minutes 

per atlas). Also, the spherical U-Net was trained with P0. We note that the spherical U-Net 

with P0 is presented in this paper first time for evaluation.

The Dice overlap was 82.73 ± 1.86% and 85.23 ± 1.57% for multi-atlas and spherical U-Net 

approaches, respectively. Of these approaches, ours achieved the highest Dice overlap with 

statistical significance in paired t-tests (p < 0.05). Note that both spherical U-Net and our 

approach used exactly the same input features P0 and no deformed features were provided 
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(i.e., no registration step involved), which hence yields very fast cortical parcellation (< a 

minute). Figure 3 shows an example of resulting cortical parcellation maps for the three 

approaches. We further performed paired t-tests to observe ROI-wise improvement on 

individual parcels. The test statistics revealed that our approach significantly improved 

parcellation accuracy after false discovery rate (FDR) [1] for multi-comparison correction (q 
= 0.05). Our approach outperforms multi-atlas (46 regions) and spherical U-Net (24 regions) 

as shown in Fig. 4. It is noteworthy that no regions were found with significantly reduced 

Dice overlap.

5 Conclusion

We presented a cortical parcellation method using spherical U-Net with novel features 

optimized over cortical parcellation boundaries. To enhance the capability of the spherical 

U-Net, we also incorporated intermediate deformed features along trajectories of the 

deformation fields. In the experiments, the proposed method achieved qualitatively and 

quantitatively better performance. Furthermore, full cortical parcellation was obtained in less 

than a minute.
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Fig. 1. 
An overview of the proposed method. Three geometric features (iH, SD, H) are used for 

training the spherical U-Net to predict 49 cortical parcellation labels. For each geometric 

property, intermediate deformation fields draw a total of 11+11 respective samples after 

boundary and geometric alignment for data augmentation. The cortical parcellation is then 

performed using the original geometric features of testing subjects.
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Fig. 2. 
Boundary extraction and alignment. (1st row) For inputs for training, parcel boundaries are 

obtained from ground-truth labels (Eq. (2)). The boundaries are used to generate distance 

map T by solving an eikonal equation, and (2nd row) smooth trajectory of its deformation to 

a template is represented by increasing spherical harmonics degree l. (3rd row) The features 

for training are accordingly deformed by the deformation fields obtained by the boundary 

alignment. Note that these boundaries are quite well matched to those of the template, 

whereas their corresponding deformation on mean curvature H does not fully agree with that 

of the template (yellow circles).
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Fig. 3. 
Qualitative comparison: ground-truth, multi-atlas, spherical U-Net, and spherical U-Net with 

the proposed features. Our approach shows better performance than the other methods. The 

arrows highlight the mismatching regions to the ground-truth.
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Fig. 4. 
Dice overlap of 49 regions on the left hemisphere. Paired t-tests reveal improved regions 

with statistical significance after the FDR correction (q = 0.05). 46 and 24 out of 49 regions 

are improved against multi-atlas and spherical U-Net approaches, respectively. The color in 

the x-axis labels indicates the improved regions: multi-atlas (blue), both approaches (green), 

and no improvement (black).
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