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a b s t r a c t 

We present hierarchical spherical deformation for a group-wise shape correspondence to address tem- 

plate selection bias and to minimize registration distortion. In this work, we aim at a continuous and 

smooth deformation field to guide accurate cortical surface registration. In conventional spherical regis- 

tration methods, a global rigid alignment and local deformation are independently performed. Motivated 

by the composition of precession and intrinsic rotation, we simultaneously optimize global rigid rotation 

and non-rigid local deformation by utilizing spherical harmonics interpolation of local composite rota- 

tions in a single framework. To this end, we indirectly encode local displacements by such local compos- 

ite rotations as functions of spherical locations. Furthermore, we introduce an additional regularization 

term to the spherical deformation, which maximizes its rigidity while reducing registration distortion. 

To improve surface registration performance, we employ the second order approximation of the energy 

function that enables fast convergence of the optimization. In the experiments, we validate our method 

on healthy normal subjects with manual cortical surface parcellation in registration accuracy and dis- 

tortion. We show an improved shape correspondence with high accuracy in cortical surface parcellation 

and significantly low registration distortion in surface area and edge length. In addition to validation, we 

discuss parameter tuning, optimization, and implementation design with potential acceleration. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Cortical morphometric approaches have been widely investi-

gated in neuroimaging studies of brain development and atrophy

such as gyrification ( Armstrong et al., 1995; Schmitt et al., 2002;

Luders et al., 2004; Harris et al., 2004; Gaser et al., 2006; Lui et al.,

2011; Kim et al., 2016; Lyu et al., 2018b ). In these studies, a well-

established shape correspondence is a must to reveal global or lo-

cal developmental trajectories over age or anatomical changes, and

their relationships with cognitive functions or genetic and environ-

mental factors. A shape correspondence is generally established by

finding a proper mapping between cortical shapes via surface reg-

istration. However, the main challenge comes from inter-variability

of cortical anatomies accompanied by a complicated, dynamic fold-

ing process that hampers establishing a shape correspondence ap-

propriately. To find a cortical shape correspondence, surface regis-
∗ Corresponding author. 
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ration generally involves registration metric, surface parametriza-

ion, and deformation estimation in the parametric space. 

Surface registration is the process of transforming a cortical sur-

ace(s) to find an optimal alignment with a target cortical surface.

ecent advance in 3D surface reconstruction ( Dale et al., 1999;

ointepas et al., 2001; Kim et al., 2005; Huo et al., 2016 ) pro-

ides a better representation of cortical shapes than that of volu-

etric images, which enables the use of geometry on 2-manifolds

or cortical surface registration. This can readily provide rich cor-

ical geometric information such as curvature and even advanced

ortical anatomical biomarkers. For example, curves along sulcal

undi have been used as robust features for a shape correspon-

ence since they can reduce spatial ambiguity and increase mor-

hological consistency ( Thompson et al., 2004; Van Essen, 2005;

oshi et al., 2007; Shi et al., 2009; Lyu et al., 2010; 2018c ). To es-

ablish a shape correspondence, several studies utilized anatomi-

al biomarkers to evaluate spatial agreements of cortical surfaces

 Tao et al., 2002; Thompson et al., 2004; Van Essen, 2005; Glaunès

t al., 2004; Joshi et al., 2007; Park et al., 2012; Datar et al., 2013;

uzias et al., 2013; Lyu et al., 2015; Choi et al., 2015; Agrawal et al.,

https://doi.org/10.1016/j.media.2019.06.013
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Fig. 1. An example of angular interpolation failures. The displacements by a counter 

clockwise rotation about the fixed axis ( blue ) are represented by elevation angles 

passing through the pole ( green ). Such angles have different signs before and after 

the pole ( red and purple ). The resulting interpolation thus yields rotation singularity 

at the pole, which is incapable of encoding the rotation completely. (For interpre- 

tation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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017 ). Such a high level of distinctive shape description generally

eads to less ambiguity in surface registration. In this framework,

owever, consistency in biomarker extraction directly influences

he quality of a shape correspondence. Typically, sparse biomarkers

re unable to fully cover the entire cortex for a dense correspon-

ence. On the other hand, establishing dense biomarkers on a large

opulation is practically implausible, and there almost always ex-

sts inter- and intra-variability of biomarker extraction even across

ell-trained experts. 

Biomarker-free approaches ( Fischl et al., 1999; Yeo et al.,

010; Lombaert et al., 2013; Robinson et al., 2018; Lyu et al.,

018a ) have been emerging to overcome the inherent limita-

ions in biomarker selection. These methods typically seek an op-

imal alignment of geometric feature maps that cover the en-

ire cortex. Although these features potentially have more ambi-

uity than well-defined biomarkers in surface registration, their

vailability and clear definition can be a quite appealing can-

idate for registration metrics. To enhance feature description

ore distinctively, Lombaert et al. (2013) , Wright et al. (2015) ,

rasanu et al. (2016) , and Gahm et al. (2018) utilized spectral fea-

ures defined in the Laplacian embedding or Tardif et al. (2015) and

obinson et al. (2018) used multi-modal features. 

In addition to registration metric, another component in sur-

ace registration is a valid parametrization of cortical surfaces to

andle surface registration tractably. There have been several at-

empts at parametrizing cortical shapes in a well-known space in-

luding planar ( Hurdal et al., 20 0 0; Joshi et al., 2007; Auzias et al.,

013 ), hyperbolic ( Tsui et al., 2013; Shi et al., 2017 ) or spherical

arametrization ( Fischl et al., 1999; Tao et al., 2002; Glaunès et al.,

0 04; Robbins et al., 20 04; Van Essen, 2005; Yeo et al., 2010; Choi

t al., 2015; Robinson et al., 2018; Lyu et al., 2018a ). These ap-

roaches provide easy handling of cortical surfaces via a consistent

arametric representation, which simplifies the cortical shape cor-

espondence problem. Of these attempts, spherical parametrization

as been widely used for cortical surface registration since a re-

onstructed cortical surface typically has a genus-zero closed form.

hus, a sphere can naturally simplify a cortical surface while pre-

erving its topology. Although mapping distortion always exists, its

nfluence can be often minimized via conformal or area-preserving

appings ( Fischl et al., 1999; Haker et al., 20 0 0; Quicken et al.,

0 0 0; Tosun et al., 2004; Gu et al., 2004 ). Alternatively, a non-

arametric shape correspondence using particle ensemble avoids

 particular surface parametrization ( Cates et al., 2007; Oguz et al.,

009; Datar et al., 2013; Agrawal et al., 2017 ). However, a full shape

orrespondence is implicit in that it only provides a particle cor-

espondence. The resulting correspondence solely depends on the

umber of particles; no explicit deformation field is available. 

In spherical mapping, a deformation field is obtained by find-

ng displacements (or tracing velocity fields) on the sphere.

ale et al. (1999) and Robbins et al. (2004) optimized a cor-

ical alignment to pursue explicit penalization of registration

etric and distortion. Glaunès et al. (2004) proposed interpo-

ation on a spherical vector field. Later Yeo et al. (2010) de-

eloped Spherical Demons with the interpolation technique pro-

osed by Glaunès et al. (2004) . In their method, spherical dis-

lacements are represented as local geodesics in the local tan-

ent space. Each individual trajectory is obtained over a static ve-

ocity field to deform the sphere. Wheland and Pantazis (2014) ;

obinson et al. (2018) proposed pre-defined displacements around

ach sampling point on the sphere. The resulting deformation con-

atenates successive deformations to yield final deformation by op-

imizing over a discrete displacement field. Zou et al. (2007) and

ark et al. (2012) applied a spherical thin-plate spline for a dense

hape correspondence. Overall, these methods achieved successful

ortical surface registration in a sense of well-aligned feature maps

r anatomical biomarkers. 
t  
An important characteristic in spherical deformation is a rigid

otation of the 3D rotation group SO(3) that preserves relative

istances and thus maximizes a feature alignment on the sphere

ithout any distortion. Lack of a sufficient rigid rotation could end

p with large registration distortion or locally optimal solution.

igh registration accuracy even with a perfect feature matching

oes not guarantee minimal registration distortion. Yet, there has

een a gap between a global rigid alignment and local deformation

n surface registration. In most spherical surface registration meth-

ds, a global rigid rotation is seldom incorporated during the opti-

ization. A rigid alignment of feature maps is only performed in-

ependently before the optimization or based on volumetric trans-

ormation, and then only local displacements are optimized. One

an interchangeably update a rigid alignment and local deforma-

ion during the optimization. However, the energy function needs

o be carefully designed in this context; its optimization might be

on-trivial (e.g., gradients of the energy function), otherwise. In

ur earlier work ( Lyu et al., 2015 ), we proposed spherical harmon-

cs interpolation of partial angular displacements in that spheri-

al harmonics naturally encode global and local behaviors on the

phere. Unfortunately, the estimated deformation field depends on

 particular spherical parametrization. This is true since linear in-

erpolation of polar angles does not hold rigid rotations as shown

n Fig. 1 . Consequently, the method requires an optimal pole se-

ection to reduce such rotation singularity around the poles. The

olution was ad-hoc, which cannot fundamentally address such in-

onsistent interpolation. 

In this paper, we propose novel spherical deformation that min-

mizes registration distortion. The proposed method couples rigid

nd non-rigid deformation in a single framework. In particular,

he proposed method simultaneously achieves both a global rigid

lignment and local deformation by allowing spatially varying ro-

ations as functions of spherical locations. To avoid a bias toward

emplate selection, we further propose a group-wise registration

ramework, in which a population statistics is estimated. The pro-

osed method is inspired by our earlier approach to spherical har-

onics interpolation of a deformation field ( Lyu et al., 2015 ). Un-

ike this approach, the proposed method interpolates local com-

osite rotations rather than polar angles that depend on a particu-

ar spherical coordinate system. This thus yields a well-established

hape correspondence with low registration distortion. We extend

ur previous work ( Lyu et al., 2018a ) with the following main con-

ributions: (1) detailed descriptions, (2) mathematical reformula-

ion and derivation, (3) improved methodology (rigidity control
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Fig. 2. Precession and intrinsic rotation: (a) initial setting of two frames, (b) z -axis 

alignment after precession, and (c) the final alignment after intrinsic rotation. Any 

rigid rotation can be implemented by precession and intrinsic rotation. The result- 

ing composite rotation does not rely on a particular spherical coordinate system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. A schematic illustration of the proposed rotation by the axis-angle repre- 

sentation. For the rotation of a given location, (precession) the rotation axis z ( red ) 

is rotated to ˆ z ( blue ) by ω 

⊥ about z ⊥ , followed by (intrinsic rotation) a rotation 

about ˆ z by ω ( green ). The exponential map ( purple ) at z is employed to encode lo- 

cal geodesics ( orange ). Finally, the rotation axis ̂  z and its associated rotation angle ω 

smoothly vary on the unit sphere as functions of spherical locations. A half sphere 

is used for better visualization. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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and optimization), and (4) extensive evaluation on a healthy sub-

ject dataset with manual cortical parcellation. 

2. Methods 

2.1. Problem definition 

Consider a set of N cortical surfaces with their initial spherical

mappings. For the n th subject, the goal is to estimate a continuous

spherical deformation field M 

n : S 2 → S 
2 such that 

M 

1 (p 

1 ) = M 

2 (p 

2 ) = · · · = M 

N (p 

N ) , (1)

where p 

n ∈ S 
2 = { p ∈ R 

3 : ‖ p ‖ = 1 } is the corresponding location

of the n th subject. M provides displacements carrying any spher-

ical locations to their corresponding ones. Here, we pursue spheri-

cal displacements of the corresponding locations with reduced reg-

istration distortion. In the following sections, we first describe the

proposed displacement encoding scheme represented by a rigid ro-

tation and then extend the idea to non-rigid deformation. 

2.2. Displacement encoding 

We seek a consistent displacement encoding scheme indepen-

dent of a non-linear spherical polar coordinate system. Here, such

a displacement can be efficiently encoded by two successive rota-

tions: rotation of an Euler axis (precession) followed by rotation

about the Euler axis (intrinsic rotation). 

Theorem 1. For ∀ R ∈ SO (3) with an arbitrary reference Euler axis z,

R is sufficiently represented by the composition of two successive ro-

tations: precession and intrinsic rotation. 

Proof. We consider initial and target (after R ) frames denoted by F

and 

ˆ F , respectively; i.e., ˆ F = R · F . Without loss of generality, let F =
[ x y z ] and 

ˆ F = [ ̂ x ˆ y ̂  z ] . (1) Precession: we rotate z to coincide with

ˆ z . After this, other two axes are on the ˆ x ̂ y plane, which reduces one

degree of freedom. (2) Intrinsic rotation: since z is aligned to ˆ z ,

there exists a proper rotation angle about ˆ z to fit F to ˆ F . Therefore,

the two rotations are sufficient to encode R . See Fig. 2 for such a

composite rotation. �

Theorem 1 states that two successive rotations (of and about

an Euler axis) can vary depending on a reference Euler axis but

their composite rotation is equivalent to any target rotation inde-

pendent of a reference Euler axis. Any reference Euler axis can suf-

ficiently render a target rigid rotation. This further implies that any

spherical displacement can be obtained by finding two successive

rotations regardless of a reference Euler axis. Therefore, we do not

assume a specific reference Euler axis in this work. Fig. 3 shows

a schematic illustration of the proposed encoding. For notational

simplicity, we model these rotations by the axis-angle representa-

tion (matrix exponential) throughout this paper. 
.2.1. Precession: Rotation of Euler axis 

Consider a reference Euler axis z ∈ S 
2 is rotated to be at a tar-

et axis ˆ z ∈ S 
2 . Intuitively, this is equivalent to precession of z de-

ermined by axis tilt of z . For spherical polar coordinates (θ, φ) ∈
 

0 , π ] × [ −π, π ] , we define their transformation into Cartesian co-

rdinates. 

 (θ, φ) = [ sin θ cos φ, sin θ sin φ, cos θ ] T . (2)

n a naive way, the location of ˆ z is represented as a function of

ngular displacements ( �θ , �φ). 

ˆ 
 = ϕ(θz + �θ, φz + �φ) , (3)

here θ z and φz are inclination and azimuth of z , respectively.

nfortunately, �θ and �φ are dependent and vary with respect

o the location of z for the same distance of geodesics. To consis-

ently handle displacements without angular dependency, we in-

tead compute ˆ z as a function of geodesics on the local tangent

lane at z via an exponential map exp z : T z S 
2 → S 

2 . In this way,

e can thus find a unique location z T ∈ T z S 
2 that corresponds to ˆ z .

or two arbitrary orthonormal bases u 1 , u 2 ∈ T z S 
2 , ˆ z is obtained by

 linear combination of the two bases: 

ˆ 
 = exp z (z T ) = exp z (c u 1 u 1 + c u 2 u 2 ) , (4)

here c u 1 and c u 2 are coefficients associated with u 1 and u 2 , re-

pectively. Note that u 1 and u 2 define a reference frame on the

angent space, which has no influence on geodesics themselves on

 z S 
2 . To rotate z to ˆ z , we define an additional rotation axis z ⊥ and

ts rotation angle ω 

⊥ as follows: 

 

⊥ = 

z × ˆ z ∥∥z × ˆ z 
∥∥ and ω 

⊥ = arccos ( z T · ˆ z ) . (5)

ince the exponential map is defined on the sphere and z ⊥ z T , this

urther simplifies Eq. (5) : 

 

⊥ = 

z × z T √ 

c 2 u 1 
+ c 2 u 2 

and ω 

⊥ = 

√ 

c 2 u 1 
+ c 2 u 2 

. (6)

et [ · ] × denote a 3-by-3 skew-symmetric matrix to represent a

ross product. We have the rotation of z as a matrix exponential 

 1 = exp (ω 

⊥ [ z ⊥ ] ×) = exp ([ z × z T ] ×) . (7)

.2.2. Intrinsic rotation: Rotation about Euler axis 

Given a rotation angle ω ∈ [ −π, π ] about ˆ z , we have the intrin-

ic rotation of ˆ z as a matrix exponential 

 2 = exp (ω[ ̂ z ] ×) . (8)
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rom Eqs. (7) and (8) , the overall composite rotation is given by 

 (c u 1 , c u 2 , ω) = R 2 · R 1 = exp (ω[ ̂ z ] ×) · exp ([ z × z T ] ×) . (9)

or ∀ p ∈ S 
2 , this encodes a new location: 

(p ) = 

ˆ p (c u 1 , c u 2 , ω) = R (c u 1 , c u 2 , ω) · p . (10)

he resulting deformation M yields an identical rigid rotation at

very location and globally drives the corresponding locations to

he closest location by finding an optimal set of c u 1 , c u 2 , and ω. 

.3. Extension to hierarchical spherical deformation 

In general, all the corresponding locations are not completely

ligned after the rigid rotation. This leads to an extension of the

igid rotation to non-rigid deformation. From the observation of

patial homogeneity in feature maps, we here propose spatially

arying rotations as functions of spherical locations rather than

onstants. The idea is to smoothly interpolate composite rotations

ver the sphere. For this purpose, we use a spherical harmonics

nterpolation technique that allows smooth interpolation of sig-

als defined on the unit sphere. At a spherical location ϕ ( θ , φ),

he spherical harmonics basis function of degree l and order m

 −l ≤ m ≤ l) is given by 

 

m 

l (θ, φ) = 

√ 

2 l + 1 

4 π

(l − m )! 

(l + m )! 
P m 

l ( cos θ ) e imφ, (11)

 

−m 

l 
(θ, φ) = (−1) m Y m ∗

l (θ, φ) , (12)

here Y m ∗
l 

denotes the complex conjugate of Y m 

l 
, and P m 

l 
is the

ssociated Legendre polynomial 

 

m 

l (x ) = 

(−1) m 

2 

l l! 
(1 − x 2 ) 

m 
2 

d (l+ m ) 

dx (l+ m ) 
(x 2 − 1) l . (13)

 real form of the functions is sufficient in this framework. 

 l,m 

= 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

1 √ 

2 

(Y m 

l 
+ (−1) m Y −m 

l 
) m > 0 , 

Y 0 
l 

m = 0 , 

1 √ 

2 i 
(Y −m 

l 
− (−1) m Y m 

l 
) m < 0 . 

(14) 

n particular, ˆ z is obtained by plugging a set of spherical harmonics

oefficients c u 1 = { c m 

l, u 1 
} and c u 2 = { c m 

l, u 2 
} into Eq. (4) : 

ˆ 
 (θ, φ) = exp z 

( 

∞ ∑ 

l=0 

l ∑ 

m = −l 

(
c m 

l, u 1 
u 1 + c m 

l, u 2 
u 2 

)
· Y l,m 

(θ, φ) 

) 

. (15) 

his also redefines z T as a function of a spherical location ϕ ( θ , φ).

n addition, ω is linearly proportional to the amount of intrinsic

otation. Thus, ω can be also obtained by the spherical harmonics

nterpolation as a function of spherical harmonics coefficients c ω =
 c m 

l,ω 
} . 

(θ, φ) = 

∞ ∑ 

l=0 

l ∑ 

m = −l 

c m 

l,ω · Y l,m 

(θ, φ) . (16) 

his locally defines a rotation about ˆ z at each spherical location

 ( θ , φ), which implies that the rotation smoothly changes across

pherical locations. The proposed deformation is hierarchically rep-

esented since the spherical harmonics basis functions are linearly

ndependent; the lower spherical harmonics degree, the smoother,

ore global deformation. Thus, the smoothness is easily control-

able. Note that the deformation is equivalent to a rigid (global)

otation if l = 0 . 
.4. Optimization 

.4.1. Energy function 

We use scalar maps (e.g., mean curvature) defined on the corti-

al surfaces for the registration metric. We evaluate the agreement

f the deformed scalar maps on the unit sphere to find the op-

imal local composite rotations. Since an explicit correspondence

f scalar maps is unavailable, we instead put S icosahedral sam-

ling points on each subject’s sphere and evaluate the agreement

f the deformed scalar maps at the corresponding sampling loca-

ions. Given estimates of c n u 1 
, c n u 2 

, c n ω of the n th subject, we con-

ider its deformed scalar map f n and the corresponding location

 

n 
i 

to the i th sampling location p i such that p i = R (c n u 1 
, c n u 2 

, c n ω ) · p 

n 
i 

see Eq. (10) ). By letting f̄ be the mean across scalar maps, the fea-

ure mismatching energy is given by 

 f (c u 1 , c u 2 , c ω ) = 

1 

2 NS 

N ∑ 

n =1 

S ∑ 

i =1 

(
f n ( ̂  p 

n 
i 
) − f̄ i 

)2 

σ 2 
f, ̂ p n 

i 

, (17)

here σ 2 
f 

is feature variance. This energy encodes the amount of

ismatching across feature maps to the mean as the sum of the

tandard scores; for the perfect feature matching, the energy be-

omes zero. Yet, the rigidity in E f is implicit. To encourage the

igidity of the deformation more explicitly, we consider additional

istortion energy: 

 d (c u 1 , c u 2 , c ω ) = 

1 

2 N 

N ∑ 

n =1 

1 

S n 

S n ∑ 

i =1 

arccos 2 
(

ˆ p 

nT 
i 

· ˜ p 

n 
i 

)
σ 2 

d, ̂ p n 
i 

, (18)

here S n is the number of vertices of the n th subject, σ 2 
d 

is dis-

ortion prior, and 

˜ p is the reconstructed location of ˆ p at l = 0 .

his energy encodes the sum of the squared geodesic distance (arc

ength) distortion at ˆ p between before and after non-rigid defor-

ation; the energy is equal to zero if only rigid rotation is applied

i.e., l = 0 ). Thus, this term helps prevent the deformation from be-

ng hugely distorted and only optimized toward feature matching

uring the optimization. Given updated coefficients, this quantifies

he amount of distortion from initial relative displacements. Over-

ll, we have the following total energy function: 

(c u 1 , c u 2 , c ω ) = E f (c u 1 , c u 2 , c ω ) + αE d (c u 1 , c u 2 , c ω ) , (19)

here α ∈ R 

+ is a weighting factor. The total energy function

everages between a feature alignment and rigidity of the deforma-

ion. In the experiments, we balanced these energy terms ( α = 1 ). 

.4.2. Second order approximation 

In this work, the energy function is minimized by a stan-

ard Levenberg-Marquardt optimizer ( Levenberg, 1944; Marquardt,

963 ). For this purpose, we use the second order approximation of

he optimization for fast convergence on such least squares. Since

he coefficients are independent between subjects, we compute Ja-

obian matrices J f and J d of each individual subject. For the n th

ubject, we have the following partial derivatives at ˆ p i = ϕ(θ ˆ p i 
, φ ˆ p i 

)

see Appendix A for their derivation). For simplicity, we omit a su-

erscript n here. 

∂ ̂  p 

T 
i 

∂c u 1 , j 

= Y j (θ ˆ p i 
, φ ˆ p i 

) ·
(
[ z × u 1 ] × · ˆ p i 

)T 
, 

∂ ̂  p 

T 
i 

∂c u 2 , j 

= Y j (θ ˆ p i 
, φ ˆ p i 

) ·
(
[ z × u 2 ] × · ˆ p i 

)T 
, 

∂ ̂  p 

T 
i 

∂c ω, j 

= Y j (θ ˆ p i 
, φ ˆ p i 

) ·
(
[ ̂ z ] × · ˆ p i 

)T 
, 

(20) 

here Y j ( 1 ≤ j ≤ (l + 1) 2 ) is the j th spherical harmonics basis

unction. By assuming that f̄ and σ 2 
f 

are constant, the ij th entry
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Algorithm 1 Hierarchical Spherical Deformation. 

Input: Spheres with c , f , f̄ , σ 2 
f 

, σ 2 
d 

, and λ. 

Output: Deformation fields M 

1: for all l do � Incremental optimization 

2: λ ← 0 . 001 � Initialize the damping factor. 

3: repeat � Minimize the energy of Eq. (19). 

4: for all spheres do 

5: δ ← 1 � Initialize the update scale. 

6: Compute spherical gradients of Eq. (20). 

7: Compute Jacobian matrices and residuals of Eqs. (22), 

(23), (25), and (26). 

8: Compute update step � of Eq. (27). 

9: repeat � Ensure diffeomorphism 

10: Update coefficients c using Eq. (29). 

11: Update local composite rotations R using Eqs. (15) 

and (16). 

12: Update deformation field M using Eq. (10). 

13: if negative triangle area found then 

14: δ ← δ/ 2 � Reduce the update scale. 

15: end if 

16: until ensure orientable spheres 

17: end for 

18: if E decreases then � Eq. (19) 

19: λ ← λ/ 2 � Reduce the damping factor. 

20: else 

21: λ ← λ · 2 � Increase the damping factor. 

22: end if 

23: until convergence 

24: end for 

a  

w  

a  

e  

s  

i  

m

2

 

w  

Z  

L  

a  

a  

e  

e  

i  

r  

u  

b  

t  

o  

t  

c  

c  

o  

S  

e  

fi  

p  

a  

1 The code is available at https://github.com/ilwoolyu/HSD . 
of J f is given by 

J f, 1 = 

∂ ̂  p 

T 
i 

∂c u 1 , j 

· ∇ ˆ p i 
f · 1 

σ f, ̂ p i 

, 

J f, 2 = 

∂ ̂  p 

T 
i 

∂c u 2 , j 

· ∇ ˆ p i 
f · 1 

σ f, ̂ p i 

, 

J f, 3 = 

∂ ̂  p 

T 
i 

∂c ω, j 

· ∇ ˆ p i 
f · 1 

σ f, ̂ p i 

. 

(21)

We have an S -by- 3(l + 1) 2 matrix J f . 

J f = 

[
J f, 1 , J f, 2 , J f, 3 

]
, (22)

and its residual R f is given by 

R f = 

[
f ( ̂  p 1 ) − f̄ 1 

σ f, ̂ p 1 

, · · · , 
f ( ̂  p S ) − f̄ S 

σ f, ̂ p S 

]T 

. (23)

Similarly, by assuming that ˜ p and σ 2 
d 

are constant, the ij th entry of

J d is represented by 

J d, 1 = 

∂ ̂  p 

T 
i 

∂c u 1 , j 

· ˜ p i ·
−1 √ 

1 −
(

ˆ p 

T 
i 

· ˜ p i 

)2 
· 1 

σd, ̂ p i 

, 

J d, 2 = 

∂ ̂  p 

T 
i 

∂c u 2 , j 

· ˜ p i ·
−1 √ 

1 −
(

ˆ p 

T 
i 

· ˜ p i 

)2 
· 1 

σd, ̂ p i 

, 

J d, 3 = 

∂ ̂  p 

T 
i 

∂c ω, j 

· ˜ p i ·
−1 √ 

1 −
(

ˆ p 

T 
i 

· ˜ p i 

)2 
· 1 

σd, ̂ p i 

. 

(24)

An S i -by- 3(l + 1) 2 matrix J d has the following form. 

J d = 

[
J d, 1 , J d, 2 , J d, 3 

]
, (25)

and its residual R d is given by 

R d = 

[ 

arccos 
(

ˆ p 

T 
1 · ˜ p 1 

)
σd, ̂ p 1 

, · · · , 
arccos 

(
ˆ p 

T 
S n 

· ˜ p S n 

)
σd, ̂ p S n 

] T 

. (26)

Let diag (·) denote a diagonal matrix. In a Levenberg-Marquardt

framework, we have the following update step at each iteration of

the optimization. 

� = −(H + λdiag (H )) −1 ( 
1 

S 
J T f R f + α

1 

S n 
J T d R d ) , (27)

where λ is a damping factor, and 

H = 

1 

S 
J T f J f + α

1 

S n 
J T d J d . (28)

In practice, 3(l + 1) 2 � S ( S n ), which avoids rank deficiency. Finally,

the spherical harmonics coefficients are updated at each iteration:

c = c + δ�, (29)

where δ ∈ R 

+ is regularization of the update step � to ensure that

spheres are orientable (i.e., triangles with non-negative area in the

implementation). 

2.4.3. Optimization and criteria 

Given a feature map, we update coefficients by increas-

ing spherical harmonics degree from l = 0 for an initial guess

( Lyu et al., 2015 ). At the beginning, the optimization is inde-

pendently performed on each individual degree, which yields a

roughly reasonable guess as a good starting point for the optimiza-

tion. At the same time, we also estimate f̄ and σ 2 
f 

from initial

scalar maps and then update them after the initial guess to em-

ploy improved population statistics. Since σ 2 
d 

is hard to be esti-

mated, we use a single constant for the entire cortex. Once coeffi-

cients and population statistics are obtained from the initial guess,
ll spherical harmonics coefficients are finally optimized together,

hich drives all the deformation fields by optimizing both rigid

nd non-rigid deformation. The optimization converges if the en-

rgy difference between two successive steps is less than 10 −5 . We

et λ = 0 . 001 and δ = 1 . Note that δ is a local variable for each

ndividual subject to maintain its orientability. Algorithm 1 sum-

arizes the proposed surface registration in each resolution 

1 . 

.4.4. Multi-resolution approach 

It is widely acceptable in cortical surface registration frame-

orks ( Fischl et al., 1999; Tao et al., 2002; Lyttelton et al., 2007;

ou et al., 2007; Yeo et al., 2010; Wheland and Pantazis, 2014;

yu et al., 2018a ) to utilize mean curvature of the cortical surfaces

s a registration metric since it is mathematically well-defined

nd reasonably captures the overall cortical folding patterns. How-

ver, due to the high locality of mean curvature and the nonlin-

arity of the energy function, there could exist local optima dur-

ng the optimization. To alleviate such a pitfall, we adapt a multi-

esolution approach of different feature maps ( Yeo et al., 2010 ). We

se four geometric features from the cortex with different num-

ers of icosahedral sampling points on the sphere: mean curva-

ure of the inflated surfaces ( lCurv , S = 2 , 562 ), sparse sulcal depth

f the cortical surfaces ( lSulc , S = 10 , 242 ), dense sulcal depth of

he cortical surfaces ( hSulc , S = 40 , 962 ), and mean curvature of the

ortical surfaces ( hCurv , S = 163 , 842 ). Here, sparse and dense sul-

al depth shares exactly the same geometric property but mapped

nto the sphere with different levels of icosahedral subdivision of

 . In this approach, we minimize the energy function of Eq. (19) for

ach resolution (feature) from lCurv to hCurv , where a deformation

eld is incrementally optimized starting from its estimation at the

revious resolution. The proposed algorithm works well even in

 single resolution as shown in Fig. 4 and Lyu et al. (2018a) , but

https://github.com/ilwoolyu/HSD
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Fig. 4. The average hCurv feature maps at intermediate spherical harmonics degrees l (optimization with single resolution based on only hCurv ). Each hemisphere shows 

the average hCurv feature after independent optimization at each individual degree. The cortical folding patterns become sharper, and the finest patterns are achieved after 

spherical harmonics coefficients are optimized together. 
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he multi-resolution approach generally gives better performance

ince the approach can offer a complementary feature alignment

t each resolution from global to local perspectives. Once again, we

all Algorithm 1 for each resolution by providing the previous esti-

ated deformation fields (i.e., spherical harmonics coefficients). In

he experiments, we initialized all the coefficients c to zero once

t the lowest resolution ( lCurv ). 

. Results 

.1. Experimental setup 

The evaluation of cortical surface registration is quite challeng-

ng since no ground-truth shape correspondence is available on the

uman cortices in general. Although the overlap of cortical par-

ellation may not be a gold standard to fully evaluate the perfor-

ance of cortical surface registration ( Mangin et al., 2016 ), it can

ield broad interests in ROI-based clinical, functional and structural

tudies. Thus, we focused on the overlap of cortical parcellation as

ne of the metrics of surface registration performance in this work.

There exists a well-known public dataset with manual labels of

1 cortical regions (based on the DKT-31 protocol) on 101 healthy

ubjects called Mindboggle-101 ( Klein and Tourville, 2012 ) 2 . The

ataset was well validated, and its size is relatively large for

he evaluation. However, the cortical surface parcellation on this

ataset was created via the shape correspondence established by

reeSurfer ( Fischl et al., 1999 ) and then manually corrected by

xperts. This could have a potential bias toward that specific

ethod. Another full dataset is publicly available from the MIC-

AI 2012 Grand Challenge and Workshop on Multi-Atlas Labeling

 Landman and Warfield, 2012 ) 3 . The dataset consists of 30 healthy

ubjects with 35 scans out of the OASIS dataset ( Marcus et al.,

007 ). As ground-truth used in the MICCAI 2012 Grand Challenge

nd Workshop on Multi-Atlas Labeling, these images have been in-

ensively delineated and corrected by neuroanatomists with 133

abels (132 regions including subcortical structures and 1 back-

round) via the BrainCOLOR protocol ( Klein et al., 2010 ) 4 . Thus, the

ortical labels are completely independent of any of surface regis-

ration methods. However, the labels were only delineated on the

olumetric images that require additional projection onto the cor-

ical surfaces. 

Although both datasets have their own issues, in this work, we

valuated our method mainly on the latter dataset with Brain-

OLOR to ensure independent cortical surface parcellation for fair

omparisons. On the other hand, Mindboggle-101 was used only to

rovide reference validation of cortical parcellation, and the exper-

mental results on this dataset are available as supplementary in-
2 The dataset is available at https://mindboggle.info/ . 
3 Request for the data acquisition with manual labels at https://my.vanderbilt. 

du/masi/workshops/ . 
4 See more information about the BrainCOLOR protocol at Neuromorphometrics, 

nc. http://www.neuromorphometrics.com/ . 

t  

(  

o  

r  

d  

p  
ormation. Since the latter dataset with BrainCOLOR includes two

epeat scans for 5 subjects, we excluded the repeat scans for these

ubjects to prevent potential bias toward them. Therefore, 30 scans

ere used with their manual labels in total. Finally, an expert man-

ally corrected the cortical parcellation across the 30 scans since

he label projection from volume to surface has a potential mis-

lignment due to quantization errors. After the projection, a total

f 49 cortical ROIs (only gray matter tissue labels) are available as

hown in Table 1 . 

The cortical surfaces were reconstructed via a standard

reeSurfer pipeline ( Dale et al., 1999 ), and both left and right hemi-

pheres were used for evaluation. Since our method adapted the

ulti-resolution registration (including feature maps) of FreeSurfer

 Fischl et al., 1999 ) and Spherical Demons ( Yeo et al., 2010 ), we

ompared our method with the two methods. We used their sug-

ested (and widely adapted) parameter settings on healthy popu-

ations. All experiments were conducted with a single thread (In-

el Xeon E5-2630 2.20GHz). The evaluation was based on a feature

lignment, cortical parcellation, and registration distortion. In par-

icular, we first evaluated the three methods in a pair-wise manner

o evaluate spherical deformation itself and then evaluated them in

 group-wise manner to ensure minimal distortions, by which pop-

lation average is iteratively updated ( Lyttelton et al., 2007; Yeo

t al., 2010 ). Once again, the cortical parcellation is completely in-

ependent of the three methods and was used only for evaluation

ince we did not include any information from the cortical par-

ellation during the optimization. In all of these methods, surface

egistration is ultimately achieved by maximizing the alignment of

Curv at the end of the optimization. 

.2. Pair-wise spherical deformation 

We first focused on a single resolution given a target tem-

late to evaluate pure spherical deformation performance for each

ethod in a pair-wise manner since a multi-resolution approach

as dependency between successive resolutions, which is challeng-

ng to evaluate the spherical deformation itself. Specifically, we

valuated the three methods for their flexibility (ability to over-

ome local optima) of deformation with only an hCurv feature that

as locally homogeneous regions. Surface registration with a sin-

le feature may be neither quite common practice nor necessar-

ly optimal in neuroanatomy. However, it would be useful (1) to

bserve spherical deformation even on highly localized features

hat most likely suffer from local optima and (2) to evaluate a

alance between registration accuracy and distortion. In this con-

ext, we evaluated the three methods in feature alignment and

egistration distortion. Note that we used exactly the same fea-

ure maps and FreeSurfer’s standard template (so-called fsaverage

 Fischl et al., 1999 )) for the three methods, and all these meth-

ds perform their own optimal rigid alignment before the non-

igid deformation. In our method, we set a high level of icosahe-

ral subdivision S = 163 , 842 and l = 15 . To see an advantage of the

roposed harmonized rigid alignment, we performed our method

https://mindboggle.info/
https://my.vanderbilt.edu/masi/workshops/
http://www.neuromorphometrics.com/
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Table 1 

49 cortical regions of the BrainCOLOR protocol. 

Acronym Region Acronym Region Acronym Region 

ACgG Anterior cingulate gyrus AIns Anterior insula AOrG Anterior orbital gyrus 

AnG Angular gyrus Calc Calcarine cortex CO Central operculum 

Cun Cuneus Ent Entorhinal area FO Frontal operculum 

FRP Frontal pole FuG Fusiform gyrus GRe Gyrus rectus 

IOG Inferior occipital gyrus ITG Inferior temporal gyrus LiG Lingual gyrus 

LOrG Lateral orbital gyrus MCgG Middle cingulate gyrus MFC Medial frontal cortex 

MFG Middle frontal gyrus MOG Middle occipital gyrus MOrG Medial orbital gyrus 

MPoG Postcentral gyrus medial 

segment 

MPrG Precentral gyrus medial 

segment 

MSFG Superior frontal gyrus medial 

segment 

MTG Middle temporal gyrus OCP Occipital pole OFuG Occipital fusiform gyrus 

OpIFG Opercular part of the inferior 

frontal gyrus 

OrIFG Orbital part of the inferior 

frontal gyrus 

PCgG Posterior cingulate gyrus 

PCu Precuneus PHG Parahippocampal gyrus PIns Posterior insula 

PO Parietal operculum PoG Postcentral gyrus POrG Posterior orbital gyrus 

PP Planum polare PrG Precentral gyrus PT Planum temporale 

SCA Subcallosal area SFG Superior frontal gyrus SMC Supplementary motor cortex 

SMG Supramarginal gyrus SOG Superior occipital gyrus SPL Superior parietal lobule 

STG Superior temporal gyrus TMP Temporal pole TrIFG Triangular part of the inferior 

frontal gyrus 

TTG Transverse temporal gyrus 

Fig. 5. The average hCurv feature maps on the 30 subjects after pair-wise registration to a fixed template. Overall, these methods achieve similar hCurv patterns. The 

proposed method including a non-optimal rigid alignment provides a sharper representation close to the template. 

Table 2 

hCurv variance. The proposed method achieves the smallest variance. Here we computed the variance at l = 15 for both 

hemispheres. It is noteworthy that this statistics only evaluates spherical deformation itself; i.e., the energy of feature 

mismatching in these methods between subjects and a given template. 

Hemisphere Input FreeSurfer Spherical Demons Non-optimal Ours Ours 

Left 0.0396 ± 0.0014 0.0207 ± 0.0017 0.0213 ± 0.0022 0.0185 ± 0.0020 0.0182 ± 0.0019 

Right 0.0388 ± 0.0015 0.0201 ± 0.0015 0.0207 ± 0.0021 0.0182 ± 0.0016 0.0181 ± 0.0014 
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with and without an optimal rigid alignment; i.e., the coefficients

at l = 0 were updated only at the initial guess and excluded during

the full optimization. 

Fig. 5 shows the average hCurv features, and the average vari-

ance of hCurv is summarized in Table 2 . In the three methods,

the overall cortical folding patterns of the average map are simi-
ar to those of the template, while the proposed method provides

he sharpest patterns on the average map as shown in Fig. 5 . On

he other hand, we could not find noticeable difference in the pro-

osed method between with and without the optimal rigid align-

ent. Fig. 6 illustrates an example of registration by these meth-

ds. They begin with almost the same optimal rigid alignment
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Fig. 6. An example of pair-wise registration from a single subject to a fixed template. These methods begin with almost the same rigid alignment before the local deformation 

and produce similar hCurv patterns with slight difference. However, FreeSurfer and Spherical Demons only update the local deformation during the optimization. This results 

in relatively large deformation in several regions, whereas the proposed method updates both rigid and non-rigid deformation to reduce locally focused deformation. Also, 

the optimal rigid alignment in our method provides improved feature alignments and registration distortion compared to ours with a non-optimal rigid alignment. 

Table 3 

Registration distortion: absolute log ratio (mean ± std) in surface area and edge length. The proposed 

method yields less registration distortion than FreeSurfer and Spherical Demons with statistical signifi- 

cance ( ∗ p < . 05 ). 

Metric Hemisphere FreeSurfer Spherical Demons Non-optimal Ours Ours 

Area Left 0.278 ± 0.024 0.227 ± 0.010 0.199 ± 0.033 0.183 ± 0.018 ∗

Right 0.266 ± 0.028 0.225 ± 0.010 0.181 ± 0.023 0.175 ± 0.017 ∗

Length Left 0.165 ± 0.012 0.134 ± 0.005 0.126 ± 0.017 0.118 ± 0.011 ∗

Right 0.158 ± 0.015 0.132 ± 0.005 0.117 ± 0.013 0.114 ± 0.010 ∗
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r  
efore the local deformation, but the proposed method yields a

etter local feature alignment after optimizing both rigid and non-

igid deformation. 

Finally, we measured area and length distortion for each trian-

le and edge as the absolute log ratio between before and after

egistration ( Van Essen, 2005; Robinson et al., 2018 ). We measured

uch distortion metrics before and after registration for each in-

ividual subject. The distortion of each method is summarized in

able 3 . The proposed method achieves the smallest distortion for

oth area and length after two-sided paired t -tests (30 samples).

he optimization at l = 0 slightly improves the overall distortion
s well (see Fig. 6 for example) despite statistical significance. Note

hat the feature alignment and registration distortion in the pair-

ise approach are not necessarily small enough since we used a

xed template, to which deformation fields always have a bias.

herefore, the deformation reported in this approach should be in-

erpreted for relative comparisons across the three methods. 

.3. Group-wise registration 

We evaluated the three methods in a group-wise manner that

educes a bias toward template selection and provides a sharp
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Fig. 7. The average hCurv feature maps on the 30 subjects. The three methods achieve similar hCurv patterns, while FreeSurfer shows little more blurred patterns than other 

methods. These methods provide much more improved average patterns than the initial average. 
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feature mean with low registration distortion. This approach is

quite similar to pair-wise registration except that a template is up-

dated after each round of co-registration ( Lyttelton et al., 2007 ).

Yeo et al. (2010) used this approach in their work for best perfor-

mance of Spherical Demons, and FreeSurfer also provides the same

procedure for iterative update of the template for group-wise reg-

istration in their implementation. For optimal registration and best

performance of these methods, we focus on a group-wise approach

in the remainder of the experiments at this point. 

3.3.1. Feature alignment 

We computed the registration results using lSulc, hSulc, lCurv ,

and hCurv features of the FreeSurfer’s outputs that are optimized

for FreeSurfer and Spherical Demons. Once again, the registration

in these methods was achieved in a multi-resolution manner by

aligning lCurv and lSulc maps followed by hSulc and hCurv maps,

and we used a different resolution for each feature map with

icosahedral subdivision from 4 ( S = 2 , 562 ) to 7 ( S = 163 , 842 ). In

each resolution, we optimized spherical harmonics coefficients and

fed them as an initial guess to the higher resolution. It is notewor-

thy that exactly the same feature maps were used for all the meth-

ods for fair comparisons. In terms of optimization, their meth-

ods estimate a reference template (population average) only before

registration; thus, it is fixed during the entire optimization, which

requires several rounds of co-registration. In our experiments, the

optimization of their methods converged after 3 rounds. Unlike

these methods, only a single round of co-registration was sufficient

in our method. Indeed, we could not find any noticeable differ-

ence after a single round since the population average was semi-

optimized after an initial guess. This yields much faster registration

than the two methods. In particular, at each round including four
eatures, the proposed method and Spherical Demons took about

5 mins per subject, whereas FreeSurfer took more than an hour

er subject after the multi-resolution optimization with the four

eatures. Although Spherical Demons and the proposed method

chieved comparable computation time for individual subject reg-

stration, FreeSurfer, Spherical Demons, and the proposed method

ook about 90 hours, 21 hours, and 7 hours for the entire subjects,

espectively, after all rounds of co-registration. Fig. 7 shows the av-

rage hCurv features. It can be observed that overall patterns are

uite similar while slightly different patterns (e.g., cingulate sul-

us) are exhibited in the three methods. Table 4 summarizes statis-

ics on hCurv variance in the three methods. FreeSurfer achieves

elatively high variance, which results in little more blurred av-

rage patterns than other methods. We found that the proposed

ethod achieves smaller variance for l ≥ 19 than Spherical Demons

see Fig. 8 ) for both hemispheres. 

.3.2. Cortical surface parcellation 

We evaluated registration performance using cortical parcella-

ion that is completely independent of registration metric. Since

o ground-truth parcellation was available, we computed the mode

majority vote) parcellation map across the subjects after perform-

ng each surface registration method. Ideally, the parcellation map

s completely aligned with all subjects if a surface correspondence

s perfectly established. To measure the performance, we com-

uted a Dice coefficient for each region with the mode map. We

hen performed one-sided paired t -tests for the 30 subjects with

reeSurfer and Spherical Demons to reveal regions with statisti-

ally significant improvement on Dice coefficients. In this evalu-

tion, we measured Dice coefficients over the entire cortex (30

amples (average Dice coefficient of 49 regions per subject) - a
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Table 4 

hCurv variance. FreeSurfer shows relatively high variance while Spherical Demons achieves the 

smallest variance. Here we computed the variance at l = 15 for both hemispheres. See Fig. 8 for 

hCurv variance at different degree l . 

Hemisphere Input FreeSurfer Spherical D emons Ours 

Left 0.0199 ± 0.0088 0.0142 ± 0.0094 0.0113 ± 0.0097 0.0121 ± 0.0100 

Right 0.0194 ± 0.0086 0.0138 ± 0.0092 0.0109 ± 0.0093 0.0117 ± 0.0095 

Table 5 

Overall Dice coefficient in cortical surface parcellation (mean ± std, 

unit: %). For the right hemisphere, marginal difference is observed from 

FreeSurfer ( p = . 102 ), but the proposed method achieves better overlaps 

on the left hemisphere ( ∗ p < . 05 ). Also, the proposed method shows 

better overlaps on both hemispheres than Spherical Demons ( † p < . 05 ). 

Hemisphere FreeSurfer Spherical D emons Ours 

Left 79.93 ± 2.25 80.27 ± 2.26 80.61 ± 2.13 ∗† 

Right 80.15 ± 1.95 80.14 ± 2.01 80.31 ± 1.94 † 
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Fig. 8. hCurv variance at different degree l . The feature variance decreases as l 

increases. Both hemispheres have similar variance at each degree. The proposed 

method has smaller variance then FreeSurfer and Spherical Demons at l ≥ 9 and 

l ≥ 19, respectively. It is noteworthy that smaller variance does not necessarily in- 

dicate better surface registration performance. In our experiments, the proposed 

method works well at l = 15 in terms of cortical parcellation and registration dis- 

tortion. 

Table 7 

Moment coefficient of skewness of the distributions in registration dis- 

tortion (area and length). The proposed method has a less skewed dis- 

tribution to the right. This implies that the proposed method has a 

fewer number of regions with large registration distortion than the 

other methods. See Figs. 11 and 12 for illustration of the distributions. 

Metric Hemisphere FreeSurfer Spherical D emons Ours 

Area Left 7.572 2.048 1.634 

Right 6.768 2.046 1.646 

Length Left 4.165 1.788 1.682 

Right 3.970 1.857 1.643 
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ingle test for each method) and for each cortical region (30 sam-

les for each region - 49 tests for each method). For the latter eval-

ation, we further corrected p -values with respect to the number

f regions via a standard false discovery rate (FDR) ( Benjamini and

ochberg, 1995 ) at q = . 05 . Since the one-sided test tells which

ethod has significant improvement, we setup two different hy-

otheses on Dice coefficients: the proposed method is better than

he existing method and the proposed method is worse than the

xisting method. Table 5 summarizes the average Dice coefficients

n the entire cortex across the 30 subjects. Althoguh the improve-

ent was not considerable, the statistical tests revealed that our

ethod achieves significant improvement on the left hemisphere

nd both hemispheres over FreeSurfer and Spherical Demons, re-

pectively ( p < .05). For the right hemisphere, marginal difference

as observed from FreeSurfer ( p = 0 . 102 ). Several significantly im-

roved regions were revealed, while no region was found with

ignificantly decreased overlaps. Figs. 9 and 10 show the detailed

ice coefficients and their corresponding regions, respectively. Our

ethod shows better overlaps particularly on the motor cortex and

emporal lobe on both hemispheres. 

.3.3. Registration distortion 

As in the evaluation on the pair-wise registration, we mea-

ured area and length distortion for each triangle and edge as

he absolute log ratio between before and after registration. We

hen collected all the measurements to compute their distribution.

able 6 summarizes registration distortion (30 samples - average

istortion per subject) in the three methods. Our method provides

ignificantly reduced registration distortion compared to FreeSurfer

nd Spherical Demons. For both hemispheres, the maximum area

hange (i.e., exponential of the area distortion) across subjects

as smaller than FreeSurfer and Spherical Demons by a factor

f about 2.2 × 10 4 and 2.7, respectively. Similarly, our method

lso achieves smaller maximum edge change than FreeSurfer and

pherical Demons by a factor of about 3.3 × 10 and 1.1, respectively.

e also measured a moment coefficient of skewness ( Pearson,
Table 6 

Registration distortion: absolute log ratio (mean ± std 

posed method yields less registration distortion than F

significance ( ∗ p < . 05 ). See Figs. 11 and 12 for detailed 

Metric Hemisphere FreeSurfer S

Area Left 0.201 ± 0.011 (12.897) 0

Right 0.197 ± 0.012 (13.207) 0

Length Left 0.129 ± 0.006 (6.653) 0

Right 0.126 ± 0.008 (5.671) 0
895; Kenney and Keeping, 1954 ) of the distributions in registra-

ion distortion as summarized in Table 7 . The resulting coefficients

ndicate that the proposed method has a less skewed distribution

o the right (shorter tail), which implies a fewer number of re-

ions with large registration distortion than the other methods.

igs. 11 and 12 show the detailed distributions of the registration

istortion. It can be observed from the skewness that the proposed

ethod yields less registration distortion in the resulting deformed

pheres for both area and length distortion. 

In addition, we computed the average of area change in each

ndividual region of the cortical parcellation. This metric measures

he amount of absolute area change (combining both compression

nd expansion) within each region after registration. Since trian-

le size of FreeSurfer’s surfaces is irregular in general, we used

he weighted average of area change per each region, where the
(max)) in surface area and edge length. The pro- 

reeSurfer and Spherical Demons with statistical 

statistics. 

pherical D emons Ours 

.190 ± 0.009 (3.753) 0.182 ± 0.016 (2.503) ∗

.190 ± 0.009 (4.095) 0.178 ± 0.017 (2.357) ∗

.126 ± 0.005 (2.284) 0.124 ± 0.009 (2.088) ∗

.126 ± 0.006 (2.105) 0.121 ± 0.009 (2.044) ∗
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Fig. 9. Dice coefficient of 49 regions on the left and right hemispheres (unit: %). One-sided t -tests reveal regions with statistical significance after the FDR correction ( q = . 05 ). 

Several regions are significantly improved, while no region becomes worse after the FDR correction. The color in the labels indicates the improved regions compared to 

FreeSurfer ( blue ), Spherical Demons ( red ), and both methods ( green ). In comparison with FreeSurfer, our method has 21 and 12 improved regions for the left and right 

hemispheres, and with Spherical Demons, our method has 9 and 7 improved regions for the left and right hemispheres (see Fig. 10 for the improved regions with the 

adjusted p -values). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Negative log of the adjusted p -values on cortical regions with significantly improved Dice coefficients after the FDR correction ( q = . 05 ). The average surface is 

divided by the mode map of 49 regions. Total 33 and 16 out of 98 regions are significantly improved compared to FreeSurfer and Spherical Demons, respectively. The color 

indicates negative log of the adjusted p -values in the improved regions. 
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weight is proportional to triangle size. We then performed one-

sided paired t -tests for the 30 subjects with FreeSurfer and Spheri-

cal Demons to reveal regions with significantly reduced distortion.

For each method, we performed a single test on average distortion

(30 samples) and 49 tests for all cortical regions (30 samples per

region). Fig. 13 summarizes the statistics across the 30 subjects,

and Fig. 14 shows the corresponding improved regions after the

FDR correction ( q = . 05 ). For each hemisphere, we found that more

than a one third of 49 regions have significantly less area change

than the other methods, while no region has more area change af-

ter the FDR correction. For example, FreeSurfer shows quite huge

deformation in Ent (51.52%), whereas relatively much low deforma-

tion (15.43%) is measured in the proposed method for both hemi-

spheres. It is noteworthy that the proposed method offers the Dice

coefficients on Ent even with significantly low deformation (see

Figs. 9 and 15 ). For another instance in PrG, the proposed method
hows less area change (19.99%) with higher Dice coefficients than

pherical Demons (25.20%) for both hemispheres. We emphasize

hat such reduced area change is achieved while keeping compa-

able registration accuracy to the other methods. 

. Discussion 

.1. Deformation field 

The smoothness of the proposed deformation field is controlled

irectly by spherical harmonics degree l . In our framework, the

moothness does not refer to an additional energy term. Rather,

t could be considered conceptually akin to iterative smoothing of

he deformation fields proposed in Spherical Demons ( Yeo et al.,

010 ). Yet, the proposed method works in a top-down manner (i.e.,

rom global to local deformation) opposite to Spherical Demons
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Fig. 11. Area distortion (whiskers with maximum 1.5 interquartile range). The proposed method has a less skewed distribution to the right (shorter tail). This implies a fewer 

number of regions with large area distortion than FreeSurfer and Spherical Demons on both hemispheres. 

Fig. 12. Edge distortion (whiskers with maximum 1.5 interquartile range). The proposed method has a less skewed distribution to the right (shorter tail). This implies a 

fewer number of regions with large edge distortion than FreeSurfer and Spherical Demons on both hemispheres. 
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hat performs iterative smoothing on deformation fields after lo-

al deformation. Theoretically, the deformation has no interaction

ith local neighbors if l goes to infinity in our method and if no

teration is given in Spherical Demons. 

We found that the energy function decreases as l increases. The

roposed method achieved less variance of feature maps for l ≥ 19.

et, it still remains unclear about the amount of the smoothness

or an optimal shape correspondence since true trajectory of corti-

al surface deformation is unknown; indeed, this issue has arisen

n most surface registration frameworks. For example, our exper-

ments showed comparable overall Dice coefficients of the three
ethods ( Table 5 ) even though the cortical folding patterns on the

verage feature maps were slightly different ( Fig. 7 ). As discussed

n Yeo et al. (2008) , small variance does not always indicate best

erformance of surface registration. It is also true in the proposed

ethod since better performance was shown at l = 15 in terms of

ortical parcellation and registration distortion. In several clinical

tudies (e.g., functional MRIs), there could be different optimal

moothness and thus structural parcellation might not be a good

etric for the evaluation on surface registration as discussed in

obinson et al. (2018) . Although the proposed method was eval-

ated on structural parcellation, the orthonormality of spherical
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Fig. 13. Area change of 49 regions on the left and right hemispheres (unit %). One-sided t -tests reveal regions with statistical significance after the FDR correction ( q = . 05 ). 

More than a one third of regions have significantly reduced area change, while no region becomes worse after the FDR correction. In comparison with FreeSurfer, our 

method has 18 and 21 improved regions for the left and right hemispheres, and with Spherical Demons, our method has 16 and 23 improved regions for the left and right 

hemispheres (see Fig. 14 for the improved regions with the adjusted p -values). Note that the maximum range is truncated at 60% for better visualization. The color in the 

labels indicates the improved regions compared to FreeSurfer ( blue ), Spherical Demons ( red ), and both methods ( green ). (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

Fig. 14. Negative log of the adjusted p -values on cortical regions with significantly reduced area change after the FDR correction ( q = . 05 ). The average surface is divided 

by the mode map of 49 regions. Total 39 out of 98 regions are significantly improved compared to FreeSurfer and Spherical Demons. The color indicates negative log of the 

adjusted p -values in the improved regions. 
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harmonics basis functions can easily control the smoothness of

deformation in an easier way than other existing methods, which

might be useful to investigate optimal smoothness for other

studies. 

4.2. Cortical surface parcellation 

We used 30 subjects with their ground-truth volumetric labels

that were manually corrected after their projection onto the

surfaces. In the experiments, we found marginal difference in

the average Dice coefficients (up to 0.7% improvement) despite

statistical significance. Similarly, our method showed comparable

average Dice coefficients to those of the other two methods on

Mindboggle-101 (up to 0.3% improvement) despite statistical
ignificance (see supplementary information for the detailed

ice coefficients and their statistics). Statistically, no region was

evealed with decreased Dice coefficients on the dataset with

rainCOLOR whereas those in several regions became decreased

n Mindboggle-101 despite still inconsiderable absolute difference.

lthough their direct comparison is non-trivial due to the disparity

n the data acquisition (demographics, scan devices, parcellation

rotocols, etc.), the decreased Dice coefficients were found on

indboggle-101 mainly because both the increased number of

amples (from 30 to 101) and the decreased number of cortical

egions (from 49 to 31) increase statistical power, which results

n statistical significance even on small absolute difference in

he Dice coefficients. Therefore, given such marginal difference

n both parcellation protocols, it is difficult to choose the best

mong the three methods with superior performance. They offer
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Fig. 15. An example area change in Ent. ( top ) The three methods yield similar cortical folding patterns after co-registration (see Fig. 7 for the average hCurv maps). The 

mode regions of Ent are highlighted brightly. ( middle ) The Dice coefficients are comparable, which implies that these methods achieve comparable performance in surface 

alignment; the hCurv maps are also well aligned with the averages. ( bottom ) Even with comparable registration performance, the surface area (triangle size) is less distorted 

in the proposed method than FreeSurfer and Spherical Demons. It is noteworthy that the mode region of Ent in our group-wise framework is little larger than others because 

the distortion can be better minimized (i.e., better area preservation) in this way, while maintaining comparable registration accuracy (see Fig. 9 for Ent). 
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omparable registration performance in a context of cortical

urface parcellation. 

.3. Registration distortion 

We evaluated registration distortion for both entire cortical re-

ions and each individual region of the cortical parcellation. The

roposed method showed significantly smaller distortion than the

ther methods, and more than a one third of the cortical regions

ave significantly lower area change ( Figs. 13 and 14 ) while achiev-

ng comparable Dice coefficients ( Figs. 9 and 10 ). This advantage

ould be desirable in some ROI-based studies that focus on struc-

ural or functional analyses within less distorted regions, in which

ortical surface quantification (e.g., cortical thickness) can be also

esampled with less distortion. The further importance about dis-

ortion has been discussed in Van Essen (2005) . In our experi-

ents, however, we excluded vertex-wise registration distortion at

ach corresponding location since inter-subject variability in distor-

ion was quite arbitrary in the three methods (see Fig. 6 for exam-

le). From our observations, the corresponding locations not neces-

arily have similar amount of the registration distortion along cor-

ical folding. To the best of our knowledge, it is unknown yet that

egistration distortion is captured in a sense of population average

r necessarily similar across the corresponding locations. Deeper

nvestigation into registration distortion would be informative for

urther shape analyses. 
.4. Optimization 

In general, the energy function is non-convex. In our frame-

ork, a large number of spherical harmonics coefficients 3(l + 1) 2 ·
need to be optimized, in which a chance to be trapped in lo-

al optima is proportional to 3(l + 1) 2 · N. To reduce this chance,

e optimized individual degree independently to begin with a rea-

onable initial guess. This is feasible due to the orthonormality of

pherical harmonics basis functions. Thus, the reduced degree of

reedom in the optimization can yield better estimation of the co-

fficients than optimizing over the entire coefficients from the be-

inning without an initial guess. 

In addition to the incremental optimization, we employed a

evenberg-Marquardt optimizer that approximates the second or-

er of the energy function for two reasons. First, the optimizer

ffers fast convergence in few steps as it behaves like a gradient

ecent and then turn into a Gauss-Newton optimizer for better

onvergence. Second, since the Jacobian J f and J d consist of differ-

nt signs, the Hessian approximation H is positive semi-definite,

hich potentially lacks a full rank. These are handled by a sin-

le damping factor λ. Unfortunately, finding an optimal damping

actor is non-trivial in most optimization problems including ours,

nd derivation of its analytic solution is practically implausible. We

mpirically adjust this variable at each optimization step. λ de-

reases by a half if the energy is reduced; otherwise, it increases

y a factor of 2. Such a simple approach practically worked quite

ell. Mostly, the optimization is done in 20 steps at each degree
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(including full degree optimization). Although we did not exten-

sively investigate parameter tuning in this work, it could be an in-

teresting topic for future work. 

4.5. Pair-wise spherical deformation 

The three methods offer a well-fitted rigid alignment before

the spherical deformation; we could not find significant differ-

ence across them after their rigid alignment. Unlike FreeSurfer and

Spherical Demons that update only local deformation, the pro-

posed method optimizes both rigid and non-rigid deformation.

This might yield relatively locally focused deformation in the other

methods, whereas the proposed method shows overall smooth de-

formation across the cortex (see distortion in Fig. 6 ). In the exper-

iments, we observed the impact of the optimal rigid alignment by

excluding l = 0 during the full optimization. Technically, the exclu-

sion of only l = 0 is separation between rigid and non-rigid de-

formation, but spherical harmonics bases at low degrees act close

to global (i.e., nearly rigid alignment). Therefore, we found slight

difference between with and without a fully optimized rigid align-

ment on the registered cortical patterns, while the optimal rigid

alignment still reduces the amount of the distortion after the reg-

istration. 

4.6. Group-wise registration 

A group-wise approach is independent of a template choice un-

like a pair-wise approach. In the optimization, co-registration is

performed with the mean and variance of features are estimated

from the study group of interest. In this way, the inter-subject vari-

ability could be better handled. Therefore, the resulting registration

reduces a bias toward a specific template as well as registration

distortion. Particularly, the energy function encodes both feature

matching and rigidity of deformation, in which the feature mean f̄ 

and variance σ 2 
f 

are updated during the optimization. In our ear-

lier work ( Lyu et al., 2015 ), they were updated at every iteration

step to estimate a population average. However, there is no reg-

ularization (or boundary condition) of the estimated average fea-

ture map unlike template-based surface registration methods that

use a fixed average feature map. In this unconstrained optimiza-

tion the energy function can be minimized by expanding less vari-

able regions (e.g., regions along the inter-hemispheric cut). Such

deformed regions consequently can yield large registration distor-

tion, which might be an undesirable property. In the proposed

method, these quantities were instead estimated in two phases

at the initialization and after the individual degree optimization.

Although our current approach uses a fixed average feature map

to prevent large deformation during the optimization of each in-

dividual degree, the two-phase average update steps were suffi-

cient in the experiments; a single round of co-registration suffi-

ciently achieved a comparable shape correspondence to the exist-

ing methods. Thus, this yields faster convergence to the population

average than other methods. In this work, the proposed deforma-

tion has a high degree of freedom since spherical harmonics coef-

ficients are unconstrained. We thus introduced an additional regu-

larization term for rigidity of deformation. This term enables more

explicit rigidity by maintaining initial relative distances. A main

challenge in this regularization is to define distortion prior σ 2 
d 

.

Unlike other parameters, σ 2 
d 

is quite subject-dominant, so its esti-

mation is difficult from a given population. The spherical deforma-

tion becomes a rigid rotation as σ 2 
d 

decreases. In our framework,

we empirically set σd = 0 . 04 corresponding to roughly 4 times

the average edge length (0.01) of the triangular mesh of the unit

sphere. 
.7. Diffeomorphism 

Diffeomorphic surface registration has a differentiable one-to-

ne mapping between surfaces, which holds several nice prop-

rties particularly including no fold (i.e., positive determinant of

acobian) in a deformation field. In the proposed method, it can

e easily shown that the deformation field is differentiable since

pherical harmonics basis functions essentially have C ∞ smooth-

ess thanks to trigonometric functions. Unfortunately, the pro-

osed deformation cannot always hold a one-to-one mapping since

here is no specific regularization of the Jacobian determinant. This

an sometimes happen at a high degree of spherical harmonics

f multiple points are mapped onto the same location by the de-

ormation. A possible solution is to maintain the positive Jacobian

eterminant during the optimization. However, its analytic deriva-

ion is quite challenging, so practically implausible. Alternatively,

his can be addressed by unfolding a deformation field by finding

riangles with negative area after registration ( Fischl et al., 1999;

eo et al., 2010; Robinson et al., 2018 ). In this work, however, un-

olding a deformation field cannot be directly incorporated in a

ense of spherical harmonics interpolation since the approach lo-

ally modifies a deformation field. We instead reduced the update

tep size δ in a Levenberg-Marquardt framework, which limits the

mount of deformation. Yet, all of these approaches are still empir-

cal and theoretically might not completely obey diffeomorphism.

n practice, these can hold diffeomorphism in the discrete domain

 Yeo et al., 2010 ). Once a one-to-one mapping is guaranteed, there

xists an inverse mapping in the proposed deformation, which is

ust a transpose of local rotation matrices. 

.8. Implementation issues 

The computation time of the proposed method depends mainly

n deformation field update and Hessian approximation. To update

eformation fields at each iteration, local rotations need to be re-

omputed, which guides deformation of the spheres. Since defor-

ation fields change over time, we need to know the correspond-

ng locations to the icosahedral sampling points for each individual

phere. This requires an efficient triangle search algorithm on the

nit sphere. Naive exhaustive search is infeasible in practice due to

 large number of triangles (320k). To expedite triangle search, we

sed a customized axis-aligned bounding box (AABB) hierarchy, in

hich spherical locations are represented by spherical polar coor-

inates. In this way, the search dimension is reduced from 3D to

D, and the search becomes faster and more efficient because the

ounding boxes tightly cover only spherical regions. In our imple-

entation, the AABB hierarchy update takes less than a second. 

The Hessian approximation needs Jacobian of the energy func-

ion, and its computation requires O (S 2 · (l + 1) 2 ) time complex-

ty. At the end of optimization, the number of sampling points S

s approximately 160k and that of spherical harmonics coefficients

s 256 × 3 at l = 15 . In our implementation, the Basic Linear Al-

ebra Subprograms (BLAS) routines provided great efficiency on

omputing this step (about 5 seconds per subject at full degree

ptimization on a single core). In addition to the time complex-

ty, this step requires O (S · (l + 1) 2 ) space, which indicates that l

as a quadratic space complexity. It consumes about 500 Mbytes

emory per subject in our implementation. For a large population,

herefore, l needs to be determined according to memory capacity

o avoid potential overflow if memory capacity is limited. 

Finally, all computation steps are independent. Thus, these al-

eady have a good shape of parallelism. We implemented GPU ma-

rix computation for the Hessian approximation, which reduces the

rocessing time by a half. Note that the implementation was not

sed for the comparisons in our experiments. GPU acceleration can

e also applied to the AABB hierarchy update/query since every
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riangle is treated independently as a single node ( Popov et al.,

007 ). We expect that a GPU version of the AABB hierarchy will

rovide better efficiency. 

. Conclusion 

We presented novel hierarchical spherical deformation for cor-

ical surface registration. Motivated by the composition of pre-

ession and intrinsic rotation, the proposed method extends the

omposite rigid rotation to general non-rigid deformation as func-

ions of spherical locations. To this end, we used spherical harmon-

cs interpolation of local rigid rotations to generate smooth non-

igid deformation fields. By optimizing spherical harmonics coef-

cients, optimal rigid and non-rigid deformation is achieved si-

ultaneously in a single framework. To allow rigid rotations more

xplicitly, we further introduced an additional regularization term

f the rigidity. Also, we derived the second order approximation

f the energy function for better convergence of the optimiza-

ion. Consequently, the resulting deformation is smooth, continu-

us, and independent of a particular spherical coordinate system.

he proposed method is template-free group-wise registration that

voids a potential bias toward template selection. In the experi-

ents, the proposed method showed a comparable feature map

lignment to other state-of-the-art methods. In addition, the pro-

osed method achieved high accuracy in cortical surface parcella-

ion as well as low registration distortion in terms of surface area

nd edge length. This low distortion was achieved while provid-

ng comparable registration accuracy. Finally, the proposed method

ffered fast group-wise surface registration, and implementation

ith a GPU version of the Hessian computation is publicly avail-

ble. 
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ppendix A. Gradients of Spherical Locations 

We take derivatives at ˆ p = ϕ(θ ˆ p , φ ˆ p ) with respect to spherical

armonics coefficients. We first consider c m 

l,ω 
. From Eq. (10) , we

ave the following composite partial derivative by the chain rule:

∂ ̂  p 

∂c m 

l,ω 

= 

∂ω 

∂c m 

l,ω 

· ∂ ̂  p 

∂ω 

. (A.1) 

ince ω is a real-valued function, we have 

∂ ̂  p 

∂ω 

= [ ̂ z ] × · exp (ω[ ̂ z ] ×) · exp ([ z × z T ] ×) · p 

= [ ̂ z ] × · ˆ p , 

(A.2) 

nd Eq. (16) yields 

∂ω 
∂c m 

l,ω 
= Y l,m 

(θ ˆ p , φ ˆ p ) . (A.3) 

ence, we have the following form. 

∂ ̂ p 
∂c m 

l,ω 
= Y l,m 

(θ ˆ p , φ ˆ p ) · ([ ̂ z ] × · ˆ p ) . (A.4) 
ow we consider derivatives with respect to c m 

l, u 1 
. By the chain

ule, Eq. (10) becomes 

∂ ̂  p 

∂c m 

l, u 1 

= 

∂c u 1 
∂c m 

l, u 1 

· ∂ ̂  p 

∂c u 1 
. (A.5) 

n general, SO(3) does not hold the commutativity. For easier

erivation, we slightly modify Eq. (9) as follows. 

 (c u 1 , c u 2 , ω) = exp ([ z × z T ] ×) · exp (ω[ z ] ×) . (A.6)

his switches the order of rotations but yields a composite rotation

quivalent to Eq. (9) . From Eq. (4) , we expand Eq. (7) by the

istributive property. 

xp ([ z × z T ] ×) = exp ([(c u 1 u 1 + c u 2 u 2 ) × z T ] ×) 
= exp ([ c u 1 u 1 × z T + c u 2 u 2 × z T ] ×) . 

(A.7) 

ince c u 1 is a real-valued function, we have 

∂ ̂  p 

∂c u 1 
= [ u 1 × z T ] × · exp ([ z × z T ] ×) · exp (ω[ z ] ×) · p 

= [ u 1 × z T ] × · ˆ p , 

(A.8) 

nd Eq. (15) yields 

∂c u 1 
∂c m 

l, u 1 

= Y l,m 

(θ ˆ p , φ ˆ p ) . (A.9)

ence, we have the following form. 

∂ ̂ p 
∂c m 

l, u 1 

= Y l,m 

(θ ˆ p , φ ˆ p ) · ([ u 1 × z T ] × · ˆ p ) . (A.10) 

e leave out the derivation with respect to c m 

l, u 2 
, which can be

erived analogously as that of c m 

l, u 1 
. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.media.2019.06.013 
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