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A B S T R A C T

Background: : Human cortical primary sulci are relatively stable landmarks and commonly observed across the
population. Despite their stability, the primary sulci exhibit phenotypic variability.
New Method: : We propose a fully automated pipeline that integrates both sulcal curve extraction and labeling.
In this study, we use a large normal control population (n=1424) to train neural networks for accurately
labeling the primary sulci. Briefly, we use sulcal curve distance map, surface parcellation, mean curvature and
spectral features to delineate their sulcal labels. We evaluate the proposed method with 8 primary sulcal curves
in the left and right hemispheres compared to an established multi-atlas curve labeling method.
Results: : Sulcal labels by the proposed method reasonably well agree with manual labeling. The proposed
method outperforms the existing multi-atlas curve labeling method.
Comparison with Existing Method: : Significantly improved sulcal labeling results are achieved with over 12.5 and
20.6 percent improvement on labeling accuracy in the left and right hemispheres, respectively compared to that
of a multi-atlas curve labeling method in eight curves (p≪0.001, two-sample t-test).
Conclusion: : The proposed method offers a computationally efficient and robust labeling of major sulci.

1. Introduction

The human cortex is one of the most complex anatomical structures
with substantial variation in shape across individuals. Despite its
complexity, the cortical sulci are known as relatively stable regions that
embed consistent cortical folds (Gogtay et al., 2004; Kochunov et al.,
2005; Northoff et al., 1999) by which the cerebral cortex can be sub-
divided into functionally and structurally homogeneous regions. From a
morphological view, each individual sulcus (or sulcal region) can be
well represented as a curve by tracing its sulcal fundus. By taking ad-
vantage of such a representation, sulcal curves have played key roles as
a distinguishing indicator in cortical surface registration (Kim et al.,
2005), brain development and degeneration (Gogtay et al., 2004;
Sowell et al., 2003) and morphological variability (Fillard et al., 2007;
Amunts et al., 2005). Yet, a concrete representation of cortical sulci is
not commonly agreed upon due to an unclear anatomic boundary be-
tween sulci and gyri (Rademacher et al., 1992; Caviness et al., 1996;
Lyu et al., 2010). With recent advance of 3D cortical surface

reconstruction techniques; (Kim et al., 2005; Ono et al., 1990; Lyu et al.,
2017; Thompson et al., 1996) cortical geometric features greatly sup-
port sulcal curve extraction (Agrawal et al., 2017; Lohmann et al., 1999;
Rettmann et al., 2002; Shattuck et al., 2009).

We focus on major sulcal curves that are relatively stable across
subjects. These curves can be used as robust features for shape corre-
spondence for reducing the spatial ambiguity in surface registration
(Lyu et al., 2010; Thompson et al., 2004; Joshi et al., 2012a; Tao et al.,
2002; Lyu et al., 2015; Agrawal et al., 2017). Moreover, these curves
(Ono et al., 1990) could serve as biomarkers that aid in understanding
the developmental growth or disease conditions in the human cortex. In
this context, improved accuracy in sulcal curve labeling is essential and
with the proposed method, we can label sulcal curves at much faster
rate with high accuracy.

Despite the success in extracting sulcal curves, labeling of these
curves is still an open and challenging problem because of high com-
plexity and variability in cortical folding patterns (Lyu et al., 2017). For
example, the inferior temporal sulcus is highly variable with several
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discontinuous pieces (Ono et al., 1990). Such variability hampers
consistent labeling of cortical sulci, which is challenging even for
neuro-anatomists. Sulcal labeling could be sensitive to variations in
labeling protocols, and even in the same protocol, delineation of sulci
can vary across experts (e.g., inconsistent endpoint delineation) (Ono
et al., 1990; Thompson et al., 1996; Lohmann et al., 1999). Although
one could employ cortical parcellation for sulcal labeling, it could still
have challenges, as sulci do not always obey cortical parcellation
boundaries. Accurate labeling is essential to derive meaningful in-
ferences from brain-related changes in health and disease

Manual sulcal labeling is a tedious task and needs a very high level
of expertise in achieving high accuracy that agrees with sulcal no-
menclature (Ono et al., 1990). This necessitates well-developed neu-
roanatomical conventions in the existence of high individual variability
(Ono et al., 1990; Thompson et al., 1996; Lohmann et al., 1999). Joshi
et al (Joshi et al., 2012a) proposed a multi-atlas labeling method that
uses predefined curves. In these approaches, sulcal curves from an atlas
brain surface are projected onto the target subject surface and evolve
along sulcal fundi via a level-set approach. Statistical shape models
(Tao et al., 2002) define a shape variation prior as projections of
landmarks onto tangent planes to the sphere. A watershed approach
(Rettmann et al., 2002) extracts regions around sulcal fundi that embed
some meaningful geometric characteristics like geodesic depth. How-
ever, their method is not fully automated, as sulcal regions are manu-
ally selected from the extracted sulcal regions. Another semi-automated
approach (Shattuck et al., 2009) guides the user through a cortical
surface delineation protocol implemented as a tool with an interface
incorporated into BrainSuite software (Greenspan et al., 2016) reducing
the inter-rater variability. All these manual/semi-automatic methods
need manual intervention in addition to very long processing time.

In the last decades, fully automated techniques have been proposed
to overcome the need for manual intervention. For example, (Shi et al.
(2009)) proposed a probabilistic graphical model of sulci, from which
major sulcal curves are jointly labeled by solving a maximum a pos-
teriori (MAP) estimation. (Tu et al. (2007)) used a discriminative model
using a boosting tree to extract major cortical sulci without employing
any user-defined rules. On the other hand, (Joshi et al. (2012b)) pro-
posed an atlas registration method that transfers the sulcal curves from
an atlas surface to the subject surface and then refines the sulcal curves’
locations to closely follow the sulcal fundi using geodesic curvature
flow. However, this approach uses only a single subject atlas. (Lyu et al.
(2010)) proposed a multi-atlas sulcal curve labeling using spectral point
matching. This method does not require surface registration. (Mangin
et al. (2015)) noted that “the future of sulcus recognition is in pattern
matching methods informed by a very large dataset of manually labeled
sulci”. In this context, readily accessible large scale neuroimaging da-
taset is highly likely to capture sulcal variability with the improved
accuracy of labeling the sulcal curves on unseen subjects. As the gold
standard is not available, learning variability in the cortical folding
patterns from big data can better infer new models that encode the
complex folding patterns. However, handling such huge data with ex-
isting methods could be practically implausible or requires a well-de-
fined prior model that can fully incorporate sulcal variability (Ono
et al., 1990; Shattuck and Leahy, 2002; Pantazis et al., 2010).

Recently, deep neural networks (DNN) have become popular in the
medical imaging field (Greenspan et al., 2016; Litjens et al., 2017) in-
volving large datasets due to the accuracy, speed and flexibility offered
by these models. In neuroimaging, deep learning has shown its success
in a wide range of applications including anatomical brain segmenta-
tion (de Brebisson and Montana, 2015), brain tumor segmentation
(Havaei et al., 2017), biological psychiatry (Mechelli, 2018), deep un-
supervised learning in traumatic brain injury (Minaee et al., 2018),
epileptic discharge detection for EEG-fMRI (Hao et al., 2018), seg-
mentation of deep brain regions in MRI and ultrasound (Milletari et al.,
2017), inter-scanner harmonization in diffusion MRI (Nath et al.,
2018), understanding sensory cortex (Yamins and DiCarlo, 2016), et

cetera. Convolution neural nets (CNN) are a specific type of DNN that
uses convolution and pooling layers. These are widely used for image
recognition tasks as they reflect the translation-invariant nature of most
images. U-Net (Ronneberger et al., 2015) is a deep CNN model that is
adapted from fully convolutional networks. It can work with very few
training images and provide more precise segmentations. CNNs are
successfully applied for segmentation and other applications in volume
images. However, relatively little work has applied these approaches to
2-manifolds of cortical surfaces. For example, the application of CNNs is
extended onto non-structured data with geometric deep learning
(Bronstein et al., 2017; Boscaini et al., 2016). (Seong et al. (2018))
implemented a graph CNN that samples the data over a surface and
reshapes the data to make it compatible with conventional CNN
toolbox. (Cucurull et al. (2018)) used graph based methods for per-
forming parcellation of two regions (44 and 45) in Broca’s area using
structural and functional features on the cortical surface patches.

In this study, our goal is to label sulcal curves by using a U-Net
model (Ronneberger et al., 2015). The novelty of our approach is a new
application of deep learning on cortical surfaces using a U-Net model.
We aim to achieve substantively faster labeling with better accuracy
than multi-atlas approaches (Lyu et al., 2010; Joshi et al., 2012a).
Briefly, we use a large dataset of healthy controls to train a neural
network for performing sulcal curve extraction and labeling. We train
samples with prelabeled sulcal curves and geometric feature maps.
These features are mapped onto a 2-D polar plane to fully utilize a 2-D
U-Net model. Specifically, we use the following geometric features:
sulcal curve distance map, mean curvature, surface parcels, and spectral
features (eigenfunctions of 2-manifold). We enhance the accuracy of the
model using an independent dataset of manual labels. In the experi-
ments, we show that our approach outperforms the standard curve la-
beling method (Lyu et al., 2010) that is considered as reference. Also
sulcal curve labeling is performed in less than a minute compared to
that of 32 minutes for baseline method.

2. Methods

2.1. Data acquisition

We analyzed structural data from two cohorts of participants. We
first constructed a sulcal curve atlas dataset using 21 subjects from the
publicly available KIRBY21 database (11 males; 10 females; age
range=22–61) (Lebed et al., 2013). Structural images in the atlas
dataset were acquired with (3 T Philips MPRAGE sequence with a
1×1x1.2 mm3 resolution and an FOV of 240×204×256 mm3). Our
primary analyses were carried out using data from 784 participants in
the Baltimore Longitudinal Study of Aging (BLSA) (349 males; 435 fe-
males; mean age= 72 years; range= 25–99) (Shock, 1984). Partici-
pants in this study were scanned 1–7 times over a period of 8.5 years on
a Philips 3 T scanner using a 3D “magnetization prepared rapid gradient
echo” (MPRAGE) sequence. Each image had 170×256×256 voxels
with 1.2×1×1 mm3 resolution. The local Institutional Review Boards
approved the study, and all participants provided written informed
consent at each visit. From the BLSA dataset, we created 3 samples of
participants. The training set consisted of 1–7 longitudinal scans from
759 individuals for a total of 1374 separate MRI sessions. The valida-
tion dataset was constructed from single sessions from 28 individuals
that are not included as part of the training set. Single session data from
22 participants not included in the training or validation datasets were
used to create a test dataset.

2.1.1. Sulcal curve atlas
For sulcal curve atlases from the KIRBY21 dataset, eight primary

sulcal curves were manually labeled on both hemispheres by an expert
according to a published sulcal curve labeling protocol (Pantazis et al.,
2010): central sulcus (CS), superior temporal sulcus (STS), superior
frontal sulcus (SFS), inferior frontal sulcus (IFS), occipitotemporal
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sulcus (OTS), cingulate sulcus (CingS), calcarine sulci (CalcS), and ol-
factory sulcus (OLF) (see Fig. 5 for examples).

2.2. Preprocessing

Structural data were processed for cortical surface reconstruction
using the MaCRUISE pipeline (Huo et al., 2016). Sulcal curves were
extracted using the TRACE method (Lyu et al., 2017). Sulcal curves
were labeled using a curve labeling protocol (Lyu et al., 2010). All
datasets were quality checked for each label and any faulty surfaces or
extremely inconsistent curve labeling results are excluded. Note that we
used these labels for training the deep learning model using various
geometric features including distance map, surface parcels, mean cur-
vature and spectral features. Cortical features were finally projected
onto a plane to feed CNN for training with the U-Net model. An over-
view of the proposed workflow is shown in Fig. 1.

2.2.1. Sulcal curve extraction
The TRACE method (Lyu et al., 2017) was applied on each hemi-

sphere to extract a set of sulcal curves along the sulcal fundic regions.
Briefly, candidate sulcal points were selected to form a topological
graph of the points, and Dijkstra trajectories over the graph to delineate
optimal sulcal curves. This includes primary and secondary sulcal
curves as a set of points (a subset of vertices) without curve labels,
which needs to be pruned and labeled through the proposed pipeline. In
this paper, we used default parameter settings as suggested in (Lyu
et al., 2017). The code is available at https://github.com/ilwoolyu/
CurveExtraction.

2.2.2. Surface registration
Although surface registration is not a mandatory step for the re-

ference method (Lyu et al. (2010)) it could improve the quality of sulcal
curve-labeling after surface registration. We first mapped each hemi-
sphere onto the unit sphere while minimizing area distortion (Dale
et al., 1999) and then established cortical surface correspondence (Lyu
et al., 2018) (https://github.com/ilwoolyu/HSD). A custom template
was obtained by averaging in a group-wise fashion (Lyu et al., 2018) of

co-registered 21 subjects from the publicly available dataset (Landman
et al., 2011) of the Kirby Research Center for Functional Brain Imaging
in Baltimore (http://mri.kennedykrieger.org/databases.html).

2.2.3. Sulcal curve labeling for model training
We used the standard curve labeling method (Lyu et al., 2010) to

assign labels to primary sulcal curves by pruning minor sulcal curves
and branches. The reference method employs multi-atlas to determine a
label for each individual sulcus. It establishes a point-wise curve cor-
respondence with each atlas and finds the best match across the es-
tablished correspondence. However, we found in this work that a ma-
jority vote shows better performance since the best match can
sometimes work poorly if only partial perfect match (few points) with a
particular atlas yields the highest score among the other atlases.
Therefore, final labels were assigned if at least half of atlases agree.

2.3. Deep neural network for sulcal curve labeling

We used cortical geometric features to capture both cortical folding
patterns and individual variability. First, the sulcal curve distance map
(geodesic distances between sulcal curves) was generated to represent
cortical folding patterns. As complementary features to cortical folds,
we used mean curvature and surface parcellation labels (Huo et al.,
2018a). In addition, spectral features were computed to capture in-
trinsic geometric characteristics in the embedding space being spanned
by the eigenvectors associated with the first five smallest eigenvalues.
These features were fed into the neural network for sulcal label pre-
diction.

2.3.1. Sulcal curve distance map
To represent cortical folding patterns, we computed a geodesic

distance map →u: 3R R on the cortical surface Ω between the sulcal
curves. We set all the extracted sulcal curves as a source ⊆C Ω. By
letting ⊆c C , the minimum travel time ⟶u x( ): 3R R from the source
to any point ∈x Ω can be obtained from the following propagation
equation with some speed function ∃ +F ε ,R

Fig. 1. An overview of the proposed method: (a) Preprocessing steps include surface reconstruction, sulcal curve extraction, surface registration, and curve-labeling.
(b) Cortical features are generated including distance maps, spectral features, mean curvature, parcellation, and sulcal labels. (c) Features defined on spherical polar
coordinates are mapped onto a uniformly spaced grid. (d) The features are then passed into 2-D U-net model and fitted with batch size of 10 for maximum of 20
epochs. (e) Labels are predicted on the test set for evaluation.
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This wavefront propagation formulation is a static Hamilton-Jacobi
partial differential equation. We set a constant speed function in every
direction by letting F=1 as follows:

∥∇ ∥ =u x( ) 1 (3)

By solving Eq. (3), we have the minimum travel time with unit speed.
This is equivalent to the geodesic distance between sulcal curves, which
generates the geodesic distance map u of the sulcal curves. Typically,
gyral regions have high values whereas sulcal regions have a zero dis-
tance. We later feed this map to the network for training.

Given a threshold +ξ ε R , sulcal regions can be segmented by a
binary mask ⟶M: [0,1]R as follows

= = ⎧
⎨⎩

≦M u ξ f if u ξ
otherwise

x( ; ) ( ) 1,
0, (4)

This threshold widens the extracted sulcal curves to prevent them to
being too narrow to provide sufficient geometric information within
sulcal regions. We empirically set ξ =10 to sufficiently cover regions
along a single sulcus similar to the previous studies (Lyu et al., 2017;
Lebed et al., 2013).

2.3.2. Spectral features of cortical surface
Spectral features were generated for each cortical surface to feed the

neural network. We first build a graph G = {V, E}, where V is a set of
vertices and E is a set of edges. We then setup a |V | by |V | weighted
adjacency matrix W that stores node affinities. A diagonal node degree
matrix D encodes the sum of all the point affinities (vertex degree) at
point i.

∑=
=

d W .i
j

V

ij
1

| |

(5)

A diagonal node-weighting matrix G is given by the exponential of
negative mean curvature. The node weighting at point i is defined as,

= −g ei
hi (6)

where hi is mean curvature at point i. Finally a general Laplacian op-
erator is formulated on the connectivity adjacency matrix as the fol-
lowing |V | by |V | matrix:

= −−L G D W( )1 (7)

Since L is symmetric, positive, and semi definite, its eigenvalues Λ

and their associated eigenvectors U hold the following form:

= ⋀ −L U U 1 (8)

We then use (Lombaert et al., 2013) to correct sign ambiguity in
eigenvectors. Here we refer to spectra of a fixed subject being arbi-
trarily chosen from the dataset. The spectral features were given by the
eigenvectors associated with the first five nonzero smallest eigenvalues,
which were ultimately fed as five additional input channels into the
neural network.

2.3.3. Planar mapping
In general, the cortical surface has a genus-zero form that is not yet

fully compatible with a neural network optimized for a uniform grid
representation. To address this issue, we represent a cortical surface
with polar coordinates (θ ϕ, ) at (x, y, z) as follows.
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where θ is the azimuth angle and ϕ is the elevation angle. However, a
polar coordinate system inherently has non-uniform angular re-
presentations, which yields substantial length distortion around the
poles. To reduce such distortion, we rotate each sphere such that the
poles are located around insular and ventricle regions so as to minimize
length distortion of sulcal curves around the poles (Joshi et al., 2012c).
The inspiration for choosing a pole is drawn from Auzias et al.’s ap-
proach (Auzias et al., 2013). Given a set of sulcal curves ⊆C Ω for each
of N subjects, we approximate global pole location by maximizing the
following objective function:

∑ ∑=
∥ ∥=

=

∈

cẑ argmax arccos (z )
z N

i

c C1

1
2

i (11)

with underlying assumptions that the cortical anatomy on the
spheres is roughly aligned and the initial value for z is chosen such that
it is roughly located away from most of the sulcal curves (i.e., insular
and ventricle regions). Spherical reparameterization is done by up-
dating the pole as obtained from Eq. (11).

In this way, we reduce the planar projection distortion on the pri-
mary sulci of interest. After the planar projection, we resampled the
plane with a 512×512 resolution that is optimized for convolutional
layers of the neural network. The cortical features and label maps were
then used for training. Fig. 2 illustrates the distance map normalized
between 0 and 1 on a cortical surface, a sphere and after projection to a

Fig. 2. Qualitative representation showing normalized distance map feature on cortical surface, sphere and planar map.
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planar map.

2.3.4. Training
The network architecture is inspired and motivated from the ori-

ginal U-Net design that has been known to perform well for image
segmentation tasks (Huo et al., 2018b). A 5-level architecture has been
used for each sulcal label with curve overlap as the loss function. A
batch size of 10 was used to meet with GPU memory constraints while
also achieving better performance. Hence, the network weights are
saved using check pointing and batch images are fed into the training
model using a fit generator.

The network consists of 2D convolution layers followed by batch
normalization and a rectified linear unit (ReLU) activation, which
yields better performance during preliminary evaluations. Max pooling
is used after each convolution layer. In the last layer, 1 × 1 convolution
produces probability of sulcal curve label from a sigmoid activation
function. We can threshold this probability map to derive desirable
label information. In this study the threshold was empirically set to 0.7.
Each network was trained until convergence for a maximum of 20
epochs. Each epoch took about 6min to train on an NVIDIA Titan Xp.
and Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20 GHz and 32GB RAM.
Finally, as the network was trained on planar maps, the predicted labels
were mapped back onto the unit sphere:

= ∅x cos θ cos , (12)

= ∅y cos θ sin , (13)

=z sin θ (14)

2.3.5. Post processing
Predicted labels are generated based on the various features sup-

plied to the training model and do not consider cortical shape to de-
lineate labels to only primary sulcal curves. This can yield to issues such
as partial labeling on the primary curves or labeling extra minor
branches due to the limited ability in cortical shape representation in
the U-Net. As our goal is to label primary sulcal curves, the extra minor
branches need to be pruned, and missing label information needs to be
filled before further analysis (see Fig. 3). Since a sulcal fundus is re-
presented by a single curve, it is reasonable for final sulcal label deci-
sion to include or exclude whole branches as major sulci are generally
delineated along the entire sulcal fundi. We propose curve length-based
pruning to trim the minor branches. Briefly, we measure both the
length (i.e., geodesic distance on Ω) of the extracted sulcal curves in C
by TRACE and that of the predicted sulcal curves by the proposed
method. For each predicted curve, we compute a length ratio r pro-
portional to its corresponding extracted curve in C. If the extracted and
predicted curves are perfectly matched, we have r=1, whereas r < 1
if the extracted curves are partially labeled. Thus, this quantity is used
to prune the predicted curves (r < 0.2) or fill partially missing labels
along the extracted curves (r > 0.8). Although we empirically choose
such thresholds in this study, they could be learned from datasets for
better decision-making.

2.3.6. Evaluation
We used the sulcal curve editor (https://github.com/ilwoolyu/

SulcalCurveEditor) to manually label major sulcal curves on 22 sub-
jects via the sulcal delineation protocol (Pantazis et al., 2010). These
labels were used for evaluation to validate the proposed DNN predicted
labels. These results were compared with a standard curve labeling
method (Lyu et al., 2010). Since true curve correspondence was un-
available between major curves, the closest distance measures at sulcal
points may not be able to capture the missing or extra curves. In par-
ticular, we have computed the sulcal Dice coefficient (SDC) as described
below for evaluation. This measure summarizes labeling accuracy as
well as false positives in a single metric. From Eq. (4), we have two
masks MA and MB on a cortical surface Ω, which cover two

corresponding major curves A and B, respectively, as follows.

=M M u ξx x( ) ( ( ); )A A (15)

=M M u ξx x( ) ( ( ); )B B (16)

where uA and uB are geodesic distance from A and B. SDC can be
computed by taking surface integral of MA and MB.

∬
∬ ∬

=
∂

∂ + ∂
SDC

M M
M M

x x
x x

( ) ( ) Ω
( ) Ω ( ) Ω

A B

A B (17)

It is challenging to derive analytical solutions to the above surface
integrals on an arbitrary cortical surface. In triangular mesh, we can
instead approximate the solution by counting the numbers of vertices
within the masks, where the numerator is the intersection between the
vertices belonging to both MA and MB.

In evaluation, we computed SDC for the proposed and reference
methods with respect to manual labeling. For each label, we summar-
ized mean SDC values across all the subjects. Two sample t-tests are
performed between the reference and proposed methods. Finally, we
used false discovery rate (FDR) (Benjamini and Hochberg (1995)) on
resulting SDC for multi-comparison correction.

3. Results

We found that the proposed method significantly improved sulcal
curve labeling in 9 out of 16 sulcal curves across the left and right
hemispheres compared to the reference method (Lyu et al. (2017)),
after multi-comparison correction via false discovery rate (Storey,
2011). The average SDC is improved by 12.5 percent for the left
hemisphere and 20.6 percent for the right hemisphere. Fig. 4 shows
mean SDC values for each of the eight curves on both hemispheres.
There is marginal, but not statistically significant, improvement of SDC
across both hemispheres in SFS (12.8%), STS (11.3%), and IFS (15.3%)
using the proposed method. The highest improvement of SDC is seen in
CS with over 28.8% in left hemisphere and 45.3% in right hemisphere
with SDC above 0.93 in both hemispheres (p < 0.05).

Fig. 5 shows qualitative comparisons of the reference and proposed
methods with manual labeling for a single subject on the left hemi-
sphere. The predicted CS from the proposed method is consistent with
manual labeling while the reference method only captures about a half
of the total curve. Some false positives on minor branches are exhibited
in the reference method for STS and SFS that are not present in the
proposed method. The proposed method consistently label IFS agreed
with manual labeling whereas the reference method includes extra
branches (false positives) or is missing a portion of the corresponding
curve (false negatives). CingS is consistent with manual labeling for
both methods. There is a false positive branch apparent towards the
frontal region in both methods (Fig. 5), while the standard curve la-
beling method also has a false negative in the parietal region in which
the curve label is not captured. OTS and OLF are consistent across all
the methods except for extra minor branch on OLF.

Although sulcal labels by the proposed method reasonably well
agree with manual labeling, the proposed method sometimes misses a
portion of the corresponding curve or shows extra branches of the
curve, as shown in Fig. 6. CS and OLF are well matched with manual
labels (Fig. 6 a). While OTS is also well matched to the manual labels in
this example, there are apparent false positives or false negatives in the
remaining five curves (Fig. 6. b–g).

Fig. 7 shows an overlay of all eight curves using manual labeling
from 22 subjects. They are overlaid on the resampled template surface
from 21 subjects in the Kirby21 dataset (Lebed et al., 2013) after sur-
face registration (Huo et al., 2018a). Heterogeneity is observed in most
of the sulcal curves. In particular, variability in IFS appears to be higher
in the right hemisphere compared to that of left hemisphere. Similarly,
higher variability is seen across the frontal region of the SFS curve and
the entire region of STS curves across the subjects.
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Fig. 8 highlights the disparities in left and right hemisphere between
the proposed method and manual labeling. Shorter curves are seen in
the frontal region of SFS for labeling from the proposed method com-
pared to that of manual labeling in the left hemisphere. In the right
hemisphere, the difference in curve lengths of the two methods is not as
pronounced as seen in the left hemisphere (Sowell et al., 2002; Amunts
et al., 2000); however, there is higher curve variability in the frontal
region. In contrast, STS displays false positives with longer curves in
labeling from the proposed method compared to that of manual la-
beling in the left hemisphere. Moreover, there is also higher curve
variability in the left hemisphere compared to that of the right hemi-
sphere. This is in agreement with the higher SDC seen in right hemi-
sphere for STS compared to that of the left hemisphere (Fig. 4). Simi-
larly, CingS has higher variability in the predicted curves in the left
hemisphere compared to that of the right hemisphere.

4. Discussion

Deep learning has shown high efficiency and scalability on large
datasets (Greenspan et al., 2016; LeCun et al., 2015). In supervised
learning approaches, initial labeling is essential in training for seg-
mentation or classification tasks in medical imaging (Huo et al., 2018b;
Chen et al., 2018). This is time-consuming for manual sulcal labeling or
semi-automated approaches. In the proposed method, we collected
large datasets and employed automated processing pipelines (Lyu et al.,
2010, 2017) for curve extraction and labeling to produce training sets
with reasonably plausible initial labels. We further performed liberal
manual QA of all the curves to ensure filtering out extreme outliers in
the data. This step helps prevent the model in learning from outlier
examples while retaining the variability needed for training. As initial

labels were generated automatically, the liberal QA was not as time-
consuming as the manual or semi-automated approaches. However, it
could further be improved by incorporating labeling uncertainty as
proposed in (Gros et al., 2019; Wang et al., 2018) that can guide in
filtering out the data used for training. This will be promising in future
work.

A higher SDC is achieved in all the sulcal curves in both hemi-
spheres except for OLF in the right hemisphere (Fig. 4). This might be
because the reference method already has good performance on OLF in
the right hemisphere (SDC=0.85). The false positives or negatives
shown in Fig. 6 could have been partially caused because of the het-
erogeneity across the population among these major sulcal curves, as
illustrated in Fig. 7. Such variability has been acknowledged and
measured in many previous studies (Thompson et al., 1996; Zilles et al.,
1997; Juch et al., 2005). Although the focus in our study is not to
measure such variability, a qualitative analysis would be helpful in
understanding the major curves. For example, different variability in
IFS between hemispheres may explain lower SDC in the right hemi-
sphere than that of the left hemisphere (Fig. 3).

Low performance in certain sulcal curves could also be attributed to
labeling inconsistency obtained in the proposed method as highlighted
in Fig. 8. Possibly, the inconsistency across the predicted labels in
certain anatomical regions has risen from the training data acquired by
the reference method even after liberal manual QA. The high variability
in sulcal curves with several discontinuous pieces (Ono et al. (1990))
could be another contributing factor. Despite the existence of such high
variability, the proposed method achieved better SDC values compared
to that of reference method. The contributing factors for improved
performance could be the use of multiple geometric features and par-
cellation labels for training the large dataset used in the proposed

Fig. 3. Example of pruning and filling of sulcal curves in post processing. Inflated surfaces are used for better visualization. Mean curvature is shown as the
background on the inflated surface. Sulcal curves in C by TRACE are shown in green lines. Arrows indicate the areas of change before and after post processing. (a)
SFS curve with missing branch before post processing. (b) SFS curve after filling. (c) IFS curve with extra branches before post processing. (d) IFS curve after pruning
extra branches.
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Fig. 4. Sulcal Dice coefficients are shown across eight curves in both left and right hemispheres. * p < 0.05. ** p < 0.005. Reference method shown in blue bar and
Predicted labeling from DNN model is shown in green.

Fig. 5. Qualitative results of eight curves on
the left hemisphere for a single subject.
Inflated surfaces are used for better visualiza-
tion. Results are shown in 3 different views for
reference, predicted labeling and manual la-
beling methods for comparison. The color code
at the bottom indicates the color associated
with each curve. Mean curvature is shown as
the background on the inflated surface.
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method. We have included multiple (1–7) longitudinal sessions for in-
dividual subjects in training data to create a large dataset needed for
deep learning to perform well allowing it to generalize to new examples
without over fitting. Also having the regularization step though layers
like drop out is another factor that is known to help generalizing to new
examples. Even though multiple sessions per subject are used in
training, we have only included one session per subject in testing for
fair comparison. In this work, we have shown the possibility of using a
deep learning approach that integrates both sulcal curve extraction and
labeling to achieve improved curve-labeling results.

The following observations are made based on the sulcal dice
coefficient results from Fig. 4. The quality of sulcal labeling relies on
the cortical folding patterns. For example, it is well known that CS and
CalcS have a consistent form of continuous curves and CingS is usually
either continuous or have 2 branches. Accordingly, higher accuracy is
seen in these labels because of the consistency in the cortical folding

pattern. In contrast, STS has either 2 or 3 branches and SFS are not
consistently continuous (Lyu et al., 2010; Ono et al., 1990). In such
sulci, relatively low accuracy is observed due to the inconsistent folding
patterns.

Although the proposed method outperformed the reference method
in most curves, there is still a room for improvement. First, in order to
use existing architecture for U-Net models designed for uniform grid
data, we have mapped cortical surface features onto a plane, which
causes mapping distortions. We alleviated distortions to some extent by
choosing pole locations and placing the labels away from the poles, yet
they are not fully addressed but attenuated. Second, while results from
(Lyu et al. (2010)) are based on a young healthy population, the ma-
jority of our sample is middle to older age adults. This difference in
training and test population demographics could have led to failures in
labeling certain curves due to high variation in sulcal shapes between
the two age groups. Although we removed outlier cortical surfaces and

Fig. 6. Illustrative example of inconsistencies
seen in predicted labeling. Yellow arrows in-
dicate false negatives and white arrows in-
dicate false positives of predicted labeling
compared to that of manual labeling. (a)
Overlay of eight manual curves (black tube
representation) and predicted curves (line re-
presentation) on a single subject. (b) STS with
false positives. (c) SFS with a false negative
and two false positive branches. (d) IFS with
false positives. (e) OTS with no false positives
or false negatives. (f) CingS with false positive.
(g) CalcS with false negative. All the curves in
(b–g) are rotated in the best view for the cor-
responding curves.

Fig. 7. Eight major sulcal curves manually labeled across 22 subjects in left and right hemispheres.
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labeling results from training data, there is still variability and incon-
sistency within the data used for training this model.

In future work, we will investigate recent spherical CNN methods
(Esteves et al., 2018; Coors et al., 2018; Cohen et al., 2018) or graph
CNN methods (Edwards and Xie, 2016) in training these datasets to
overcome the distortion issues caused with planar mapping of such
data. Our approach is not limited to a curve-labeling problem, but it
could be extended to tackle other problems like cortical parcellation.

5. Conclusion

In this method, we proposed a DNN predicted labeling method using
a U-Net model for labeling eight major sulcal curves on each hemi-
sphere. The proposed method has shown improvement in most of the
curves in both left and right hemispheres. We observed significant
improvement in CS, OTS, and CingS in the left hemisphere and six
curves in the right hemisphere including CS, STS, IFS, OTS, CingS, and
CalcS (p < 0.05). The overall SDC is improved by 16.6 percent for both
hemispheres. CS showed the highest improvement with over 28.8 and
45.3 percent in the left and right hemispheres, respectively, compared
to those of the reference method. This provides an opportunity to ex-
plore the application of deep learning techniques to methods involving
cortical surfaces.

The trained model and code are available on the Github project:
(https://github.com/MASILab/slabelDNN).
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