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ARTICLE INFO ABSTRACT

Keywords: Previous studies in psychosis patients have shown hippocampal volume deficits across anterior and posterior
Schizophrenia regions or across subfields, but subfield specific changes in volume along the hippocampal long axis have not
Hippocampus been examined. Here, we tested the hypothesis that volume changes exist across the hippocampus in chronic
First episode psychosis psychosis but only the anterior CA region is affected in early psychosis patients. We analyzed structural MRI data
Zst?g;zs. from 179 patients with a non-affective psychotic disorder (94 chronic psychosis; 85 early psychosis) and 167

heathy individuals demographically matched to the chronic and early psychosis samples respectively (82 mat-
ched to chronic patients; 85 matched to early patients). We measured hippocampal volumes using Freesurfer 6-
derived automated segmentation of both anterior and posterior regions and the CA, dentate gyrus, and sub-
iculum subfields. We found a hippocampal volume deficit in both anterior and posterior regions in chronic
psychosis, but this deficit was limited to the anterior hippocampus in early psychosis patients. This volume
change was more pronounced in the anterior CA subfield of early psychosis patients than in the dentate gyrus or
subiculum. Our findings support existing models of psychosis implicating initial CA dysfunction with later
progression to other hippocampal regions and suggest that the anterior hippocampus may be an important target

for early interventions.

1. Introduction

Schizophrenia is a neurodevelopmental disorder associated with
significant morbidity and mortality (De Hert et al., 2011; Olfson et al.,
2015), yet the nature and timing of brain changes remain poorly un-
derstood. Abnormal brain structure is present in early and chronic
stages of the illness, and some of these alterations appear to be pro-
gressive (Fusar-Poli et al., 2013; Haijma et al., 2013; Olabi et al., 2011).
Smaller hippocampal volume is one of the most commonly replicated
findings in schizophrenia (Adriano et al., 2012; Van Erp et al., 2016),
with roughly an 8% volume deficit in the chronic stage relative to de-
mographically similar healthy individuals (Velakoulis et al., 2006).
However, it is currently unclear whether specific hippocampal sub-
regions are affected early in the illness or if volume changes occur
across the structure in a widespread, non-specific manner.

The hippocampus is not a unitary structure. A tripartite division of
the hippocampus into head, body, and tail regions dates back to the
earliest description of the structure by Arantius in 1587 as a ‘little
seahorse’ (Rosene and Van Hoesen, 1987). A simpler bipartite

parcellation of the human hippocampus into anterior (head) and pos-
terior (body + tail) segments is based on an anatomical landmark, the
uncus (Weiss et al., 2005). The anterior and posterior segments have
largely divergent patterns of extra-hippocampal anatomical con-
nectivity and functional properties (Poppenk et al., 2013). Despite the
early recognition that there may be differential volume changes related
to psychosis in the anterior and posterior hippocampal segments, no
clear findings emerged from the initial literature on this topic (Becker
et al., 1996; Bogerts et al., 1993; Bogerts et al., 1990; DeLisi et al., 1988;
Hirayasu et al., 1998; Lieberman et al., 2001; Rajarethinam et al., 2001;
Weinberger et al., 1992). This was likely due to low resolution imaging
data, the inclusion of the amygdala in hippocampal volume estimates,
or measurement of only specific parts of the hippocampus or temporal
lobe. In more recent studies that delineated hippocampal volume se-
parately from surrounding structures, the finding of decreased anterior
hippocampal volume in chronic psychosis is more consistent (Goldman
et al., 2007; Pegues et al., 2003; Schobel et al., 2009; Thoma et al.,
2009), but not universal (Maller et al., 2012; Rametti et al., 2007; Weiss
et al., 2005). In the limited number of studies examining this question
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in early psychosis, two have found evidence of an anterior volume
deficit, without observing a similar decrease in posterior hippocampus
(Kalmady et al., 2017; Szeszko et al., 2003); but see (Williams et al.,
2012) for an exception. Decreased gray matter volume within the
anterior hippocampus has been found using a voxel-based method in a
meta-analysis of individuals at high risk for developing a psychotic
disorder (Fusar-Poli et al., 2011) and in a large cohort of psychosis
spectrum youth (Satterthwaite et al., 2016). In summary, there is bur-
geoning evidence of an anterior hippocampal deficit in early psychosis
that may extend to the posterior hippocampus in the chronic illness
stage. However, the studies used to examine this question have im-
portant methodological variations that necessitate further study. For
example, studies differ in the particular boundary used to separate the
anterior from posterior hippocampus (uncus vs. dividing slices in half
vs. voxel based localization) and the method used to control for dif-
ferences in intracranial volume (Voevodskaya, 2014). Critically, many
studies did not explicitly test for a group by hippocampal region in-
teraction, leaving open the possibility that anterior and posterior vo-
lumes in a patient cohort do not differ meaningfully (Strange et al.,
2014).

In addition to a simple anterior/posterior dichotomy, the hippo-
campus has multiple subfields defined in coronal sections along its
transverse axis, including the cytoarchitecturally defined cornu am-
monis (CA) fields 1-4, dentate gyrus, and subiculum (Duvernoy et al.,
2013). Manual segmentation of subfields on high resolution images is
time and labor intensive (Winterburn et al., 2015), but automated
segmentation software has been developed recently (Iglesias et al.,
2015; Yushkevich et al., 2015a). Consequently, there are only a small
number of high quality studies examining subfield specific changes in
early and chronic psychosis. One investigation using automated seg-
mentation of high resolution T2 images in chronic schizophrenia found
decreased volume in the cornu ammonis and dentate gyrus subfields
(Ota et al., 2017). An important study by Ho et al. using automated
segmentation of T1 images suggests that CA1 volume deficits in the first
5 years of psychosis evolve to affect all subfields in chronic illness (Ho
et al., 2017a). Another study by the same group indicates that CAl
changes may even be present in ultra-high-risk individuals as they
transition to clinical psychosis (Ho et al., 2017b). Taken together, these
studies support a role for CA1 in the early stages of psychosis. However,
the cohorts studied by Ho et al. leave an intriguing gap between a re-
latively small group of ultra-high-risk individuals transitioning to psy-
chosis and a larger cohort of patients who are at a somewhat later ill-
ness stage (~2years). The first 2years of a psychotic illness may
represent a “critical period” in which pathological changes have not
fully emerged and the potential opportunities for intervention and
treatment during this illness phase warrant careful study of the neu-
robiological changes occurring during this period (Birchwood et al.,
1998; Crumlish et al., 2009).

Previous investigations have studied hippocampal volume either
along the transverse or the longitudinal axes of the hippocampus, as
described above. But the hippocampus might be described best as a
series of multiple discrete subdomains superimposed on a longitudinal
gradient, as defined by structural connectivity, functional properties,
and gene expression patterns (Strange et al., 2014). To our knowledge,
no studies have considered whether there are subfield volume differ-
ences along the anterior-posterior extent of the hippocampus in psy-
chosis. In this study, we focus on identifying in early and chronic
psychosis patients the pattern of volume changes observed along the
longitudinal axis of the hippocampal formation, within the cornu am-
monis, dentate gyrus, and subiculum subfields (Rosene and Van
Hoesen, 1987). These allocortical regions are posited by different
models to play a role in the pathophysiology of psychosis, including
CA1 hyperactivity (Lieberman et al., 2018), GABAergic dysfunction in
CA2/3 (Benes, 1999), altered glutamate transmission in the dentate
gyrus (Tamminga et al., 2010), and subiculum hyperactivity (Grace,
2010). Lieberman et al. (2018) have proposed a neuroprogressive
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model in which early glutamate dysfunction in CAl leads to neuronal
hyperactivity, metabolic dysregulation, and ultimately a decrease in
volume that spreads from CA1 to other subfields and eventually pre-
frontal areas. However, the data used to validate this model come from
a limited number of clinical high-risk individuals who transitioned to
psychosis and from mouse models of schizophrenia. As these authors
point out, schizophrenia may develop from multiple underlying etiol-
ogies that share a common final pathway to phenotypic expression and
it is unclear whether the origin and progressive pattern of structural
changes predicted by the model will hold in a larger, more hetero-
geneous sample of psychosis patients in both the early and chronic
illness stages.

Here, we test the hypothesis that volume deficits in chronic psy-
chosis are present throughout the hippocampus, but are limited to the
anterior CA region in early psychosis. We first examine whether the
anterior hippocampus is preferentially affected in chronic and early
psychosis by testing for volume deficits in the anterior vs. posterior
regions of the hippocampus at each illness stage. Next, we test whether
there are subfield specific changes along the hippocampal long axis at
each illness stage by comparing CA, DG, and subiculum volumes in the
hippocampal head and body.

2. Material and methods
2.1. Participants

We analyzed data from 346 individuals (179 patients with a non-
affective psychotic disorder and 167 healthy controls: Table 1). Patients
were recruited from the psychiatric inpatient and outpatient clinics of
the Vanderbilt University Medical Center Psychotic Disorders Program
as part of an ongoing data repository, the Psychiatric Phenotype/Gen-
otype Project (PGPP). Healthy controls were recruited from the sur-
rounding community through email advertisements. The study was
approved by the Vanderbilt University Institutional Review Board and
all participants provided written informed consent and received
monetary compensation for their time. Diagnoses were assessed with
the Structured Clinical Interview for DSM-IV (First et al., 2002). Clinical
symptoms were further assessed with the Positive and Negative Syn-
drome Scale (PANSS, N = 176; Kay et al.,, 1987), the Young Mania
Rating Scale (YMRS, N = 166; Young et al., 1978), and the Hamilton
Depression Rating Scale (HAMD, N = 176; Hamilton, 1960). Premorbid
IQ was estimated with the Wechsler Test of Adult Reading (WTAR,
N = 345; Wechsler, 2001). Patient medication load was assessed with
the structured interview and medical record review and is reported in
terms of chlorpromazine (CPZ) equivalents (N = 157; Gardner et al.,
2010). Participants were excluded for significant medical or neurolo-
gical illness, head injury, pregnancy, age < 16 or over 65, estimated
premorbid IQ < 70, or meeting criteria for substance abuse or de-
pendence within the past month. Healthy controls were excluded if they
had current or past psychiatric illness, psychotropic drug use, or a first
degree relative with a psychotic illness. Participants were selected from
the PGPP repository for the present study if they had an MRI with a T1-
weighted structural scan without motion artifacts and had a diagnosis
of a non-affective psychotic disorder (Schizophrenia N = 85; Schi-
zoaffective Disorder = 45; Schizophreniform Disorder = 77; Brief Psy-
chotic Disorder N = 2) or were healthy controls (N = 190).

2.2. Structural MRI data acquisition

Structural imaging data was acquired on a 3 T Philips Intera Achieva
scanner at the Vanderbilt University Institute of Imaging Science
(Philips Healthcare, Inc.). We acquired a 3D T1-weighted scan (voxel
size = 1mm?> field of view = 256% number of slices = 170;
TE = 3.7ms; TR = 8.0ms). Each image was visually inspected and
determined to be free from motion or other artifacts prior to inclusion
in the analysis.



M. McHugo et al.

Table 1
Participant demographics and clinical characteristics.
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Chronic sample

Early sample

HC PSY HC > PSY HC PSY HC > PSY
n=_82 n=94 n =85 n =85
Mean SD Mean SD Statistic ) Mean SD Mean SD Statistic P
Age (years) 35.87 10.60 37.14 11.41 t=-0.77 0.40 22.20 3.55 21.93 3.63 t=0.49 0.62
Sex (M/F) 44/38 52/42 x> = 0.05 0.83 62/23 70/15 X% =217 0.14
Race (W/B/0O) 53/20/9 56/32/6 2 =265 0.27 66/19/0 63/21/1 x> =117 0.56
Participant education® 15.86 2.05 13.03 2.31 t=849 < 0.001 14.15 1.88 13.36 2.26 t=246 0.01
Parental education 14.17 2.16 13.66 2.89 t=1.21 0.23 14.67 2.49 14.90 2.58 t=—0.57 0.57
WTAR 110.46 12.00 96.34 16.52 6.52 < 0.001 110.60 11.02 101.16 15.33 t=4.61 < 0.001
ICV (mL) 1501.30 147.67 1472.95 181.31 1.13 0.26 1547.00 161.92 1558.81 165.10 t=—0.47 0.64
Diagnosis
Schizophrenia 60 17
Schizoaffective 34 5
Schizophreniform 62
Brief Psychotic Disorder 1
Duration of Illness (years)” 16.09 11.50 0.56 0.82
PANSS
Positive 19.59 7.94 17.93 7.11
Negative 14.59 6.50 17.39 8.10
General 31.72 8.50 33.35 8.44
YMRS 6.48 7.81 3.44 5.26
HAMD 8.87 6.59 8.63 6.01
CPZ equivalents 507.05 312.18 258.07 184.03

HC = healthy controls; PSY = patients with psychosis.
@ Exact duration of illness unavailable for 1 early stage patient.

2.3. Hippocampal segmentation

Each T1 image was processed using the Freesurfer 6 image analysis
suite with standard parameters (http://surfer.nmr.mgh.harvard.edu/;
Dale et al., 1999; Fischl et al., 2002) and the hippocampus subfield
segmentation module (development version 20180220; Iglesias et al.,
2015). This module performs an automated segmentation of hippo-
campal subfields based on a high-resolution probabilistic atlas gener-
ated from ex vivo MRI data. The subfield segmentation for each parti-
cipant was visually inspected for errors and as a consequence, no
manual editing of segmentations was performed. Segmentations that
included tissue outside the hippocampus or that failed to include por-
tions of the hippocampus were excluded. This led to the removal of data
from 53 participants (Schizophrenia N = 8; Schizoaffective Dis-
order = 6; Schizophreniform Disorder = 15; Brief Psychotic Disorder
N = 1; Healthy Controls N = 23). The excluded participants did not
differ from included participants on age, sex, race, parental education,
or ICV. Excluded patients also did not differ from those included on
clinical symptom measures or medication load.

We created composite measures of hippocampal regions and sub-
fields from the detailed segmentations carried out by Freesurfer. This
approach has three conceptual and methodological advantages: 1) Our
hypotheses concern volume differences across three allocortical regions
of the hippocampal formation: the hippocampus proper (cornu am-
monis fields), the dentate gyrus, and the subiculum. Investigation of
these regions requires aggregation of the default Freesurfer regions; 2)
Combination of subfields in this manner allows for easier comparison
with data generated from other commonly used automated segmenta-
tion routines, e.g., ASHS (Mueller et al.,, 2018; Yushkevich et al.,
2015b); 3) Our segmentations are based on the T1 image alone, rather
than a multispectral segmentation of T1 and T2 data, and boundary
definitions for smaller subregions (e.g., CA3, GC-DG, molecular layer)
may be less reliable with only 1 mm T1 data. Freesurfer segments the
hippocampal formation into 12 subregions. We constructed composite
measures of anterior/posterior and subfield regions from these 12
subregions for each hemisphere separately (Fig. 1). Because our ques-
tions centered around the cornu ammonis, dentate gyrus, and

subiculum, we excluded the hippocampal-amygdala transition area,
parasubiculum, and fimbria from our analyses.

To examine volumetric differences along the longitudinal axis of the
hippocampus, we created composite measures of anterior (head) and
posterior (body + tail) volume (Fig. 1B). We defined the anterior
hippocampus as the sum of the volumes for the following subfields
within the hippocampal head: CA1, CA3, CA4, molecular layer, GC/DG,
subiculum, and presubiculum. The posterior hippocampus was defined
as the sum of these same subfields within the hippocampal body plus
the hippocampal tail.

We defined composite regions for the cornu ammonis (CA), dentate
gyrus (DG), and subiculum separately in the head and body of the
hippocampus of each hemisphere (Fig. 1C). A full anterior/posterior
definition of these subfields was not possible because Freesurfer does
not separate subfields in the tail region. Delineation of subfields within
the hippocampal tail can be difficult even with higher resolution images
(Yushkevich et al., 2010). We defined the CA composite region as the
sum of the volumes for CA1, CA3, subiculum, and the molecular layer.
We constructed the DG region from the sum of the CA4 and GC/DG
subfields. Finally, we defined the subiculum as Freesurfer's pre-
subiculum subfield. The CA/subiculum boundary is not visible on in
vivo MR images and is instead typically determined from geometric
rules. We chose to define the subiculum in this manner because it is
more consistent with the majority of common segmentation protocols
and should permit easier comparison with other studies (Fig. 3 in
Yushkevich et al., 2015b). Analysis of the data using the default Free-
surfer definitions of the CA and subiculum did not alter the results for
these subfields (Supplementary Fig. 1).

2.4. Selection of chronic and early psychosis samples

The 346 subjects with good hippocampal segmentations were di-
vided into 4 groups on the basis of illness stage and demographic factor
(age, sex, race) propensity score matching of healthy controls with the
Matchlt package (Ho et al., 2011) in R (version 3.4.3; R Core Team
2017). First, patients were divided into chronic (duration of illness
> 2years, N = 94) and early (duration of illness < 2years, N = 85)
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Fig. 1. Description of composite measures of hippocampal subregions for volume. A. Default Freesurfer subdivisions of the hippocampus. B. Depiction of Freesurfer
segmentation of head, body, and tail regions on a representative subject. For our analysis of volume differences along the hippocampal long axis, we defined the
anterior and posterior regions as shown. C. To test for subfield specific volume differences in the head and body of the hippocampus, we defined composite subfields
for the CA, DG, and subiculum separately in the head and body.

samples, consistent with critical period hypotheses of psychosis (N = 308), but differed in their own education level (N = 344).
(Birchwood et al., 1998). Next, a group of 85 healthy controls was se-

lected by propensity score analysis to match the early stage patient 2.5. Statistical analysis

sample based on age, sex, and race using the nearest neighbor method.

The remaining 82 healthy controls did not significantly differ from the We analyzed volume data using linear mixed models with the R
chronic patient sample on age, sex, or race (Table 1). The patient and packages Ime4 (Bates et al., 2015), emmeans (Lenth, 2018), and car
control samples were also matched on mean parental education (Fox and Weisberg, 2011). First, to test for psychosis related differences
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in volume along the longitudinal axis of the hippocampus, we fit a
linear mixed model predicting volume from the fixed effects of group
(psychosis, control), hemisphere (left, right), region (anterior, pos-
terior), and their interactions, adjusting for estimated total intracranial
volume, age, sex, and race, with participant as a random effect. Second,
we tested for subfield specific hippocampal volume deficits in psychosis
along the longitudinal axis by fitting a linear mixed model predicting
volume from the fixed effects of group (psychosis, control), hemisphere
(left, right), region (head, body), subfield (CA, DG, subiculum) and
their interactions, adjusting for estimated total intracranial volume,
age, sex, and race with participant as a random effect.

In order to examine differences in hippocampal volume between
patients and controls in different illness stages, the 2 models described
above were fit separately for the early and chronic samples. For all
models, we conducted significance tests on the fixed effects using an
analysis of variance (ANOVA) on the model output. Significant effects
were followed up with pairwise contrasts adjusted for multiple com-
parisons with Bonferroni correction.

3. Results
3.1. Volume deficits along the hippocampal long axis in psychosis

We tested for group differences in volume across the anterior and
posterior regions along the hippocampal long axis. In chronic psychosis
patients relative to controls, we observed a significant main effect of
group (F(1,170) = 10.52, p = .001) and no significant interactions of
group with region or hemisphere (all p's > 0.05; Fig. 2A). This finding
is consistent with the large body of existing work demonstrating smaller
hippocampal volume in chronic psychosis patients and confirms that
deficits exist across the long axis in later stages of the illness.

In contrast, comparing early psychosis patients with matched con-
trols revealed a volume deficit in only the anterior hippocampus
(Fig. 2B). This was demonstrated by a significant group by region in-
teraction (F(1,504) = 4.74, p = .030) in the context of a significant
main effect of group (F(1,164) = 4.65, p = .033). Follow up tests con-
firmed that hippocampal volume was smaller in the anterior (t
(217.09) = 2.80, p =.005) but not posterior (t(217.09) =1.21,
p = .228) region in early psychosis patients relative to controls. The
anterior volume deficit did not significantly differ by hemisphere
(group by hemisphere by region interaction: F(1,504) = 2.92,
p = .088).

A. Chronic Psychosis vs. Healthy Controls
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3.2. Subfield specific volume analysis in hippocampal head and body

We next examined the volume of specific subfields within the head
and body of the hippocampus in psychosis. Compared to healthy con-
trols, chronic psychosis patients exhibited smaller volume of the CA
subfield (Fig. 3A; group by subfield interaction: F(2,1914) = 28.98;
p < .001). This was confirmed by a significant follow up test for the CA
region (t(339.53) = 6.90, p < .001), but not the DG or subiculum
(p's > 0.05). We also detected a significant group by region interaction
(F(1,1914) = 4.43, p=.035) and main effect of group (F
(1,170) = 10.92, p = .001). The group by region by subfield interaction
was only present at trend level (F(2, 1914) = 2.36, p = .095). Because
of our a priori hypothesis regarding the role of the CA in psychosis, we
conducted planned comparisons investigating whether there were dif-
ferences in volume across subfields within the head and body. We found
significantly lower volume in chronic psychosis in both the head (t
(656.60) = 7.39, p < .001) and body of the CA (t(656.60) = 4.07,
p < .001), but not in the head or body of the subiculum or DG (all
p's > 0.05). In the context of the significant group by region and group
by subfield interactions, the presence of a trend level 3-way interaction
suggests that variation in volume across the CA, DG, and subiculum
along the long axis may reflect heterogeneity within the patient group.

When we examined subfield specific volumes in the early psychosis
sample, once again we found a more constrained pattern of volume
deficits than in the chronic cohort. As in the chronic cohort, we ob-
served a significant main effect of group (F(1,164) = 5.36, p = .022),
significant interactions of group by region (F(1,1848) = 6.08,
p =.014), and trend level interactions of group by subfield (F
(2,1848) = 2.49, p =.083) and group by region by subfield (F(2,
1848) = 2.62, p = .073). Planned comparisons showed that early psy-
chosis patients displayed a volume deficit only in the CA subfield of the
hippocampal head compared to healthy controls (t(680.21) = 4.38,
p < .001; all other p's > 0.05).

4. Discussion

Competing models of hippocampal dysfunction in schizophrenia
implicate different subfields (Benes, 1999; Grace, 2010; Lieberman
et al.,, 2018; Tamminga et al., 2010) and emphasize either anterior
(Goldman and Mitchell, 2004) or posterior (Ragland et al., 2017) pa-
thology. In this study, we found only anterior hippocampal deficits in
early psychosis patients, but volume deficits in both anterior and pos-
terior regions in chronic psychosis patients. Additionally, we observed

B. Early Psychosis vs. Healthy Controls
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* HContml
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15001 B - ES T sychosis
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1000+
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Fig. 2. Volume of hippocampal region by group. A. In patients with chronic psychosis, hippocampal volume is reduced in both anterior and posterior regions relative
to healthy controls. B. In contrast, anterior hippocampal volume was selectively reduced in early psychosis patients compared to healthy controls. (*) indicates
significant contrast for the effect of group within each region at p < .05, following Bonferroni correction for multiple comparisons. Error bars indicate 95%

confidence intervals of the estimated marginal mean volumes.
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A. Chronic Psychosis vs. Healthy Controls
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B. Early Psychosis vs. Healthy Controls
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Fig. 3. Volume of subfields in the hippocampal head and body by group. A. In patients with chronic psychosis, hippocampal volume is selectively reduced in the CA
subfields of the head and body relative to healthy controls. B. In contrast, early psychosis patients exhibit a trend for decreased volume in the CA subfields of only the
hippocampal head region compared to healthy controls. (*) indicates significant contrast testing for the effect of group within each subfield at p < .05, following
Bonferroni correction for multiple comparisons. Error bars indicate 95% confidence intervals of the estimated marginal mean volumes.

for the first time that this pattern of anterior volume changes in early
psychosis and subsequent posterior involvement in chronic psychosis
was more prominent in the CA subfields than in the dentate gyrus or
subiculum.

The data obtained in this study support a model in which early
dysfunction in the anterior CA subfields leads to volume changes that
spread from the anterior CA to associated hippocampal regions as the
psychotic illness progresses (Lieberman et al., 2018). Our finding of a
more prominent volume deficit in the anterior hippocampus is con-
sistent with the majority of the studies that have examined anterior and
posterior volume differences in early psychosis (Kalmady et al., 2017;
Szeszko et al., 2003). This finding also adds to the growing body of
literature suggesting early deficits in the CA subfield both from volu-
metric (Ho et al., 2017a, 2017b) and shape analyses (Narr et al., 2004;
Schobel et al., 2013). Our data are consistent with an early critical
period in which pathological changes are ongoing (Birchwood et al.,
1998; Crumlish et al., 2009) and highlight the importance of identifying
illness stages to guide intervention and prevention efforts (McGorry
et al., 2018; Wood et al., 2011). Ongoing longitudinal work with the
early psychosis patients described here will help clarify the role of the
hippocampus in progression from early stage psychosis to chronic
schizophrenia.

When considered in light of current neurobiological models of
hippocampal functional organization, our volume findings suggest a
characteristic pattern of functional deficits. The anterior and posterior
hippocampus have distinct afferent and efferent connections, with the
anterior region projecting preferentially to areas more involved in
emotion and higher order cognition (including the amygdala, orbital
and medial prefrontal cortex, and midline subcortical areas) and the
posterior region connecting to more posterior multimodal cortical re-
gions associated with vision and spatial processing (Poppenk et al.,
2013). The anterior hippocampus is posited to be involved in the for-
mation of higher order associations among stimuli (Strange et al.,
2014), the encoding of “gist-like” stimulus representations (Poppenk
et al., 2013), and the learning of and abstraction of concepts (Mack
et al., 2017). Consistent with such models, schizophrenia patients ex-
hibit deficits in relational memory (Armstrong et al., 2012; Williams
et al.,, 2010) and transitive inference (Titone et al., 2004) linked to
anterior hippocampal dysfunction (Ongiir et al., 2006). It is possible
that when applied to concepts, the binding and inference errors ob-
served in schizophrenia contribute to either positive illness symptoms,
such as delusions, or disorganized thinking, speech, and behavior. Fu-
ture studies will need to determine whether the types of conceptual

1111

learning proposed to be under the purview of the anterior hippocampus
are affected in early psychosis (e.g., Mack et al., 2016).

Animal models of hippocampal organization commonly emphasize a
role for the ventral (anterior) hippocampus in anxiety-related behaviors
(Bannerman et al., 2004). Forty-two patients in our study had a co-
morbid anxiety disorder, and this may have contributed to the observed
volumetric deficits. However, distinct hippocampal subfields within the
anterior hippocampus appear to be affected in psychosis and anxiety.
For example, while we have found that the CA subfields are pre-
ferentially affected in psychosis, extant data suggest that the dentate
gyrus may be more associated with anxiety (Kheirbek et al., 2013;
Persson et al., 2014). Alternatively, anxiety disorders are more pre-
valent in patients with a schizophrenia spectrum disorder diagnosis
than the general population (Achim et al., 2011), suggesting the non-
independence of psychosis and anxiety. We believe that investigation of
the impact of anxiety on hippocampal structure in the context of a
psychotic disorder is an important direction for future studies.

Why are the anterior cornu ammonis subfields affected in the early
stage of psychosis? There are several characteristic gradients along the
hippocampal long axis that render this region especially vulnerable.
Most importantly, a gradient of GABA-A, NMDA, and AMPA receptor
expression along the ventral-dorsal axis of the rodent hippocampus
(anterior-posterior axis in humans) (Pandis et al., 2006; Sarantis et al.,
2008; Sotiriou et al., 2005) points to greater excitability of the ventral/
anterior hippocampus (Papatheodoropoulos, 2018), particularly in the
CAl subfield (Dougherty et al., 2012). In addition, the anterior hip-
pocampus receives relatively denser dopaminergic projections from the
ventral tegmental area (Strange et al., 2014). Although the number of
hippocampal neurons is not decreased in schizophrenia, there is a re-
duction in the number and density of GABAergic interneurons (Konradi
et al., 2011). The gradients described above, when combined with ge-
netic vulnerability (Skene et al., 2018), may lead to an excitation-in-
hibition imbalance, hippocampal hyperactivity, and subsequent volume
changes in the anterior CAl subfield (Heckers and Konradi, 2015;
Lisman and Grace, 2005). Initial work suggests functional changes
within the anterior CA in high risk individuals who convert to psychosis
(Schobel et al., 2013). An important question for future research is
whether this anterior hippocampal hyperactivity is present across a
more heterogeneous sample of early psychosis patients and precedes
the volumetric deficit we have observed here.

The strengths of our study include large, well-matched cohorts of
early and chronic psychosis patients, use of automated hippocampal
segmentation software, and definition of hippocampal regions in a
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consistent manner across illness stages. Our study has several limita-
tions. The Freesurfer definition of hippocampal subfield volumes using
1mmT1 images alone may be less accurate than definitions found
using segmentation of higher resolution T2 or multimodal images.
Although this approach is consistent with other recent studies of hip-
pocampal structure in schizophrenia, we cannot specify whether spe-
cific CA regions are preferentially affected with the resolution of our
data. Additionally, we were unable to investigate subfield specific
changes in the hippocampal tail (Maller et al., 2012). Future studies
using high resolution 7 T imaging or limited field-of-view hippocampal
imaging at 3 T are needed to more precisely refine the location of these
early CA volume changes. Additionally, patients were excluded for
substance abuse or dependence only within the past month. It is pos-
sible that a history of substance use could contribute to some of the
volume changes we have observed. Finally, we have separated patients
into early and chronic psychosis based on an illness duration of 2 years
in order to address gaps in the existing literature. However, the di-
chotomization of patient groups in this way could have reduced our
power to detect smaller effects (Altman and Royston, 2006) and pre-
sumes an illness threshold that may not hold for all patients.

In summary, our study finds novel evidence for an anterior volume
deficit in early psychosis that is more pronounced in the CA subfields.
Future studies are needed to clarify the progression of this volume
deficit and to determine how it links to functional deficits in psychosis.
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