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Abstract

A proper geometric representation of the cortical regions is a fundamental task for cortical shape 

analysis and landmark extraction. However, a significant challenge has arisen due to the highly 

variable, convoluted cortical folding patterns. In this paper, we propose a novel topological graph 

representation for automatic sulcal curve extraction (TRACE). In practice, the reconstructed 

surface suffers from noise influences introduced during image acquisition/surface reconstruction. 

In the presence of noise on the surface, TRACE determines stable sulcal fundic regions by 

employing the line simplification method that prevents the sulcal folding pattern from being 

significantly smoothed out. The sulcal curves are then traced over the connected graph in the 

determined regions by the Dijkstra’s shortest path algorithm. For validation, we used state-of-the-

art surface reconstruction pipelines on a reproducibility dataset. The experimental results showed 

higher reproducibility and robustness to noise in TRACE than the existing method (Li et al. 2010) 

with over 20% relative improvement in error for both surface reconstruction pipelines. In addition, 

the extracted sulcal curves by TRACE were well-aligned with manually delineated primary sulcal 

curves. We also provided a choice of parameters to control quality of the extracted sulcal curves 

and showed the influences of the parameter selection on the resulting curves.
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I. Introduction

With the recent advent of 3D cortical surface reconstruction [1]–[4], fundamental geometric 

landmarks such as local curvature are readily accessible and thus commonly used in 3D 

cortical surface-based analyses. Of many potential geometric properties, sulcal landmarks 

are one of the most invariant, stable features across cortical regions [5]. There have been an 

increasing number of studies that focus on brain developmental studies and pathological 

disorders via a sulcal region analysis over the human cortex [6]–[14]. Also, the landmarks of 

the primary sulcal regions have been widely used as robust features for cortical surface 

registration [15]–[22]. However, a main challenge comes from the nature of the cortical 

folding patterns with its highly complex and variable shapes, which hampers the consistency 

of cortical folding analyses. As a prerequisite, thus, a key aspect to such analyses is to 

determine and represent the cortical folding regions of interest in a consistent manner.

Regional parcellation is most prevalent for the sulcal region recognition for which a shape 

correspondence is employed to transfer cortical labels of a template (or reference) model 

into target surfaces [23]–[25]. However, this approach significantly depends on the quality of 

surface correspondence and often suffers from inaccurate regional boundaries due to high 

sulcal variability across subjects. Despite the lack of formal definition of the sulcal regions 

(more precisely, an unclear boundary between sulci and gyri), sulcal curves can be defined 

along the sulcal fundic regions anatomically. In this context, the sulcal fundic regions are 

represented as a set of curves without employing any predefined template model. Although a 

main advantage comes from no template selection bias, the approach casts a critical question 

of how to define/extract the sulcal fundic regions in a consistent way. In earlier work [26], a 

model-based fitting method such as deformable curve was proposed for several primary 

sulci; however, this approach has difficulty incorporating individual curve variability (e.g., 

the number of curve segments in the inferior temporal sulcus). Thus, the geometry-based 

sulcal curve extraction could be more desirable.

Curvature measures have an advantageous property in terms of capturing local geometry 

with the formal definition at a given point on the surface. One might determine appropriate 

sulcal regions by applying simple thresholding of the local curvature. However, relying only 

on the curvature threshold potentially overestimates (or underestimates) the sulcal fundic 

regions since curvature thresholding is quite sensitive to threshold selection as well as the 

presence of noise over the sulcal regions in general. To alleviate that, a smoothing kernel can 

be employed, which needs to be chosen carefully as otherwise large portions of the surface 

are smoothed out. Even if an optimal curvature threshold/smoothing kernel size is 

determined, a spatial coherence still needs to be considered for sulcal curve extraction. 

Several attempts at curvature-based sulcal region extraction have been reported in [27]–[29]. 

Unfortunately, sulcal curves do not always pass through points associated with a maximal 

curvature as pointed out in [30].

Graphical model-based sulcal curve extraction methods have been proposed in [30], [31]. In 

[31], the cortical surface is regarded as a connected graph with curvature-based weights, and 

the shortest path is computed between two endpoints. [30] extended the idea of [31] by 

utilizing a geodesic density map to address the endpoint selection problem. In this method, 
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the sulcal curves are obtained by a frequency of each vertex across all possible paths given 

regions. Overall, these approaches assume that the shortest paths are highly likely to have an 

intersection with sulcal fundic regions. However, the resulting curves are (partially) the 

Dijkstra’s shortest path of a 1-ring-neighborhood graph, which is not exactly the same as the 

corresponding geodesic path on the surface. Moreover, this might be sensitive to the quality 

of surface tessellation. For example, the shortest path must pass one of the neighboring 

vertices that could not be located in optimal fundic regions.

There have been skeleton-based methods [32]–[35]. [33] extracted sulcal curves as a 

skeleton via solving an Eikonal equation (a special form of the Hamilton-Jacobi equation) 

on the cortical surface. They defined sulcal points from flux of the geodesic distance field 

(solution of the Eikonal equation) and pruned skeletons as a result. Quality of the extraction 

could be sensitive to local noise in computing the flux. [34] proposed curvature-based sulcal 

curves. Similar to [33] they used a sulcal depth map to define source of the wavefront 

propagation and then solved the Hamilton-Jacobi equation for anisotropic geodesics. 

However, this method requires careful parameter tuning to determine candidate points that 

belong to potential sulcal curves. In particular, since the initial seed regions for the 

wavefrontal propagation are based on a sulcal depth map, the sulcal curve extraction could 

be quite sensitive to the initial definition of the seed regions especially in wide sulcal fundi 

such as the Sylvian fissure. As an alternative skeletonization of the cortical folding, sulcal 

depth information has also been utilized for sulcal curve extraction [32]. They used sulcal 

depth to select candidate sulcal points and connected/refined them to have a set of curve 

segments by defining endpoints.

We propose a novel topological graph representation for automatic sulcal curve extraction 

(TRACE). We mainly focus on 1) stable sulcal fundic point detection and 2) consistent 

sulcal curve extraction by connecting the detected sulcal points. For the sulcal point 

detection, we use the line simplification method [36], [37], which consistently selects a 

minimum sufficient number of stable (extremal) points from a given shape in the presence of 

noise to represent the original shape. Stable sulcal points are thus detected in a robust way to 

noise. For the sulcal curve extraction, a partially connected graph is constructed in the 

detected regions, and edge weights are assigned based on geodesic distances. The optimal 

sulcal curves are finally traced over the graph by the Dijkstra’s algorithm [38]. In contrast to 

[30], [31], TRACE is not limited to a 1-ring neighborhood, resulting in more flexible curves. 

This paper extends [39] with the following key contributions: 1) novel sulcal curve 

extraction method, 2) detailed technical descriptions of the algorithm and parameter choice, 

and 3) extensive validation on two surface reconstruction pipelines for reproducibility and 

robustness to noise as well as a comparison with manual delineation compared to the 

existing method [35].

II. Background

A. Line Simplification

The line simplification method proposed by [36], [37]. The method recursively approximates 

a polyline/polygon with a small number of the original points. Here is a brief summary of 

the line simplification method [36], [37]. At each recursion step, two endpoints p0 and p1 of 
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a given polyline are connected as a horizontal (base) line. Then, the extremal point p along 

the polyline with the maximum distance from the line is selected as follows:

p = arg max
p

(p1 − p0) × p ⋅ p1 − p0
−1 . (1)

The initial curve is split into two segments at the selected point p and the two endpoints. The 

method is then recursively applied to the two curve segments until the maximum distance is 

below a given tolerance δ. Note that there can be various point selection strategies rather 

than the maximum distance [40], depending on the application. The algorithm has been 

widely applied in the field of data compression, digital cartography, and denoising over 

range data from robotic sensors. One of the main advantages is the denoising effect without 

a significant loss of valley- or ridge-like points compared to a standard smoothing noise 

(e.g., low-pass filter). This property could be also preferable in detecting cortical sulcal 

curves within sulcal fundic (valley) regions in the presence of noise. The algorithm has 

O(N2) complexity without optimization, which can be efficiently solved proportional to O(N 
logN) [41], where N is the number of the points. Fig. 1 shows an example of the line 

simplification method.

B. Geodesic Distance

A geodesic distance can be computed via formulating the wavefront propagation over the 

surface model. Given a medium Ω and its boundary ∂Ω (tangent space of the cortical surface 

with a speed at every point for example) in ℝ2, the minimum travel-time from one (or 

multiple) source ∈ ∂Ω to a point x ∈ Ω in the medium, t(x), follows the propagation equation 

for some propagation speed functional F:

‖∇t(x)‖F x, ∇t(x)
∇t(x) = 1, x ∈ Ω ⊂ ℝ2,

t(x) = 0, x ∈ ∂Ω .
(2)

This formulation is the so-called Hamilton-Jacobi partial differential equation (H-J PDE). 

By letting F = c ∈ ℝ+ for ∀x ∈ Ω, this simplifies the H-J PDE to

∇t(x) c(x) = 1. (3)

Such a special case of the H-J PDE is known as the Eikonal equation that solves the 

wavefront propagation with a constant speed functional c in every direction. For c = 1 the 

solution is thus equivalent to the geodesic distance from ∂Ω. Efficient solvers called fast 

marching [42]–[44] are well developed for solving the Eikonal equation. In this work, we 

employed the ordered upwind method with O(N logN) complexity akin to the Dijkstra’s 

shortest path algorithm [38], where N is the number of discrete points over Ω, proposed by 

[44].
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III. Methods

A. Objective

Given a triangulated mesh Ω of the cortical surface with a set of vertices V, the objective is 

to find a subset U ⊆ V that consists of sulcal points located at the deepest sulcal regions so 

as to represent sulcal curves. The entire process consists of two main components: 1) sulcal 

point detection to represent stable sulcal fundic regions and 2) sulcal curve extraction on the 

connected graph of the detected sulcal points. Briefly, stable sulcal points are selected along 

the sulcal fundic regions by the line simplification method, and then the Dijkstra’s algorithm 

yields sulcal curves as optimal paths over the graph. A schematic overview of TRACE is 

illustrated in Fig. 2. Table I summarizes a glossary of parameters used in this paper.

B. Sulcal Point Detection

Relying only on the curvature measurements typically overestimates (or underestimates 

depending on a threshold) the sulcal regions from which sulcal curves are extracted as 

shown in Fig. 3. Also, the curvature measurements are quite sensitive to local noise. Thus, 

the selected candidate points by curvature thresholding need to be refined for better 

estimation of the sulcal fundic regions in terms of 1) the reduced number of the candidate 

points for compact sulcal fundic representation and 2) robustness to local noise. To further 

refine these regions, therefore, we use the line simplification method.

A set of candidate points is first selected via relatively generous thresholding of the 

maximum principal curvature at each location ∈ Ω by filtering convex (gyral) regions. Then, 

to refine sulcal fundic regions, we used the line simplification method. Since the method was 

originally designed for 1D polylines, a cutting plane is determined orthogonal to the second 

principal direction at each point v ∈ V to maximize its curvature. A point is added to U if it 

is preserved after the line simplification process.

1) Slicing and Contour Extraction—To extend the idea of the line simplification 

method to 2-manifolds, a novel definition is necessary for most meaningful lines from the 

surface at every location. Here, TRACE utilizes a planar intersection along a given direction. 

To utilize differential geometry, we follow the convention in [45]. In particular, at a given 

point v ∈ V ⊂ Ω, the normal curvature with respect to a given tangent direction T at v is 

obtained by

k(T) = DTN ⋅ T, (4)

where DT denotes a directional derivative with respect to T, and N is the surface normal at v. 

Since the objective is to check if v is potentially identified as a sulcal point, a proper tangent 

direction T needs to be determined to find a maximum curvature k in the tangent space, in 

which the surface bends highly along its sulcal fundus. The minimum curvature is defined 

along the direction associated with the second principal curvature k2 ≤ k1, where k1 is the 

first principal curvature. We use [46] for the curvature approximation. Thus, the second 

principal direction defines a plane normal at each vertex v ∈ V. Let Tk2
 be the second 

principal direction associated with k2 at v. Thus, the plane equation is given by
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Tk2
⋅ (x − v) = 0. (5)

We assume that there are neither holes nor self-intersections on the surface. Thus, a cut 

between the plane and the surface yields a (or multiple) closed loop with no self-

intersection. Here we propose a discrete version of [47] to produce a contour at any location 

of the surface. On the discrete surface model, a planar intersection test requires an 

exhaustive, computationally demanding test for every edge of the surface to meet a condition 

in (5). Thanks to an edge culling technique, this can be efficiently addressed by an 

incorporation of hierarchical axis-aligned bounding boxes (AABB). Finally, by sorting these 

intersections in counter-clockwise order with respect to the curve tangent (x − v),the ordered 

closed loop(s) is easily obtained for ∀v ∈ Ω. Fig. 4 illustrates an example of contour 

extraction for both a synthetic and an actual cortical surface. The principal direction captures 

the maximum curvature as an optimal representation of the sulcal fundus in terms of its local 

surface bending.

2) Candidate Point Filtering—Given a contour at v ∈ Ω, the line simplification 

approach is applied to the contour to select the minimum sufficient number of extremal 

points that represent the contour itself and to check if v is filtered out after the line 

simplification method. In this problem setting, two endpoints are determined by finding the 

largest distance on the plane of Tk2
 among all possible pairs of points of the contour to split 

it into two longest possible curves by finding two extremal points as stated in [36], [37]. The 

line simplification method is then applied to one of the two curves that contains the testing 

point v. If v is reported as an extremal point by the line simplification method, v is collected 

into U as a sulcal point. In Fig. 4, the endpoints are consistently selected by the line 

simplification method even with in the presence of noise on the surface in a robust way. 

Overall, TRACE collects a set of candidate points whose number varies according to a user-

defined threshold value δ. Fig. 4 shows an example of sulcal points chosen by the line 

simplification method on smooth and noise surfaces.

C. Sulcal Curve Extraction

Although the candidate points are significantly filtered out by the line simplification method, 

there still exist multi-sulcal points along the sulcal fundic regions in general. To extract 

sulcal curves from the cortical surface, a subset of the selected sulcal points thus need to be 

selected for the curve extraction. In our previous work [39], the local optimal trajectory 

could not guarantee a unique solution, and the resulting sulcal curves depend on the 

endpoint selection order for the extraction. In this section, we propose consistent sulcal 

curve extraction regardless of the endpoint selection order. In brief, we construct a graph of 

the detected sulcal points to find optimal paths as sulcal curves. However, finding optimal 

paths from a complete graph of the sulcal points is computationally demanding. We instead 

create a partially connected graph G that disconnects two points having a geodesic distance 

between them longer than a given threshold r. From G, we select endpoints and geodesic 

distances between them are computed via the Dijkstra’s shortest path algorithm. Fig. 5 

illustrates the proposed graph construction and geodesic paths.
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1) Geodesic Radial Functional—For ∀u ∈ U, sulcal points are collected within a 

geodesic distance r defined by an indicator functional:

R(u, v; r) =
1 if du(v) ≤ r,
0 otherwise,

(6)

where du(v) is a geodesic distance from u to v ∈ Ω. By setting u to a source of the wavefront 

propagation, the geodesic distance du can be computed by the Eikonal equation (see (2)).

∇du(x) = 1. (7)

The solution provides a geodesic distance du from u to all locations of Ω. The sulcal points 

have geodesic paths to each other within a radius of r in (6). For convenience, we let Rr(u) = 

{s|s ∈ U and R(u, s; r) = 1} to represent a set of neighboring sulcal points that belong to u.

2) Graph Construction—The construction of a complete graph of U is practically 

intractable. For ∀u, we instead create a complete subgraph that connects every possible pair 

within a radius of r to create a partially connected graph G of U. Consequently, any 

Dijkstra’s path has a much higher degree of freedom on G than a 1-ring neighborhood graph. 

To construct G, r needs to be chosen such that it sufficiently covers sulcal fundic regions. 

Once G is constructed, assigning a geodesic distance to each edge might be insufficient 

because the distance only encodes a shortest geodesic path, which lacks the curvature 

(smoothness) of the resulting sulcal curves as shown in Fig. 6. To take account of the 

curvature for curve smoothness, the edge weight is thus given by the following form of a 

non-negative monotonic functional:

w(u, s) = du(s) ⋅ exp ln γ ⋅ (s − u) × T(u) ⋅ s − u −1 , (8)

where ln γ is a regularization of the curvature by which a scalar of the edge weight varies 

from 1 to γ, and T(u) is the tangent vector of the sulcal curve at u. This implies that a 

neighboring point of u is penalized if the point is away from the tangent direction T(u); the 

higher γ, the more local-curvature sensitivity. Note that the sulcal curve is obtained as a 

geodesic path if γ = 1. Unfortunately, T(u) is unknown since it should be obtained from the 

sulcal curve to be estimated. We instead estimate T(u) from the local principal directions at u 

and s. To determine a unique tangent direction between u and s, we compute the mean of the 

two local principal directions on the unit sphere by the Rodrigues rotation formula:

T(u) = Tk2
(u)cosθ× + Tk2

(u) × T× sinθ×

+ T× ⋅ T× ⋅ Tk2
(u) 1 − cosθ× ,

(9)

where
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T× =
Tk2

(u) × Tk2
(s)

Tk2
(u) × Tk2

(s) , (10)

and

θ× = 1
2arccos Tk2

(u) ⋅ Tk2
(s) . (11)

We assume 2θ× ≤ π/2 without loss of generality. In this way, the average tangent vector T(u)
guarantees that the edge weight between u and s is symmetric, which enforces G to be 

undirected.

3) Endpoint Detection—In order to connect the candidate points into complete curves 

from G, potential endpoints of (yet unknown) sulcal curves need to be estimated, which are 

later set to starting points of the Dijkstra’s shortest path algorithm. A sulcal point u is 

determined as an endpoint if every neighboring sulcal point ∈ Rr(u) belongs to a spherical 

cone centered at u as shown in Fig. 7. To measure the angle of the cone, we then check the 

maximum angle ϕ across every possible pair of Rr(u):

ϕ = max
s1, s2 ∈ Rr(u)

arccos
s1 − u
s1 − u ⋅

s2 − u
s2 − u . (12)

We still need to specify the angle of the spherical cone appropriately to determine endpoints. 

Two general sulcal point patterns are observed: 1) The selected sulcal points typically have a 

quite wide distribution like locally straight line along the sulcal fundic regions (i.e., ϕ ≈ 180 

degrees). 2) In contrast, the sulcal points have a biased distribution at the end of the sulcal 

fundic regions). The larger ϕ, the more number of endpoints, which could result in several 

minor branch curves though they are pruned later. From this observation, we empirically 

determine u as an endpoint if ϕ is less than 90 degrees in a conservative manner. We let E ⊆ 
U be the set of the endpoints determined by this way.

4) Shortest Path and Curve Pruning—The key idea is to find an optimal trajectory 

between endpoints. For ∀u ∈ E, the curve estimation is performed on G by the Dijkstra’s 

shortest path algorithm. In the sulcal regions having branch, there exist several shortest paths 

due to the existence of multi-endpoints. We choose one with the longest distance not to end 

up with having a path at local small branch. Since G is undirected, the shortest path is 

consistent regardless of the starting point order, which is guaranteed by the Dijkstra’s 

algorithm.

The TRACE algorithm generates primary curves with several branch. We are interested in 

primary sulcal curves since minor branch curves are likely to vary by noise influences. For 

consistent curve extraction, therefore, the minor branch curves need to be pruned. For this 

purpose, we adapt the idea of [33]. The idea is to consider the curve length and continuity 

for each sulcal curve. Specifically, we measure the curve length l (geodesic on the surface) 

for all sulcal curves. For a branch curve, we compute the minimum angle φ at the junction 
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point across other branch curves. The sulcal curve length is then adjusted by l · exp(cos φ). 

The pruning algorithm is applied in a greedy manner until no adjusted sulcal curve length is 

found less than a threshold ψ. Fig. 5 shows the estimated sulcal curves from G of the sulcal 

points. Algorithm 1 summarizes the overall procedure of the TRACE algorithm.

D. Complexity Analysis

1) Sulcal Point Detection—The candidate points are selected by curvature threshold, 

which requires O(|V |). For each candidate point, a contoured slice is obtained via AABB 

tree search. The reconstruction of the AABB tree takes O(|V | log |V |), and the tree search 

takes O(log|V |). Then, the sulcal point is determined by the line simplification method in 

O(c log c), where c is the number of points on a given contour. The total complexity is O(|V 

| · m log m) by letting m = max c 1
|V |. In summary, the upper bound of the computational cost 

for the sulcal point detection is O (|V | · (log |V | + m log m)). Since m ≪ |V |, the total time 

complexity is O(|V | log |V |) by assuming m log m is constant.

2) Sulcal Curve Extraction—The graph is constructed from the detected sulcal points. 

Since we consider a partially connected graph, the graph construction takes O(e) by letting 

e = |U | ⋅ max Rr 1
|U|, and each edge weight is assigned by the geodesic distance 

computation, i.e, O(e log e). Once G is constructed, the endpoints are determined in O(|U|). 

Finally, the Dijkstra algorithm takes O((e + |U|)log |U|) for each endpoint. Note 

max Rr 1
|U| ≪ |U|.

3) Overall Complexity—Practically, since |U| ≪ |V |, the sulcal point detection is 

dominant. This yields O(|V | log |V |) for total complexity of the TRACE algorithm. In terms 

of computation time, sulcal point detection takes about 10 mins for a 160k mesh on a single 

core (Intel Xeon E5–2630 2.20GHz), and the curve delineation takes 2 mins.

Algorithm 1

TRACE algorithm

Input: a set of vertices V ⊆ Ω

Output: a set of sulcal curves on Ω

 1: U ← ∅         ▷ a set of sulcal points

 2: for v ∈ V do    ▷ loop for sulcal point detection

 3:  k1 ← the first principal curvature at v (4).

 4:  Tk2
 ← the second principal direction at v (4).

 5:  if k1 > 0.05 then

 6:   Compute a contoured slice given by Tk2
 (5).

 7:   Apply the line simplification to the slice using (1).

 8:   if v is selected by the line simplification then

 9:    U ← U ∪ {v}
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 10:   end if

 11:  end if

 12: end for

 13: Construct a partial graph G of U (6).

 14: Assign edge weights to G (8) and (9).

 15: E ← ∅        ▷ a set of endpoints

 16: for u ∈ U do   ▷ loop for endpoint detection

 17:  Compute the separation angle ϕ in Rr(u) (12).

 18:  if ϕ < 90 then

 19:   E ← E ∪ {u}

 20:  end if

 21: end for

 22: while E ≠ ∅ do ▷ loop for the Dijkstra’s algorithm [38]

 23:  Find the farthest endpoint from e ∈ E.

 24:  Store the trajectory between the two endpoints.

 25:  E ← E \ {e}

 26: end while

 27: Apply the pruning algorithm [33] to the sulcal curves.

IV. Validation

A. Materials

1) Kirby Reproducibility Dataset—In the experiment, we chose the Kirby 

reproducibility dataset [48] to evaluate the TRACE algorithm. Briefly, the Kirby 

reproducibility dataset was acquired on 21 healthy volunteers with no history of neurological 

disease. Scan-rescan imaging sessions with T1-weighted scans were acquired at the F.M. 

Kirby Research Center (Baltimore, MD, USA), using the MP-RAGE sequence on 3T Philips 

Achieva scanners at 1.0mm ×1.0mm ×1.2mm resolution (204 slices with TR=6.7ms, 

TE=3.1ms, flip angle=8°, matrix=240×256) scans. We used two surface reconstruction 

pipelines for validation: FreeSurfer [1] and MaCRUISE [4] on the Kirby reproducibility 

dataset. We created the middle surfaces of both left and right hemispheres.

2) MRIs Surfaces Curves (MSC) Dataset—We used the MSC dataset for comparison 

with manually labeled primary curves [49], [50]1. The structural scans of subjects were 

obtained as part of a functional imaging study and comprised 12 subjects (6 males, 6 

females). The subjects were scanned at the Dornsife Cognitive Neuroscience Imaging Center 

at the University of Southern California using a 3T Siemens MAGNETOM Trio scanner. 

High-resolution T1-weighted anatomical volumes were acquired for each subject with an 

MP-RAGE scan using the following protocol: TR = 2350 ms, TE = 4.13 ms, 192 slices, eld 

of view = 256 mm, voxel size = 1.0 mm × 1.0 mm × 1.0 mm. The BrainVoyager automatic 

registration procedure was performed in the preprocessing. The middle cortical surfaces 

1http://sipi.usc.edu/~ajoshi/MSC
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were then extracted by the FreeSurfer software using default parameters, and 26 primary 

sulcal curves were traced using the BrainSuite software.

B. Parameter Choice

1) Candidate Point Filtering—Since potential sulcal points lie along the sulcal fundic 

regions, they have positive maximum principal curvatures. For expediting the process, the 

number of extremal point tests can be reduced by choosing thresholding of curvatures. This 

threshold was empirically set to 0.05. Such thresholding is used just for computational 

efficiency. The line simplification method requires a tolerance δ. This quantity controls a 

level of detailed representation of each contour. Thus, δ encodes the smallest deviation 

between the simplified and original contours. Although δ is not exactly the same as sulcal 

depth, it could be highly correlated with sulcal depth while evaluating the actual sulcal point. 

Typically, a change of δ shows a similar behavior of sulcal depth thresholding. If δ is too 

large, the line simplification method leaves sulcal points located only on the deep sulcal 

regions, which yields a few number of sulcal curves. On the other hand, small δ sufficiently 

captures sulcal points along the sulcal fundic regions, while it creates a large number of 

sulcal points, i.e., additional minor branch curves as shown in Fig. 8. In our experiment, δ 
was empirically set to 2.5 mm on the adult cortical surfaces similar to that used in the 

literature [32].

2) Graph Construction—The proposed graph of sulcal points is constructed by a 

geodesic radial functional R, which consists of two main components: 1) partial graph 

construction and 2) endpoint detection. For each sulcal region, the graph needs to be 

connected appropriately to cover a trajectory along the sulcal fundic region. From previous 

findings on the adult human cortex [32], [51], the sulcal depth of the primary sulcal regions 

is larger than 10.0 mm. Also, the study [52] implies that most gyri have the width of at least 

10.0 mm. From these observations, we chose r = 4.0 mm to sufficiently cover the sulcal 

fundic regions but not to simultaneously cover two sulcal regions. Note that δ is an 

Euclidean metric on the contoured slice, which is smaller than r though. This geodesic 

distance can be adjusted depending on the target population. We used the same size of r as 

the graph construction for the endpoint detection. A small value of r typically detects multi-

endpoints in a single sulcal region even if it has no primary sulcal branch. However, this 

quantity is not critical in a resulting shape of the primary sulcal curve since the trajectories 

from the endpoints of the minor branch curves are significantly overlapped with the primary 

sulcal curve by the Dijkstra’s algorithm (see Fig. 8). The only difference could be the 

number of minor sulcal branch curves that need to be pruned. This concept is also valid for 

the maximum angle ϕ of the separation during the endpoint detection.

3) Curve Smoothness and Pruning—The smoothness of the sulcal curves can be 

controlled by γ. For γ = 1, the sulcal curves are delineated by following the pure geodesic 

trajectories. For γ > 1, the delineated sulcal curves have smooth trajectories along the 

principal directions. Although there exists no standard smoothness, we found γ = exp 

generates reasonable smoothness in most cases (see the orbital sulcus in Fig. 6 for example). 

For the curve pruning, ψ needs to be chosen depending on the application as pointed out in 

[33]. In our experiment, we set the threshold 5.0 mm, 10.0 mm, and 15 mm. Similar to [33], 
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we observed that the primary sulcal curves are captured appropriately even in these different 

threshold settings, while the minor branch curves are detected in 5.0 mm as shown in Fig. 8. 

It is noteworthy that such a pruning process produces a consistent result of the sulcal curve 

extraction regardless of the number of detected endpoints. In the experiment, we used a 

relatively conservative threshold of 5.0 mm to capture the primary sulcal curves as well as 

their minor branch curves.

C. Reproducibility

Since no ground-truth sulcal curve was available, we instead measured reproducibility using 

the average and Hausdorff distance errors for each sulcal curve. Specifically, we measured 

the average distance error at each sulcal point between two corresponding surfaces (scan and 

re-scan sessions) and then computed the mean and maximum (Hausdorff) across the average 

distance errors along each sulcal curve as proposed in [30], [35]. Since the average distance 

error is asymmetric (one-way) between the corresponding surfaces, we measured the 

respective distance errors for the corresponding surfaces rather than taking the average of the 

two measurements. In a similar way, we also measured the Hausdorff distance error of the 

extracted sulcal curves between two corresponding surfaces. Since these metrics are defined 

in the Euclidean space, we applied an optimal rigid alignment [53] to two corresponding 

surfaces to reduce additional measurement errors being introduced by surface misalignment. 

For comparisons with an existing method, we used [35] with default parameter settings in 

the reminder of this paper. Fig. 9 and Table II summarize a statistics on these error 

measurements across all 21 subjects for FreeSurfer and MaCRUISE pipelines, respectively. 

We observed high reproducibility on average for both the average and Hausdorff distance 

errors in terms of the original MRI resolution (1.0 mm) and the overall higher 

reproducibility than [35] (approximately 20% relative improvement in error). Also, the 

statistical t-tests revealed significant difference between those two methods in both distance 

errors for each surface reconstruction model. In addition, TRACE was able to produce 

comparable results for the two different cortical surface reconstruction pipelines.

D. Robustness to Noise

To evaluate robustness to noise, synthetic noisy (bumpy) surfaces were generated by adding 

vertex-wise perturbation of existing surface models. We picked the first scan session from 

each subject in the Kirby reproducibility dataset. Then, perturbations (random 

displacements) of the vertices were added to the original surfaces. In particular, a 

displacement at each location follows an independent and identically distributed uniform 

distribution at maximum of 1.0 mm (see Fig. 4 and Fig. 11). This allows each vertex to have 

a random displacement toward the neighboring voxels in the volume space. However, since 

the triangle size is much smaller than the noise level, a huge displacement potentially makes 

a self-intersection of the surfaces, in which a contoured slice could not be well-defined. To 

prevent the surfaces from being degenerative, we thus resampled the displacements not to 

allow the vertices to intrude into other triangles. It is noteworthy that such an assumption of 

the statistical independence could still yield a worse distortion than a practical image 

acquisition since the distortion is independent of local neighborhoods. Despite the 

significant noise influences, we observed no noticeable difference from the original surface 

in most sulcal regions. We used the same error metrics employed for the reproducibility. A 
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quantitative statistics is summarized in Fig. 10 and Table III. For both pipelines, we achieved 

higher robustness to noise than [35] at a noise level of 1.0 mm (approximately 30% relative 

improvement in error). Also, the statistical t-tests revealed significant difference between 

those two methods in both distance errors for each surface reconstruction model. Fig. 11 

shows example sulcal curves on the noisy surface.

E. Comparison with Manual Delineation

We compared our extracted sulcal curves with the manually delineated primary sulcal curves 

of the MSC dataset. It is noteworthy that the labeling protocol is completely independent of 

our method. Since the extracted sulcal curves had no label information, we chose the closest 

curves for each manually delineated curve and measured the average and Hausdorff distance 

errors for the evaluation. Fig. 12 summarizes the average, percentile, and Hausdorff distance 

errors. Overall, the average and Hausdorff distance errors were 1.32 ± 0.35 mm and 3.77 

± 1.31 mm in TRACE while 1.38 ± 0.46 mm and 4.20 ± 1.25 mm were observed in [35], 

respectively. We conducted paired t-tests on both errors and found no significant difference 

between those two methods in the average distance error (p = 0.0713) whereas significant 

difference was revealed in the Hausdorff distance error (p < 0.0001). The large distance error 

was observed typically for two reasons. First, several primary sulcal curves were traced over 

the gyral regions such as the precentral sulcus (preCS), which is incompatible with our 

definition of the sulcal curves as shown in Fig. 13. Second, manually delineated curves in 

the dataset were typically jagged being away from the sulcal fundic regions (see Fig. 13). It 

is noteworthy that the TRACE algorithm is purely based on the cortical surface geometry. 

The sulcal points are thus selected based only on a contoured slice associated with principal 

directions. Since the extracted sulcal curves are obtained along the nearest neighboring 

sulcal points, it could be also different from the manual delineation although there is no 

ground-truth or commonly agreed protocol of the sulcal curve delineation.

V. Conclusion

We demonstrated the automatic sulcal curve extraction in two main steps. To select sulcal 

points, the line simplification method was employed due to its denoising effects that 

naturally handles surface noise. Sulcal curves were extracted from the candidate sulcal 

points by applying the Dijkstra shortest path algorithm on a connected graph of the sulcal 

points with a smoothness constraint. Unlike surface registration-based methods, the TRACE 

algorithm requires neither any template model nor priori knowledge but rather based on the 

subject shape-specific geometric information. We discussed different parameter settings and 

their influences on the resulting curves.

In the experiments, TRACE achieved higher reproducibility and robustness to noise on the 

Kirby reproducibility dataset than the existing curve extraction method [35]. Also, we 

observed a comparable reproducibility for the two different surface reconstruction pipelines. 

For robustness to noise, we added random displacements for each vertex to simulate noise 

influences on the surfaces. The resulting sulcal curves were extracted consistently compared 

to those of the corresponding original surfaces in qualitative and quantitative evaluations. 

Quantitatively, small curve extraction errors were observed for all the subjects in the Kirby 
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dataset. Moreover, TRACE showed comparable extraction results to the manual delineation 

of primary sulci in the MSC dataset.

The TRACE algorithm is scalable and versatile. In the main components – sulcal point 

selection and sulcal curve extraction, their computation at every vertex is independent of 

each other, which is efficiently improved in parallel processing. The parallel version of 

TRACE is publicly available2. The TRACE algorithm is not limited to sulcal curve 

extraction. This can be extended to gyral curve extraction as also proposed in [33]. In 

general, the TRACE algorithm can be applied to any type of surface models (not limited to 

cortical surfaces) to delineate curves along their ridge/valley regions.
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Fig. 1. 
A schematic overview of the line simplification method. (a)-(b) Given a planar curve, a 

horizontal line (red) is obtained by finding the two farthest points, from which the extremal 

point is selected having the farthest distance (blue). (c)-(d) The extremal point is then 

employed to define a new horizontal line and the procedure is recursively applied until 

below a tolerance. (e) The final simplified line is obtained by connecting all the detected 

extremal points.

Lyu et al. Page 18

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
A schematic overview of the TRACE algorithm. A set of candidate points is selected by 

thresholding the principal curvature map on the cortical surface. The line simplification 

method determines stable sulcal points from the detected candidate points. The sulcal points 

are connected to create a partially connected graph. The Dijkstra’s shortest path algorithm is 

then applied on the graph to obtain a complete set of the sulcal curves.
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Fig. 3. 
Sulcal point detection: (a) positive maximum curvature points and (b) selected sulcal points. 

The vertices with positive maximum curvatures are selected for candidate sulcal points. 

Since the candidate vertices are spread over a large portion of the sulcal fundic regions, they 

are further filtered out by the line simplification method that eventually selects sulcal points 

(blue).
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Fig. 4. 
Contour extraction at a given candidate point and extremal points of the contour. (a) A 

schematic illustration of the contour extraction indicates several cutting planes (dot lines) 

with respect to the first and second principal directions (red and green). (b) The contour 

represents the maximal surface bending at a candidate point (orange). The line simplification 

method selects a minimum sufficient number of the extremal points – the convex (green) and 

concave (blue) points that are part of the original contour. (c) The line simplification method 

selects sulcal points in the presence of noise in a robust way even if several candidate points 

(red) exist around sulcal points. The candidate point becomes a sulcal point if it is selected 

as an extremal point after the line simplification.
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Fig. 5. 
Graph construction and endpoints: (a) the geodesic radial regions (r = 4.0 mm), (b) the 

geodesic radial regions of the endpoints (r = 4.0 mm), (c) a partial graph G of the sulcal 

points, and (d) shortest paths (red curves) on G. A partial graph of the sulcal points is 

constructed within the geodesic radial regions. The endpoints of G are determined if their 

neihboring sulcal points are skewed within the geodesic radial regions. The shortest paths 

are computed between endpoints on G.
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Fig. 6. 
Curve smoothness varying at (a) γ = 1, (b) γ = e, and (c) γ = e4. The edge weights encode 

only geodesic distances for γ = 1. The geodesic path is relatively stiff compared to the 

curvature weighted trajectories γ > 1 (b)-(c). For large γ, the extraction of the sulcal curves 

becomes sensitive to the local tangent estimation.
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Fig. 7. 
A schematic illustration of the proposed endpoint detection. u is determined as an endpoint 

if its neighboring sulcal points within a geodesic kernel Rr(u) belong to a spherical cone. 

Two vectors (s0−u) and (s1−u) form the maximum angle ϕ across every possible line starting 

from u.
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Fig. 8. 
Different settings of the curve parameters: (a) δ = 2.5 mm, r = 4.0 mm (suggested setting 

without pruning), (b) δ = 1.5 mm, r = 4.0 mm, (c) δ = 2.5 mm, r = 2.0 mm, (d) ψ = 5.0 mm, 

(e) ψ = 10.0 mm, and (f) ψ = 15.0 mm. (b) The primary curves are delineated along the 

sulcal regions while the curve length is little extended and additional minor branch curves 

are extracted for δ = 1.5 mm. (c) A similar behavior is observed to the line simplification 

threshold. For both parameter settings, the primary sulcal curves are well preserved. (d)-(f) 

The minor sulcal branch curves are pruned with an increasing threshold. The primary sulcal 

curves remain the same across all the thresholds, whereas most minor branch curves are 

retained in 5.0 mm. The red and blue circles indicate minor branch and pruned curves, 

respectively. The white matter/inflated surfaces are used for better visualization.
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Fig. 9. 
Reproducibility on the Kirby reproducibility dataset for FreeSurfer (FS) and MaCRUISE 

(MC). Overall, high reproducibility is achieved for all the subjects. Even for the Hausdorff 

distance error metric, TRACE shows quite stable reproducibility. The maximum average and 

Hausdorff distances are less than 1.2 mm and 2.0 mm, respectively, given an MRI resolution 

(1.0 mm).
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Fig. 10. 
Robustness to noise at a noise level of 1.0 mm for FreeSurfer (FS) and MaCRUISE (MC). 

Even in the presence of significant artificial noise, the TRACE algorithm quite consistently 

extracts sulcal curves with small curve extraction errors. The maximum average and 

Hausdorff distances are less than 1.2 mm and 2.0 mm, respectively, given a noise level (1.0 

mm).
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Fig. 11. 
Robustness to noise at the noise level of 1.0 mm: (a) original surface and (b) noisy surface. 

The mean curvature maps on the inflated surfaces show smoothness of the surfaces. Due to 

the significant noise influences, several minor sulcal branch curves are introduced (red) or 

not detectable (blue) on the noisy surface. However, they are still quite consistently extracted 

qualitatively and quantitatively.
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Fig. 12. 
Distance errors between the manual delineation and the extracted curves by TRACE on 26 

primary sulcal curves. The average distance error is 1.32 mm for all the primary sulci. Large 

distance errors are observed mainly because the manual delineation is jagged and traced over 

the gyral regions.
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Fig. 13. 
TRACE (red) and manual delineation (blue): (a) sulcal curves on the original surface, (b) 

sulcal curves on the inflated surface, (c) the motor cortex, and (d) the temporal lobe. The 

manual delineation is jagged and traced over the gyral regions, which increases distance 

errors.
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TABLE I

Glossary of Parameters

parameter description

δ smallest deviation for line simplification

r kernel size of geodesic functional for graph construction

φ maximum angle for endpoint detection

γ smoothness of sulcal curves

ψ threshold for minor curve pruning
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TABLE II

Reproducibility on 21 subjects in Kirby dataset

average distance Hausdorff distance

surface model method mean stdev min max mean stdev min max

FreeSurfer [1]
TRACE 1.00* 0.89 0.87 1.17 1.71* 1.15 1.54 1.99

Li et al. [35] 1.23 0.91 0.87 3.28 1.94 1.13 1.54 4.23

MaCRUISE [4]
TRACE 1.02** 0.89 0.97 1.13 1.76** 1.18 1.65 1.91

Li et al. [35] 1.29 1.39 1.14 1.45 2.63 1.73 2.39 2.83

(UNIT: mm, *p < 0.005, **p < 0.0001)
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TABLE III

Robustness to noise on 21 subjects in Kirby dataset

average distance Hausdorff distance

surface model method mean stdev min max mean stdev min max

FreeSurfer [1]
TRACE 1.06** 0.95 0.99 1.14 1.82** 1.18 1.71 1.97

Li et al. [35] 1.42 1.41 1.21 1.62 2.72 1.60 2.18 3.29

MaCRUISE [4]
TRACE 1.02** 0.94 0.93 1.10 1.84** 1.21 1.69 1.94

Li et al. [35] 1.53 1.61 1.38 1.71 3.08 1.82 2.71 3.55

(UNIT: mm, **p < 0.0001)
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