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Abstract

The choice of surface template plays an important role in cross-sectional subject analyses 

involving cortical brain surfaces because there is a tendency toward registration bias given 

variations in inter-individual and inter-group sulcal and gyral patterns. In order to account for the 

bias and spatial smoothing, we propose a feature-based unbiased average template surface. In 

contrast to prior approaches, we factor in the sample population covariance and assign weights 

based on feature information to minimize the influence of covariance in the sampled population. 

The mean surface is computed by applying the weights obtained from an inverse covariance 

matrix, which guarantees that multiple representations from similar groups (e.g., involving 

imaging, demographic, diagnosis information) are down-weighted to yield an unbiased mean in 

feature space. Results are validated by applying this approach in two different applications. For 

evaluation, the proposed unbiased weighted surface mean is compared with un-weighted means 

both qualitatively and quantitatively (mean squared error and absolute relative distance of both the 

means with baseline). In first application, we validated the stability of the proposed optimal mean 

on a scan-rescan reproducibility dataset by incrementally adding duplicate subjects. In the second 

application, we used clinical research data to evaluate the difference between the weighted and 

unweighted mean when different number of subjects were included in control versus 

schizophrenia groups. In both cases, the proposed method achieved greater stability that indicated 

reduced impacts of sampling bias. The weighted mean is built based on covariance information in 

feature space as opposed to spatial location, thus making this a generic approach to be applicable 

to any feature of interest.

Keywords

Gray matter cortical surface; unbiased template; cortical surface feature space

HHS Public Access
Author manuscript
Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2018 June 08.

Published in final edited form as:
Proc SPIE Int Soc Opt Eng. 2018 March ; 10574: . doi:10.1117/12.2293641.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. INTRODUCTION

The cerebral cortex is the outermost layer of neural gray matter critical for many brain 

functions including memory, attention, cognition, language and consciousness[1]. Features 

that characterize the cortex (including sulcal curves, gyral curves, sulcal depth, curvature 

and cortical thickness) are important in neuroimaging studies involving these regions [2–4]. 

Cortical surfaces are widely used for such analysis as they preserve topology [3–9]. In order 

to study group differences in these regions between control and clinical samples, it is 

common to align all the cortical surfaces to a common space [10–13]. In this context, 

representative template space-based approaches have been proposed to studying local 

individual differences in cortical morphometric measurement due to their ability to represent 

data involving cortical patterns and other model-based voxel wise parameters mapped onto a 

common surface in both normal and clinical populations [14, 15]. Prior work has addressed 

the importance of template surface selection from the perspective of pairwise registration [6, 

7, 16]. In a template based registration approach, each surface is mapped to a common 

template surface in coordinate space by regularizing based on feature information. However, 

surface-based analyses employing a predefined template might yield undesirable results if 

the selected template surface is substantially different from the population or if it is biased 

towards a particular set of surfaces [17]. Template-based registration is dependent on the a 

priori template specification thus constraining the underlying data to be biased to the 

selected template. Methods have addressed the issue of dissimilarity between template 

surface and surfaces of population under consideration by organizing the population of 

cortical surfaces into pairs with high shape similarity to achieve a higher accuracy by only 

corresponding such similar pairs [16], while others factored in the pattern of folding across 

the entire cortical surface in considering the inter-subject average [11].

However, these approaches are still prone to bias towards the majority representation of the 

underlying population that could pose a problem in cross subject analysis. We propose to 

address the above limitations using an a priori covariance matrix approach that de-weights 

subjects with similar features instead of treating all observations as independent instances. 

This approach uses inverse covariance weighting under the assumption that there is one 

latent feature of interest from the representative group. An optimal weighted mean is then 

reconstructed on the basis of that assumption. Features considered in this approach are mean 

curvature and sulcal depth. Mean curvature captures the mean amount of change with 

respect to surface normal [8]. Sulcal depth measures the closest distance between a cortical 

surface and its cerebral hull [13]. In this paper we present an approach for constructing an 

unbiased mean of cortical surfaces in feature space that is representative of the underlying 

population while not being biased to multiple representations of the same feature from 

multiple surfaces by using a priori based covariance information. To simplify the analysis, 

we use the correlation matrix between scans as an approximation of the true covariance.

This framework is flexible and scalable for selecting the target template space, involving 

cross-sectional subject analysis, or performing template-based registration. The proposed 

technique can be factored into group-wise registration [2] to include deweighting based on 

population information.
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2. METHODS

2.1 Data Acquisition

We considered the Kirby dataset [18] that was acquired with scan-rescan imaging sessions 

on 21 control volunteers. The acquisition protocol includes T1 MPRAGE employing a 

gradient echo read out with a short TE value (TR/TE/TI=6.7/3.1/842ms) with 240 X 204 X 

256 mm FOV and 1 X 1 X 1.2 mm3 resolution acquired in sagittal plane. No fat saturation 

was employed and the total scan time was 5 min and 56 s. We also included a second dataset 

with 10 control subjects and 10 individuals with schizophrenia for analysis. The scan 

protocol for this project included T1 MPRAGE (256 X 256 mm FOV, 1 X 1 X 1 mm, 

TE=2ms, TR=8.95 ms and TI=643 ms) acquired on a 3T scanner (Achieva, Philips Medical 

Systems, Best, The Netherlands) with a 32-channel head coil.

2.2 Preprocessing

T1 images are bias corrected using N4 bias correction [19] to account for spatial 

inhomogeneity. Individual T1 images are then segmented using multi-atlas segmentation 

[20] that segments the images into 133 BrainColor labels with 132 brain regions and a 

background[21]. After segmentation, the GM surfaces are derived using multi-atlas 

segmentation to surface method proposed as Multi-atlas Cortical Reconstruction Using 

Implicit Surface Evolution (MaCRUISE) [22] where inner, central and outer cortical 

surfaces are reconstructed by using the topology-preserving geometric deformable surface 

model. These central surfaces are used in further cortical surface based analysis.

2.3 Feature based template space selection approach

Cortical surfaces are initially aligned to MNI space (http://www.mni.mcgill.ca/) using affine 

transformation acquired from T1 image using trilinear interpolation. For each T1, gray 

matter (GM) central surface is reconstructed via an MaCRUISE pipeline and then mapped 

onto a unit sphere of a standard icosahedron subdivision with 163,842 vertices [12]. Features 

are generated on central surface after applying 3 smoothing iterations to reduce local noise 

influences. We compute weighted and un-weighted mean from these features. The weights 

are represented as the approximated covariance matrix as shown in Figure 1.

Again our goal is to build an unbiased mean of surface in feature space. So the idea is to 

deweight multiple representations of similar data while capturing maximum variance in the 

population. From this perspective, an a priori covariance matrix is built based on the 

population information (e.g., demographics, patient status, cortical shapes). For example, in 

reproducibility analysis scan and rescan entries are provided with the same correspondence 

in the off diagonal elements. Similarly for psychosis population, subjects belonging to same 

group are assigned to have correspondence based on setting the off diagonal elements to 

have the same weighting as the diagonal elements for that group in building the 

approximated covariance matrix. By taking inverse covariance weighting approach, elements 

belonging to same group are de-weighted to make it a single representation for underlying 

population. We compute the mean feature based template using the weights obtained in the 

previous step. This weighted mean of the surfaces in feature space is then compared with to 
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un-weighted mean based on a vertex wise relative distance metric with respect to baseline 

for evaluation.

The idea behind the bias compensation is illustrated in a toy example in Figure 2. Here we 

have six points in 2-D space where three of them belong to one group. If we do not consider 

this information then the un-weighted average (red *) is biased towards the single group 

containing three points.

By factoring in the information about underlying data in a similarity matrix Σ(X) as 

indicated below, we can compute a weighted average, by down-weighting three points in the 

same group to be a single representation thus yielding unbiased mean (green o).

∑(X) =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 1 1 0
0 0 1 1 1 0
0 0 1 1 1 0
0 0 0 0 0 1

By taking the pseudo inverse also called the Moore-Penrose inverse of above a similarity 

matrix Σ(X) and taking the sum of the elements we can compute weights associated with 

each point which are then used in computing vertex wise weighted average as below,

Xm =
∑i = 1

n wixi

∑i = 1
n wi

(1)

A similar approach can be adapted when computing the average in feature space for 

template space selection in pairwise registration or group wise registration. Thus, one can 

address explicit bias towards multiple representations of similar data in the underlying 

population.

2.4 Quantitative Analysis

The results are validated on a reproducibility dataset using scan-rescan protocols. In order to 

quantitatively evaluate the proposed unbiased template, we used cortical surface features 

(mean curvature and sulcal depth) that are commonly used in surface registration 

approaches. We used two different distance metrics for this quantitative evaluation: 1) Mean 

square error (MSE) (L2 norm) of the weighted and un-weighted average with respect to 

baseline data as described for each scenario as described in eq (2) below where Xi is the 

baseline data and Yi is the corresponding average at each vertex i. 2) Relative distance of 

weighted average WMDi and relative distance of un-weighted average as MDi in ith iteration 

from the group averages HCmean and SZmean with equal number of subjects in each group. 

Vertex-wise differences of the feature measurements are captured based on the relative 

distance measure with respect to baseline for evaluation.

Parvathaneni et al. Page 4

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2018 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MSE = ∑i = 1
n (Y i − Xi)

2 (2)

MDi =
abs(Mi − HCmean) − abs(Mi − SZmean)

abs(HCmean − SZmean) (3)

WMDi =
abs(WMi − HCmean) − abs(WMi − SZmean)

abs(HCmean − SZmean) (4)

3. RESULTS

In the Kirby dataset, rescan data is given the same weighting as corresponding scan data in 

the off-diagonal elements. Inverse covariance weighting from this approximated matrix is 

taken which is used to compute the weighted average. In order to test the reproducibility of 

the approach, we have taken 21 subjects with scan data as baseline and computed both 

weighted and un-weighted mean. As seen in Figure 3(a) the means of the sulcal depth 

feature obtained with both these approaches are the same when no rescan data is added and 

21 subjects are considered to be independent of each other. Then, we added rescan data of 

one subject giving it equal weighting as its scan data in the approximated covariance matrix. 

We repeated the addition iteratively for 20 times and captured the weighted and un-weighted 

means at each iteration. Figure 3(b) and (c) present the qualitative results at 10 and 20 

iterations. Figure 3(d) shows the sulcal depth feature information on the sphere for the 

rescan subject that was used in these iterations. With each iteration of adding rescan data, 

un-weighted mean comes closer to the vertex wise feature information of the corresponding 

subject making it biased towards that subject. However, the weighted mean remains 

unchanged irrespective of the number of items as it de-weights additional duplicate scans 

based on approximated covariance information. Quantitative values of mean squared error 

distance of each of the mean to the rescanned subject feature information are presented in 

Figure 3(e).

In the second application, we used two groups with a control and schizophrenia population. 

The diagnosis is considered as the prior information in this dataset. For this analysis mean 

curvature is employed as an evaluation metric and approximated covariance matrix is built 

based on the diagnosis information. Weights are calculated based on the inverse covariance 

weighting and corresponding covariance based mean is computed.

Weighted and unweighted means of mean curvature feature for different number of subjects 

in each group are shown in the qualitative plot (Figure 4). For the same number of subjects 

in each group, it can be seen that weighted and unweighted means are equal. The weighted 

mean shows less variance compared to the unweighted mean while increasing/decreasing the 

number of subjects in each group
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To compare the effect of varying number of subjects in each group and evaluate bias 

information, 10 subjects from each group are considered. Mean curvature feature based 

mean for 10 control subjects HCmean and similarly mean for 10 schizophrenic subjects 

SZmean are calculated. As we increase the number of subjects in each group, the un-

weighted mean becomes biased towards the group with higher number of subjects compared 

to other as shown in Figure 4. The plot shows the difference in vertex-wise absolute distance 

of un-weighted and weighted mean with respect to HCmean and SZmean. By adding more 

control subjects, the un-weighted mean becomes closer to HCmean as opposed to SZmean and 

vice versa. For the equal number of subjects from each group (HC=5 and SZ=5) the relative 

distance to both the means from corresponding group averages HCmean and SZmean are equal 

as highlighted in red box. However, as the number of subjects in one group increases 

compared to other un-weighted mean is biased towards that group which is also reflected 

with lower mean square error in Figure 5(d) and (e). Green lines in the plot indicate L2 norm 

distance of weighted mean from HCmean and SZmean. Blue lines show L2 norm of un-

weighted mean from the mean of each group.

4. DISCUSSION

In both the applications, the effect of bias towards the underlying dataset is shown when 

considering the un-weighted mean, while the weighted mean is stable when capturing the 

details of the representative features. While we have presented the effect of incorporating 

covariance in computing the feature based unbiased average for template based pairwise 

registration, this approach is also adaptable to group wise registration methods [6] where no 

prior template is needed. In these methods group-wise cortical correspondence is achieved 

by making use of various cortical features while preserving the topology. As the result still 

has the possibility of having bias towards the representation of majority of the population, 

incorporating covariance information at the stage of feature averaging could aid in reducing 

such bias.

5. CONCLUSION

We have presented feature based unbiased average template surface approach using an a 

priori covariance matrix. The proposed approach is compared with a typical un-weighted 

mean by applying to two different applications one with scan/rescan data and another with 

clinical data with two groups. In both the cases, weighted average is shown to be more stable 

and less biased when measured in terms of relative distance from group mean or mean 

squared error. Incorporating covariance based approach at template selection level or when 

considering the mean of features in group registration methods could potentially minimize 

the bias. Much work remains to effectively estimate appropriate covariance structures either 

from study designs or in a data-driven manner.
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Figure 1. 
After preprocessing: a) A spherical representation is generated based on central surface. b) 

Features are computed and resampled along with central surface into 163,842 vertices via 

icosahedron subdivision. c) The covariance matrix is constructed. d) The weighted mean of 

features is computed based on weights from covariance matrix. e) The unweighted mean is 

computed f) Qualitative and quantitative analysis are performed based on weighted and un-

weighted mean information.
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Figure 2. 
This figure shows a comparison between un-weighted average versus a weighted average for 

a toy example on the 2D plane. The equal weighting is given to off diagonal elements 

belonging to similar group (yellow dashed oval) as illustatrated in the correlation matrix 

presented in lower left hand corner.
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Figure 3. 
Iterative rescan data example of sulcal depth feature from Kirby dataset. Row 1 is un-

weighted mean and row 2 is weighted mean from (a) to (c) with each scenario containing (a) 

21 subjects with no rescan data, (b) 21 subjects with 10 repeats of rescan from one of the 

subject, and (c) 21 subjects with 20 repeats of rescan from one of the subjects. The inlay (d) 

shows the sulcal depth of subject whose rescan is added iteratively. Plot (e) presents the 

mean squared distance to rescan subject from un-weighted mean (blue) and weighted mean 

(green).
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Figure 4. 
Mean curvature qualitative plot of un-weighted mean and weighted mean with different 

number of subjects in control and schizophrenia populations. Feature data in each scenario 

included (a) 6 controls and 18 schizophrenic patients, (b) 18 controls and 18 schizophrenic 

patients, and (c) 18 controls and 6 schizophrenic patients. Both un-weighted and weighted 

mean are similar with equal number of subjects in each group. However, the un-weighted 

mean had higher variance across the sampling strategies. The ovals emphasize qualitative 

areas of difference.
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Figure 5. 
Mean curvature quantitative plot with relative absolute distance of un-weighted mean and 

weighted mean between control and schizophrenic means. Data are normalized between −1 

and 1 between patients with schizophrenia and controls. Feature data in each scenario from 

qualitative plot included (a) 5 controls and 10 patients with schizophrenia (b) 5 controls and 

5 patients with schizophrenia, and (c) 10 controls and 5 patients with schizophrenia. The 

color bar on the side indicates how close the relative distance is with respect to control mean 

(blue) and schizophrenia mean (red). The top row is from weighted mean while the lower 

row is from the un-weighted mean. Mean square error of mean curvature values with respect 

to control and schizophrenic means with varying number of subjects in each group is shown 

below. In (d), the number of controls was fixed at 5 and the number of patients with 

schizophrenia varied from 1 to 10. In (e), the number of patients with schizophrenia was 

fixed at 5 and the number of control subjects varied from 1 to 10. When the number of 

subjects in each group is equal, then both the un-weighted and weighted means are equal as 

highlighted in red box.

Parvathaneni et al. Page 13

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2018 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	1. INTRODUCTION
	2. METHODS
	2.1 Data Acquisition
	2.2 Preprocessing
	2.3 Feature based template space selection approach
	2.4 Quantitative Analysis

	3. RESULTS
	4. DISCUSSION
	5. CONCLUSION
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

