
ANS, math, and EF relation  1 

 

Dyscalculia and typical math achievement are associated with individual differences in number 

specific executive function 

 

Eric D. Wilkey, Courtney Pollack, and Gavin R. Price 

 

 

Department of Psychology & Human Development, Peabody College, Vanderbilt University, 230 

Appleton Place, Nashville, TN, 37203 

 

Corresponding Author 

Gavin R. Price 

Email: gavin.price@vanderbilt.edu 

 



ANS, math, and EF relation  2 

Abstract: 

Deficits in numerical magnitude perception characterize the mathematics learning disability 

developmental dyscalculia (DD), but recent studies suggest the relation stems from inhibitory 

control demands from incongruent visual cues in the nonsymbolic number comparison task. This 

study investigated the relation among magnitude perception during differing congruency 

conditions, executive function, and mathematics achievement measured longitudinally in 

children (n = 448) from ages 4 to 13. This relation was investigated across achievement groups 

and as it related to mathematics across the full range of achievement. Only performance on 

incongruent trials related to achievement. Findings indicate that executive function in a 

numerical context, beyond magnitude perception or executive function in a non-numerical 

context, relates to DD and mathematics across a wide range of achievement. 
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Mathematical thinking pervades nearly all aspects of modern life, from personal 

accounting to understanding important information about one’s health. Accordingly, individuals 

with poor mathematical skills are less likely to graduate high school, go to college, have steady 

employment (Bynner & Parsons, 2006; Rivera-Batiz, 1992), and are at a higher physical and 

mental health risk (Bynner & Parsons, 2006; Duncan et al., 2007; Hibbard et al., 2007). The 

development of mathematical skills can be affected by a range of factors including education, 

home environment, and reading ability. However, a substantial body of research indicates that 

individual differences in the cognitive system used to perceive and manipulate numerical 

magnitudes, often labeled the Approximate Number System (ANS) (Feigenson, Dehaene, & 

Spelke, 2004), play a foundational role in mathematics development (Chen & Li, 2014; 

Schneider et al., 2017; Schwenk et al., 2017). Further, an estimated 3-6% of the population is 

affected by the specific mathematics learning disability developmental dyscalculia (DD) (Shalev, 

Auerbach, Manor, & Gross-Tsur, 2000; Szűcs & Goswami, 2013). Individuals with DD display 

difficulties with fundamental aspects of numerical processing from very early ages and continue 

to struggle with math, even when given the same schooling opportunities as their peers. 

However, the nature of these numerical deficits and their relation to the abilities of typically 

developing populations remains poorly understood.  

The ANS, Mathematics Achievement, and Dyscalculia 

 The most commonly used behavioral measure of ANS function is the nonsymbolic 

number comparison task. In this task, participants judge which of two groups of objects, such as 

dots or squares, is more numerous. Higher accuracy rates and faster response times are thought 

to indicate higher acuity and enhanced efficiency of the ANS (Inglis & Gilmore, 2014). There is 

considerable support for a relation between efficiency of the ANS and mathematics achievement, 



ANS, math, and EF relation  4 

both as a marker for DD (for reviews, see Iuculano, 2016; Szkudlarek & Brannon, 2017), and 

across the full range of mathematics achievement (for meta-analyses, see Chen & Li, 2014; 

Schneider et al., 2017).  

Accordingly, the dominant theory regarding a core deficit in DD proposes an impairment 

of the ANS, in part because individuals with DD have been shown to perform more poorly in 

tasks designed to measure the ANS, such as the nonsymbolic number comparison task 

(Mazzocco, Feigenson, & Halberda, 2011; Mejias, Mussolin, Rousselle, Grégoire, & Noël, 

2012). Further, neuroimaging research suggests that individuals with DD have atypical structure 

and function of proposed neural substrates of the ANS, such as the intraparietal sulcus 

(Ashkenazi, Black, Abrams, Hoeft, & Menon, 2013; Dinkel, Willmes, Krinzinger, Konrad, & 

Koten, 2013; Kaufmann et al., 2009; Mussolin et al., 2010; Price, Holloway, Räsänen, 

Vesterinen, & Ansari, 2007; Rosenberg-Lee et al., 2015; Rotzer et al., 2008; Rykhlevskaia, 

Uddin, Kondos, & Menon, 2009). Given this evidence, many researchers suggest that deficits in 

symbolic number processing, arithmetic fluency, and higher order mathematical thinking stem 

from a core deficit in the ANS (Butterworth et al., 2011; Iuculano, Tang, Hall, & Butterworth, 

2008; Wilson & Dehaene, 2007).  

Though there is some consensus that the ANS is atypical in individuals with DD, there is 

much disagreement as to the true mechanistic nature of this deficit ( Szűcs & Goswami, 2013), 

its causal role in DD (Mazzocco & Räsänen, 2013), and whether the deficit is isolated to the 

ANS or may be concomitant with deficits in symbolic representation of number or issues related 

to executive functions (Fias, Menon, & Szűcs, 2013; Rousselle & Noël, 2007; Szűcs, Devine, 

Soltesz, Nobes, & Gabriel, 2013). It should be further stated that the developmental relation 

between the ANS and the acquisition of symbolic number faculty is both important and not well 
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understood. It is important in that mathematics is inherently symbolic, and further, most 

symbolic number tasks have a significantly stronger relation to math achievement than 

nonsymbolic tasks (De Smedt, Noël, Gilmore, & Ansari, 2013; Fazio, Bailey, Thompson, & 

Siegler, 2014; Geary et al., 2018; Holloway & Ansari, 2009; Schneider et al., 2017). Therefore, 

the importance of the ANS for math development may depend on its relation to the acquisition of 

symbolic number (Reynvoet & Sasanguie, 2016; vanMarle et al., 2018) or their continued 

relation throughout development (Leibovich & Ansari, 2016), but remains a matter of 

considerable debate. 

Adding to this complication, individual differences in ANS acuity consistently correlate 

with mathematics across the full range of achievement (Halberda, Mazzocco, & Feigenson, 

2008; Keller & Libertus, 2015; Schneider et al., 2017), suggesting the relation is not isolated to 

group differences that identify severe mathematics deficits, but rather extends broadly across 

achievement levels. As a result, it remains unclear whether DD represents a qualitatively distinct 

subgroup with distinct cognitive deficits or is the lowest extreme of a continuous distribution. 

This distinction is important for developing appropriate intervention strategies to remediate low 

mathematics skills (Butterworth & Kovas, 2013; Henik, Rubinsten, & Ashkenazi, 2011). For 

example, if individuals with DD are identified as suffering from a specific impairment of 

magnitude processing that is qualitatively distinct in its mechanistic origin from their TD peers, 

it would suggest that remediation should target the training of this uniquely impaired mechanism. 

Nonsymbolic Number Comparison as a Measure of the ANS? 

 One problem undermining the link between ANS function and mathematics development 

is the reliance on nonsymbolic number comparison as a measure of ANS acuity. Conventionally, 

nonsymbolic number comparison performance has been interpreted as a measure of ANS 
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function (De Smedt et al., 2013). However, recent research suggests that the task may be 

measuring more than ANS acuity alone. Specifically, several studies have shown that 

nonsymbolic number comparison is highly influenced by the visual parameters of task stimuli 

(Gebuis & Reynvoet, 2011, 2012; Leibovich & Henik, 2013; Szűcs, Nobes, Devine, Gabriel, & 

Gebuis, 2013). For example, Szűcs et al. (2013) showed that congruency effects have a large 

impact on the ratio-based internal Weber fraction, or w, a common metric of measuring ANS 

acuity. Further, the impact was even greater for children than in adults, leading them to suggest 

the visual parameter confound could also be complicated by an interaction with development. In 

general, visual properties such as surface area and object size covary with numerosity. If these 

properties are not controlled when creating stimuli, participants can rely on non-numerical cues 

to select the more numerous array. Thus, to ensure participants employ a strategy focused on 

numerosity, stimuli are designed such that, in some trials, the more numerous dot set has a 

greater surface area or dot size (congruent trials), and in other trials a lesser surface area or dot 

size (incongruent trials) (e.g. Dehaene, Izard, & Piazza, 2005).  

Recent studies suggest that performance on incongruent trials may drive the relation 

between nonsymbolic number comparison and mathematics performance (Bugden & Ansari, 

2016; Clayton, Gilmore, & Inglis, 2015; Cragg, Keeble, Richardson, Roome, & Gilmore, 2017; 

Fuhs & McNeil, 2013; Gilmore et al., 2013; Keller & Libertus, 2015). For example, in a study 

comparing nonsymbolic number comparison performance in children with DD versus typically 

developing (TD) peers, Bugden and Ansari (2015) found that children with DD only differed on 

incongruent trials. A follow-up analysis showed that children’s visuo-spatial working memory 

predicted ANS acuity on incongruent trials, indicating that visuo-spatial working memory may 

be an important cognitive process utilized for extraction of numerosity in the presence of other 
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visually salient information. Similarly, studies by Gilmore et al. (2013) and Fuhs and McNeil 

(2013) found that only performance on incongruent trials of the nonsymbolic number 

comparison task was related to mathematics performance across a wide range of mathematics 

achievement in primary school and preschoolers respectively. To explain this specific relation, 

the authors of those studies suggest that incongruent, non-numerical visual cues in the 

comparison task require participants to inhibit their visually-based response before making a 

quantity-based judgment, thus engaging inhibitory control mechanisms. Accordingly, both 

Gilmore et al. and Fuchs and McNeil posit that inhibitory control and selective attention 

demands of incongruent trials, rather than ANS acuity, drive the relation between nonsymbolic 

comparison performance and mathematics. Indeed, after controlling for inhibitory control, the 

relation between mathematics performance and nonsymbolic comparison was no longer 

statistically significant in both studies. 

The ANS and Executive Function 

Still, the contribution of executive function to the relation between nonsymbolic number 

comparison and mathematics performance remains unclear. In contrast to Gilmore et al. (2013) 

and Fuhs and McNeil (2013), both Keller and Libertus (2015) and Gilmore et al. (2015) found 

that the relation between accuracy in the number comparison task and mathematics persisted 

when controlling for inhibitory control, which suggests the relation between number comparison 

performance and mathematics is not fully accounted for by domain-general inhibitory control. 

Starr, DeWind, and Brannon (2017) compared the relation between mathematics achievement 

and the influence of numerical acuity as distinct from the influence of non-numerical visual 

parameters on nonsymbolic number comparison performance while also measuring inhibitory 

control in a non-numerical task (i.e. day/night in children and flanker in adults) in a 4- and 6-
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year-old sample and a sample of adults. Their results indicated that numerical acuity correlated 

with higher math scores in the 6-year-old sample while non-numerical bias and inhibitory control 

did not, which, in agreement with the two previous studies, suggests that numerical 

discrimination relates to mathematics achievement. However, Starr et al.’s measure of non-

numerical bias is a regression term that accounts for the influence of visual parameters on 

participants’ behavior, which is somewhat distinct from performance on trials where visual 

information is incongruent with numerosity and would more directly address the notion of a 

number-specific executive function. Further, it should be noted that all five of these studies 

focused on inhibitory control in a TD sample, while Bugden and Ansari’s (2015) findings related 

performance on incongruent trials of the nonsymbolic comparison task to group differences 

between DD and TD children. In addition to the group differences versus individual differences 

distinction between studies, Bugden et al. investigated the role of visuo-spatial working memory 

as opposed to inhibitory control.  

While dominant models indicate that executive function can be divided into the broad 

categories of working memory/updating, inhibitory control, and attention shifting (Bull & Scerif, 

2001; Miyake et al., 2000), most prior studies on nonsymbolic comparison and mathematics 

achievement have controlled for only one aspect of executive function, either working memory 

or inhibitory control. As a result, the more fine-grained mechanistic relations between executive 

function deficits and ANS deficits have been difficult to determine. To address these issues, the 

current study focuses on two outstanding questions regarding the relation among the ANS, 

executive function, and mathematics achievement in typically and atypically developing 

individuals in order to provide more information about the specific mechanisms at play during 

nonsymbolic number comparison. 
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 First, what are the mechanisms underlying the relation between performance on 

incongruent trials of the nonsymbolic comparison task and mathematics achievement as 

compared to congruent trials? Previous studies have framed the correlation between nonsymbolic 

comparison performance and mathematics achievement as attributable to either individual 

differences in the ANS or executive function. An additional possibility is that incongruent trials 

on the nonsymbolic number comparison task require an interaction of executive function and the 

ANS, or in other words, a number-specific executive function. Rather than the relation between 

number comparison and performance and math achievement depending on neurocognitive 

mechanisms associated with numerical magnitude processing or executive function 

independently, a deficit could originate from the biological interplay of these two mechanisms. 

Successfully answering an incongruent trial requires selective attention to the discrete quantity of 

each dot set while ignoring other salient yet irrelevant stimulus dimensions. Consistent with this 

suggestion, experimental studies have demonstrated a distinction between executive function 

related to numerical and non-numerical content. In a study of DD adults, individuals with DD 

had difficulty recruiting attention to numerical information but not non-numerical information 

under heightened cognitive load (Ashkenazi, Rubinsten, & Henik, 2009). In children, Bull and 

Scerif (2001) demonstrated that inhibitory control and working memory of numerical 

information accounts for significant variance in individual differences of mathematics ability 

beyond similar non-numerical measures of executive function. Therefore, to appropriately 

account for the possibility of an interaction between executive function and the ANS, executive 

function must be measured in both non-numerical and numerical contexts.  

Second, is the relation among executive function, nonsymbolic number comparison, and 

mathematics achievement a specific facet of atypical development, comprising a characteristic of 
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DD that sets the disorder qualitatively apart from typical developmental trajectories, or is the 

relation a characteristic of a broad range of typical mathematics skill development? Previous 

research appears to suggest that measurements of the ANS correlate with mathematics across the 

full range of mathematics achievement (Schneider et al., 2017). At the same time, studies suggest 

that the ANS of individuals with DD is neurobiologically atypical and functions differently than 

that of their TD peers (Mazzocco et al., 2011; Price et al., 2007). Distinguishing between these 

alternatives may provide meaningful implications for intervention strategies.   

The Current Study  

 To address the questions above, the current study investigates the relations among ANS 

function, executive function, and DD by examining performance on the nonsymbolic comparison 

task, separately for congruent and incongruent trials, while controlling for multiple aspects of 

executive function. Importantly, executive function here is measured in a non-numerical context. 

To build directly on previous work, we take a similar approach as Mazzocco et al.  (2011). We 

first compare performance in the nonsymbolic comparison task across multiple mathematics 

achievement groups (DD, low achieving, and typically achieving) defined through multiple years 

of consistent achievement, including the first three years of school entry. Second, we consider 

the relation between performance on the nonsymbolic comparison task and mathematics 

achievement more broadly through a regression analysis with a large sample that includes the 

full range of mathematics achievement. In the first analysis, if DD is characterized by a distinct 

core deficit of the ANS, performance on both congruent and incongruent trials of the task should 

distinguish among achievement groups. If, on the other hand, DD is characterized by deficits 

specific to executive function, performance on only the incongruent trials of the nonsymbolic 

comparison task should account for achievement group differences, but not after controlling for 
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measures of non-numerical executive function. However, if impaired number-specific executive 

function underlies DD, we would expect group differences between the DD group and the other 

achievement groups on incongruent trials, but not congruent trials, after controlling for non-

numerical, domain-general executive functioning. Similarly, in the second analysis, if number-

specific executive function is related to individual differences in mathematics achievement 

across a wide range of achievement, not only a distinction between DD and the other 

achievement groups, performance on incongruent trials should predict mathematics achievement 

beyond what can be accounted for by congruent trials and multiple components of non-numerical 

executive function.  

Method 

Participants 

The current sample was drawn from a study of students who participated in an earlier 

longitudinal study of early mathematical skills (Pre-K to 1st grade) (Hofer, Lipsey, Dong, & 

Farran, 2013). The analytic sample for the original study included 771 children. In the follow-up 

study, we were able to locate 628 students attending public school in the 2013-14 year in the 

same district as they attended in Pre-K (16 had withdrawn from the study in 1st grade and were 

not contacted for further participation, 29 had moved out of the state, 53 had moved out of the 

district, and 45 were not located despite all efforts). Of those 628, we obtained parental consent 

and assessed 517 children in the 2013-2014 school year, 506 children in the 2014-2015 school 

year, and 503 children in the 2015-2016 school year. 497 children were assessed at all three time 

points in middle school. English language learners (n = 43) were excluded because non-native 

language of mathematics instruction could lead to low mathematics achievement for reasons 

other than the cognitive factors investigated in the current study.  
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Our final sample comprised 448 students for whom we had measures of mathematics 

achievement from 2 of the 3 early time points (spring of Preschool, Kindergarten, and 1st grade) 

and from 2 of the 3 later time points (5th, 6th, and 7th grades), reading achievement measured at 

the end of Kindergarten, inhibitory control and task switching measured at 6th or 7th grade, and 

working memory measured at 5th or 6th grade. This represents a loss of 26 students due to 

missing data for any of these measures from the full middle school follow-up sample (n = 517), 

or 5.0%, and only complete cases given the above criteria are analyzed. Methods for resolving 

differences in measurement year are described below in the description of each measure.  

The final sample was 56.5 % female, 9.6% white, 87.1% black, 0.7% Hispanic, 1.1% 

Middle Eastern, 0.2% Asian or Pacific Islander, and 1.3% other races (no further distinction of 

race available). Of the 448 students who should have been in 6th grade in the 2014-15 school 

year if they had not been retained or promoted early, 78 (17.4%) were still in 5th grade and 1 

(0.2%) had been promoted to 7th grade. Students were located in 76 schools in the first year of 

the follow-up study (5th grade), including 31 elementary schools, 27 middle schools, 11 charter 

schools, and 7 Innovation Cluster schools (i.e., schools that had been targeted for additional 

resources to boost achievement). Family income level was inferred on the basis of whether 

participants qualified for free or reduced lunches (i.e., family income less than 1.85 times the 

U.S. Federal income poverty guideline). In the current sample, 88.6% of participants qualified 

for free and reduced lunch, 10.3% did not, and 1.1% individuals were missing economic status 

data. Pre-K through 1st grade and 5th through 7th grade waves of data collection were used to 

define mathematics achievement groups. Nonsymbolic comparison performance was utilized 

from 6th grade because concurrent measures of working memory and executive function were 
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available for children in that year. Mean age at the end of pre-K, the first data point, was 5.1 

years (SD = 0.3, range = 4.5-6.4). See Supplementary Table S1 for full descriptive statistics. 

Achievement Groups  

Individuals were placed in achievement groups if their mathematics achievement scores 

were consistently in the designated achievement range at two of the three early assessments 

(PreK-1st grade) AND two of the three later assessments (5th-7th grades). Given these criteria, 

222 children fit into consistent achievement groups across early and later assessment periods, 

thus excluding 226 children respectively from the full sample of 448 whose achievement level 

varied beyond the defined threshold across time points. Descriptive statistics for the achievement 

group sample (n = 222) are broken down by achievement group in Table 1. 

Our first set of analyses asked whether performance on congruent or incongruent trials of 

nonsymbolic number comparison distinguished children with DD from their low achieving and 

typically achieving peers. One commonly used threshold for defining DD is performance in the 

lowest 10th percentile of standardized mathematics achievement tests (Dinkel et al., 2013; 

Mazzocco et al., 2011). Several studies comparing groups of student achieving in the lowest 10th 

percentile to those in the 11th – 25th percentiles reveal important qualitative differences in 

cognitive profiles (Geary, Hoard, Byrd-Craven, & Nugent, 2007; Mazzocco & Myers, 2003), 

notably indicating that the lowest achievement group had an impairment in nonsymbolic 

magnitude processing compared to all other achievement groups (Mazzocco et al., 2011). 

Therefore, in the current study, we assigned participants to three different mathematics 

achievement groups, dyscalculic individuals (DD: ≤ 10th percentile), low achieving individuals 

(LA: 10th - 25th percentile), and typically achieving individuals (TA: 25th - 95th percentile). With 

these grouping criteria, 22 children met the criteria for DD, 12 for LA, and 188 for TA. Only one 
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individual consistently scored > 95th percentile, a commonly used criterion for school placement 

in gifted and talented programs, and a common threshold for designating high achieving groups 

in research (e.g. Hoard, Geary, Byrd-Craven, & Nugent, 2008; Mazzocco et al., 2011). This 

individual was removed from further analysis. 

There is a great diversity in definitions and cutoff thresholds for defining DD in prior 

literature, and accordingly, findings may not hold across different criteria for selecting DD 

groups. To address this heterogeneity in the literature, group comparison analyses in the current 

study were replicated with another commonly used threshold for determining DD (achievement 

< 1.5 SD below the population mean) and included in Appendix A. Using this alternative 

threshold did not alter the results, suggesting the results are not a product of a chosen threshold.  

 Many previous studies have attempted to isolate the neurocognitive mechanisms of DD 

by studying a group of individuals with developmental dyscalculia compared to a control group 

matched on IQ and other cognitive abilities (Landerl, Bevan, & Butterworth, 2004; Mussolin et 

al., 2009; Rotzer et al., 2008). The current study does not take this approach for two reasons. 

First, research suggests that defining learning disability groups through discrepancy criteria 

excludes many individuals with dyscalculia who suffer from comorbid learning disabilities or 

other developmental issues. Most estimates suggest that 20-40% of individuals with DD also 

have dyslexia (Shalev, 2004; Willcutt et al., 2013; Wilson et al., 2015) and around 25% also 

have attention deficits (Landerl, Göbel, & Moll, 2013; Shalev et al., 1995; Shalev, 2004). This 

suggests that DD is inherently heterogeneous and would better be characterized by a framework 

whereby individuals are designated as DD through proof of consistent, low mathematics 

achievement over time with the presence of adequate educational opportunity (Fuchs, Morgan, 

Young, & Rise, 2003). Therefore, rather than exclude non-discrepant individuals, the current 
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study follows previous literature (Mazzocco et al., 2011) and investigates differences in the ANS 

while controlling for reading achievement and domain-general executive function. Second, the 

current study examines the intersection of attention mechanisms and magnitude processing 

mechanisms. Any attempt to define groups as a function of broader measures of achievement 

would impede investigation of individual differences in executive function, which is known to 

correlate with academic achievement.  

 
--INSERT TABLE 1 APPROXIMATELY HERE-- 

Procedure 

All students assented and students’ families consented to participate, and the study was approved 

by the university’s Institutional Review Board (IRB). Assessments were conducted by trained 

members of the research staff. The nonsymbolic number comparison task and executive function 

tasks were administered during the Spring semester of the students’ 6th grade year via tablet 

computer. Testing for mathematics achievement was completed in a quiet location at the 

students’ school with one-to-one assistance from trained staff during the student’s Pre-K, 

Kindergarten, 1st grade, 5th grade, 6th grade, and 7th grade years. Reading achievement was 

assessed at the end of Kindergarten. 

Cognitive Tasks 

Nonsymbolic number comparison. Participants were presented with two sets of dots 

simultaneously and asked to indicate via button press which set was more numerous (i.e., which 

set contained more dots). The set on the left side of the screen contained yellow dots and the set 

on the right side contained blue dots, which corresponded to color-coded left and right buttons. 

Response sides were fully counterbalanced. Trials consisted of 1200 ms stimulus presentation 

followed by 1800 ms of fixation (see Figure 1). Seven ratios were presented [0.33 (5 dots vs. 15 
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dots), 0.5 (5 vs. 10), 0.67 (6 vs. 9), 0.8 (8 vs. 10), 0.86 (12 vs. 14), 0.88 (7 vs. 8), 0.9 (9 vs. 10)]. 

The number of dots in each stimulus ranged from 5 to 15. Each ratio was presented 10 times for 

a total of 70 trials, which were preceded by 6 practice trials of the easiest two ratios.  

If individuals did not correctly respond to at least 4 of the 6 practice trials, practice trials 

were repeated up to two times. If participants did not answer 4 out 6 correctly on any practice 

run, they did not proceed to the experimental trials. Ratios, stimulus presentation times, and 

order of presentation were modeled after Odic, Hock and Halberda (2014). To control for the 

possibility that participants might utilize a strategy based on visual cues rather than number of 

dots, the following visual properties of dot sets were varied using a modified version of the 

MATLAB code recommended by Gebuis & Reynvoet (2011): convex hull (area extended by a 

stimulus), total surface area (aggregate value of dot surfaces), average dot diameter, total 

circumference, and density (convex hull divided by total surface area). In approximately one 

quarter of the trials (22 of 70) all four visual properties were congruent with greater numerosity 

(i.e. the greater number of dots had a greater convex hull, surface area, etc.). In another quarter 

of the trials (18 of 70), all four visual properties were incongruent with greater numerosity. In the 

remaining trials, visual properties were mixed congruent and incongruent.  

--INSERT FIGURE 1 APPROXIMATELY HERE— 

 

 Analyses of task effects include all trials. Analyses directly addressing the research 

questions include trials that were either fully congruent (22 trials) or incongruent (18 trials) on 

all five visual parameters. Mixed congruency trials were excluded. Congruent vs. incongruent 

trials per ratio are not perfectly balanced in trial numbers, but the average ratio for each is nearly 

identical (average ratio congruent = 0.733, average ratio for incongruent = 0.744)(for further 
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details, see supplementary Table S2). Performance was calculated as mean number of items 

correct and as a weber fraction (Halberda et al., 2008) to facilitate comparison with previously 

published research. However, the model implementing Levenberg–Marquardt least squares fit 

used to calculate weber fractions did not provide a sufficient fit with the fewer number of trials 

available within congruency conditions (as indicated by whether the model predicted a 

significant amount of variance, p < .05). Further, a growing body of literature suggests that mean 

accuracy is strongly correlated with and possibly more reliable than ratio dependent metrics such 

as the weber fraction (Gilmore, Attridge, & Inglis, 2011; Inglis & Gilmore, 2014), which is true 

even in the case of congruency comparisons (Szűcs et al., 2013). Therefore, in the current study, 

mean accuracy percentages were used instead of weber fractions to index performance on each 

of our number comparison tasks. 

Working memory. The backward Corsi block-tapping test (Corsi, 1972) provided a 

measure of visuo-spatial working memory. In this computerized task, children first viewed 

squares that lit up in a sequence on the screen, and then the students were asked to tap the 

squares in the reverse order in which they lit up. The task consisted of 16 total possible trials, 

including two practice trials. The student was given 2 attempts to correctly repeat the reverse 

sequence per sequence length, increasing in span from 2 to 8 across the task. If the student 

correctly answered at least 1 of the 2 attempts correctly, the student then proceeded on to the 

longer (more difficult) sequence. The score of interest was the highest span with a correctly 

repeated sequence. For some children without 6th grade Corsi spans, 22 children of n = 448, 5th 

grade spans are utilized. For details, see Appendix B. 

Inhibitory control and task switching. The Hearts and Flowers task (Wright & 

Diamond, 2014) was used as measure of students’ task switching and inhibitory control. In this 
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task, the child was first presented with a heart on either side of the screen and instructed to press 

the button that corresponds to the side of the screen with the heart. This first block comprised 12 

trials. In the second block of trials (also 12 trials), the child was presented with flowers and 

asked to press the button that is opposite the side of the flower. In the third set of trials, the child 

was randomly presented with either a heart or a flower and asked to follow the rule that 

corresponds to hearts and flowers respectively. The third block comprised 48 trials. To index 

executive function we used mean accuracy from the third, mixed-condition block of trials, and as 

such, this single measure captures both task switching and inhibitory control (Diamond, 2014). 

One child was not assessed at 6th grade for Hearts and Flowers, but a score from 7th grade was 

available. The same z-score method described above was utilized to create a score for this child 

and z-scores were utilized for all subsequent analyses. 

Academic Achievement 

Reading achievement: Woodcock Johnson III (WCJ-III) – Letter-Word 

Identification. The WCJ-III (Woodcock, McGrew, & Mather, 2001) is a standard assessment of 

a range of skills, designed to be used with people ages 2 to 90+. The letter-word identification 

subtest assesses children’s letter and sight word identification ability with the correct 

pronunciation. Items include identifying and pronouncing letters and words presented to the 

child (e.g. “A” or “dog”). Age-normed standard scores were calculated as an early measure of 

reading achievement measured at the end of Kindergarten and then converted to percentile ranks. 

Mathematics achievement. Woodcock Johnson-III Quantitative Concepts and Applied 

problems subtests were used as measures of mathematics achievement during the early school 

years (Pre-K-1st grade) and KeyMath-3 subscales of Numeration, Algebra, and Geometry were 

used for the middle school time points (5th-7th grade). Standard scores from each measure were 
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converted to percentile rank scores based on the nationally normed mean and standard deviations 

of the sample utilized for each respective standardized assessment. Percentile rank scores were 

utilized for (1) achievement group creations based on percentile rank threshold in the first 

analysis and (2) the principal outcome variable of interest in our multi-level regression analysis. 

WCJ-III – Quantitative Concepts and Applied Problems. Quantitative Concepts and 

Applied problems subtests were administered at the end of each school year during Pre-K, 

Kindergarten, and 1st grade. Individually-administered, Quantitative Concepts has two parts and 

assesses students’ knowledge of mathematical concepts, symbols, and vocabulary, including 

numbers, shapes, and sequences; it measures aspects of quantitative mathematics knowledge and 

recognition of patterns in a series of numbers. The Applied Problems subtest is an untimed 

verbal and picture-based measure of a student’s ability to analyze and solve mathematics 

problems, beginning with the application of basic number concepts. At each early time point, 

age-normed standard scores were calculated for each subtest and averaged together to create a 

composite measure of mathematics competence representing a broad range of mathematics skills. 

These scores were subsequently converted to percentile ranks. 

KeyMath-3. The KeyMath-3 Diagnostic Assessment (Connolly, 2007) is a 

comprehensive, norm-referenced measure of essential mathematical concepts and skills. It was 

administered at the end of each school year during 5th, 6th, and 7th grades. We used three 

subscales out of the five subscales in the Basic Concepts area. (1) Numeration: The Numeration 

subtest measures an individual's understanding of whole and rational numbers. It covers topics 

such as identifying, representing, comparing, and rounding one-, two-, and three-digit numbers 

as well as fractions, decimal values, and percentages. It also covers advanced numeration 

concepts such as exponents, scientific notation, and square roots. (2) Algebra: The Algebra 
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subtest measures an individual's understanding of pre-algebraic and algebraic concepts. It covers 

topics such as sorting, classifying, and ordering by a variety of attributes; recognizing and 

describing patterns and functions; working with number sentences, operational properties, 

variables, expressions, equations, proportions, and functions; and representing mathematical 

relations. (3) Geometry: The Geometry subtest measures an individual's ability to analyze, 

describe, compare, and classify two-and three-dimensional shapes. It also covers topics such as 

spatial relations and reasoning, coordinates, symmetry, and geometric modeling. Scale scores in 

the KeyMath-3 are age-normed to reflect population means of 10 (SD = 3) for each subtest. We 

averaged scale scores from the three subscales into a composite measure (KM Composite) as in 

previous analyses involving the current sample (Price & Wilkey, 2017; Rittle-Johnson, Fyfe, 

Hofer, & Farran, 2017). This score was then converted to a percentile rank to compose 

mathematics achievement groups across measures of mathematics achievement in the early 

grades (PreK-1st grade) and late measures of mathematics achievement (5th grade to 7th grade).  

The relation between KeyMath-3 scores and predictor variables was non-linear based on 

visual inspection of scatter plots, so when conducting analyses that assumed a linear relation 

(e.g. bivariate correlation, partial correlation, or regression), models were fit using a transformed 

outcome (i.e., cubed root) of KeyMath-3 percentile rank. A detailed exploration of the 

untransformed achievement scores’ relation to predictor variables is detailed in Appendix C. 

Analysis 

 To investigate group differences among DD, LA, and TA groups on nonsymbolic 

comparison on both congruent and incongruent trials, we conducted a two-way (3 x 2), mixed 

effects ANOVA with achievement group as a between-subject factor, congruency condition of 

nonsymbolic comparison as a within-subjects factor, and accuracy rate on the nonsymbolic 
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comparison task at 6th grade as the dependent variable. Levene’s tests were run for each ANOVA 

to analyze violations of homogeneity of variance that often results from unequal sample sizes. 

When violated, Welch’s adjusted F was used for the ANOVA and noted in the results. One-way 

post-hoc t-tests were conducted to examine simple main effects and pairwise differences where 

appropriate. Bonferroni-corrected p-values are reported to correct for multiple comparisons for 

all subsequent analyses and to ensure tests were robust against violations of homogeneity of 

variances between groups. Effect sizes are reported as Hedge’s g, which accounts for unequal 

group n’s by weighting the pooled standard deviation according to group size, 𝑀𝑀1−𝑀𝑀2
𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,   𝑤𝑤𝑝𝑝𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑝𝑝𝑝𝑝

 . 

Because clustering of students within schools did not account for a significant proportion of 

variation in 6th grade nonsymbolic number comparison accuracy (𝜌𝜌� = .009, p = .74), a multi-level 

modeling approach to account for the clustering of students within schools was not needed.  

The second set of analyses used random-effects multi-level models to predict 6th grade 

mathematics achievement from concurrent experimental measures. This analysis examined 

whether individual differences in nonsymbolic number comparison performance related to 

standardized mathematics achievement across a wide range of achievement. Specifically, we 

examined whether 6th graders’ accuracy on nonsymbolic number comparison for incongruent and 

congruent trials predicted concurrent mathematics achievement for the full sample of students (n 

= 448), and whether the relation changed when controlling for early reading achievement and 

domain-general executive functioning. 

Results 

Task Effects 

Nonsymbolic comparison task performance profiles were consistent with previous findings (e.g., 

Lyons, Nuerk, & Ansari, 2015), showing a significant effect of ratio on mean accuracy for all 
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trials [F(6, 447) = 1255.22, p < .001, partial η2 = 0.737], and within congruency conditions [F(6, 

447) = 339.01, p < .001, partial η2 = 0.431 for congruent trials; F(6, 447) = 401.17, p < .001, 

partial η2 = 0.473 for incongruent trials]. Further, both mean accuracy and weber fraction were 

correlated with mathematics achievement at 6th grade (mean accuracy Pearson r(446) = .191, p < 

.001, 95% CI [.100, .278]; weber fraction Pearson r(446) = -.244, p < .001) , 95% CI [-.329, -

.155], which is in line with a recent meta-analysis reporting an average correlation of r = .241 (k 

= 195) between nonsymbolic comparison and a broad range of mathematics achievement 

measures across multiple age groups (Schneider et al., 2017). Mean accuracy and weber fractions 

were highly correlated (Pearson r(446) = -.919, p < .001) , 95% CI [-.932, -.903]. 

Achievement Group Comparison Results 

 Results of the two-way ANOVA indicated a main effect of achievement group [F(2, 219) 

= 6.694, p = .002, partial η2 = 0.058], a main effect of congruency [F(1, 219) = 27.570, p < .001, 

partial η2 = 0.112] whereby individuals were more accurate on congruent trials, and an 

interaction [F(2, 219) = 4.816, p = .009, partial η2 = 0.042]. To characterize the main effect of 

achievement group, we conducted between-subjects t-tests comparing accuracy on the combined 

congruent and incongruent trials. Accuracy rate was 6.7 points [95% CI: 2.6 – 10.9] lower for the 

DD group than the LA group [t(32) = -3.293, Bonferroni adjusted (α/3) p = .003, unadjusted p < 

.001, Hedge’s g = 1.182] and 4.3 points [95% CI: 2.0 – 6.5]  lower for the  DD group than the 

TA group [t(208) = -3.761, Bonferroni adjusted (α/3) p = .002, unadjusted p < .001, Hedge’s g = 

0.847]. There was no significant difference between the LA and TA groups [t(198) = 1.619, 

Bonferroni adjusted (α/3) p = .161, unadjusted p = .053, Hedge’s g = 0.482].  

 The effect of congruency. Pairwise comparisons were conducted to characterize the 

simple effect of congruency within achievement groups. There was an effect of congruency in 
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the DD and TA groups whereby, on average, the DD group accuracy rate was 25.2 points [95% 

CI: 16.6 – 33.8] lower for incongruent compared to congruent trials [t(21) = 6.076, Bonferroni 

adjusted (α/3) p < .001, unadjusted p < .001, Hedge’s g = 2.203] and the accuracy rate for the 

group was 10.7 points [95% CI: 7.6 – 13.8] lower for incongruent compared to congruent trials 

[t(21) = 6.795, Bonferroni adjusted (α/3) p < .001, unadjusted p < .001, Hedge’s g = 0.844]. 

However, there was no effect of congruency in the LA group [t(11) = 0.716, Bonferroni adjusted 

(α/3) p = .732, unadjusted p = .244, Hedge’s g = 0.359] (see Figure 2 and Table 1 for means).  

 The effect of achievement group. To characterize the simple effects of achievement 

group, one-way ANOVAs were conducted within congruency conditions, followed by pairwise 

comparisons of achievement groups. Results from the ANOVA on accuracy for congruent trials 

showed no effect of achievement group [F(2, 219) = .476, p = .622, η2 = 0.004] (Figure 2). 

Levene’s test of equality of variances showed no significant differences in variance across 

groups for mean accuracy of congruent trials (Levene’s statistic = .383, p = .682).  

In contrast, results from the ANOVA on incongruent trials showed a significant effect of 

achievement group on accuracy [Welch’s F(2, 21.45) = 8.345, p = .002, η2 = 0.070]. Levene’s 

test indicated significant differences in variance across groups for mean accuracy of incongruent 

trials (Levene’s statistic = 4.317, p = .014), however variance only differed between groups by a 

factor of 2.56 at most, so Welch’s adjusted F was used for the ANOVA. After adjusting for 

multiple comparisons, post-hoc tests of incongruent trials indicated that accuracy rate for the DD 

group accuracy rate was 17.3 points [95% CI: 5.2 – 29.4] lower than the LA group [t(32) = -

2.916, Bonferroni adjusted (α/3) p = .002, unadjusted p = .005, Hedge’s g = 1.046] and DD 

accuracy rate was 12.1 points [95% CI: 5.9 – 18.3] lower than the TA group [t(208) = -3.862, 

Bonferroni adjusted (α/3) p < .001, unadjusted p < .001, Hedge’s g = 0.870]. There was and no 
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difference between LA and TA groups [t(198) = 1.197, Bonferroni adjusted (α/3) p = .350, 

unadjusted p = .117, Hedge’s g = 0.356, mean difference = 5.2 points, 95% CI: -3.3 – 13.7].  

To further investigate achievement group differences after controlling for domain-general 

factors, analyses were repeated as a one-way ANCOVA with the covariates of max span 

achieved on the backward Corsi, mean accuracy during mixed trials of the Hearts and Flowers 

task, age at time of testing, and percentile rank on the WCJ-III letter-word identification at the 

end of Kindergarten. After controlling for these factors, there was still a significant effect of 

achievement group for accuracy on incongruent trials [F(2, 215) = 4.658, p = .010, partial η2 = 

0.042]. After adjusting for multiple comparisons, covariate adjusted means were 16.6 points 

[95% CI: 3.3 – 29.9] lower for the DD than the LA group [Bonferroni adjusted (α/3) p = .015, 

unadjusted p = .005, Hedge’s g = 0.823] and 10.0 points [95% CI: 1.0 – 21.0] lower for the DD 

group than the TA group [Bonferroni adjusted (α/3) p = .045, unadjusted p = .002, Hedge’s g = 

0.823]. There was no significant difference between the LA and TA groups [Bonferroni adjusted 

(α/3) p = .231, unadjusted p = .077, Hedge’s g = 0.585]. These results replicate the pattern 

observed in the ANOVA. 

--INSERT FIGURE 2 APPROXIMATELY HERE— 

 

In sum, all ANOVAs and ANCOVAs conducted show the same pattern of results 

whereby: (1) no group differences are observed for congruent trials of the comparison task, (2) 

the DD group performs significantly below LA and TA groups on incongruent trials even when 

controlling for other cognitive factors and early reading achievement, and (3) no group 

differences are present between LA and TA groups on incongruent trials. 

Full Range of Achievement Results 
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For descriptive statistics of the full sample, see Table 2. For bivariate correlations among 

measures, see Supplementary Table S3. Of note is a moderate, negative bivariate correlation  

 

--INSERT TABLE 2 APPROXIMATELY HERE-- 

 

between accuracy rates for congruent and incongruent trials (r(446) = - .447, p < .001, 95% CI [-

.518, -.369] )(see supplementary Figure S5 for scatterplot). To investigate potential differences 

among subtests of the KeyMath-3 and their correlations with performance in the nonsymbolic 

number comparison task, Pearson-r values were converted to z values and then compared with a 

two-tailed z-test. Results indicated there were no significant differences among any correlations 

according to KeyMath-3 subtests [all p’s > .435] and no further analyses by subtest were 

conducted (see supplementary Table S4 for details).  

 Multi-level regression model predicting mathematics achievement. Multi-level 

modeling accounts for the clustering of students within schools, as approximately 23% of the 

variation in 6th grade mathematics achievement was due to school membership (𝜌𝜌� = .225, p < 

.0001). Equation (1) illustrates the modeling approach, in which MATHij represents 6th grade 

mathematics achievement for each student i in school j. The predictors INCONij and CONij 

represent student-level accuracy on nonsymbolic number comparison for incongruent and 

congruent trials, respectively; HAFij represents student-level standardized scores on the Hearts 

and Flowers task; CORSIij represents student-level standardized backward Corsi max span 

scores; READij represents student-level age-normed standard scores on the letter-word ID test; 

and Xij represents a vector of potential student-level covariates, such as gender or age at testing. 

Due to non-linearity in the relation between mathematics scores and the predictors, models were 

fit using a transformed outcome (i.e., cubed root).  
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�𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖3 = 𝛽𝛽0+𝛽𝛽1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 + 𝛽𝛽3𝑀𝑀𝑀𝑀𝐻𝐻𝑖𝑖𝑖𝑖 + 𝛽𝛽4𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶𝐼𝐼𝑖𝑖𝑖𝑖 + 𝛽𝛽5𝐶𝐶𝑅𝑅𝑀𝑀𝑅𝑅𝑖𝑖𝑖𝑖 + 𝛽𝛽6𝑿𝑿𝑖𝑖𝑖𝑖+ (𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑢𝑢𝑖𝑖)  (1) 

The bivariate correlations of the transformed achievement variable are presented in Figure 3 with 

a plot of nonsymbolic number comparison performance by congruence on achievement.  

 

--INSERT FIGURE 3 APPROXIMATELY HERE-- 

 

Table 3 presents parameter estimates, standard errors, significance levels, random effects, 

and goodness-of-fit statistics for a taxonomy of fitted models describing the relation between 

mathematics achievement and nonsymbolic number comparison, domain-general executive 

functioning, early reading achievement, and age at testing in 6th grade. The first model (i.e., M1) 

displays the grand mean of 6th grade mathematics achievement, across all students and schools, 

and the intra-class correlation (𝜌𝜌� = .225, p < .0001) that motivates the multi-level modeling 

approach. Model M2 shows the relations between accuracy on congruent and incongruent 

conditions of the nonsymbolic number comparison task and transformed 6th grade mathematics 

achievement. There is a statistically significant relation between accuracy on incongruent 

nonsymbolic number comparison and transformed 6th grade mathematics achievement (z = 4.88, 

p < .0001), but accuracy on congruent trials is not a statistically significant predictor of 

mathematics achievement (z = 1.16, p = .25). Accordingly, accuracy on congruent trials was 

excluded from subsequent models.  

Subsequent models (M3-M5) show that the relation between accuracy on incongruent 

trials of the nonsymbolic number comparison task and transformed 6th grade mathematics 

achievement persists after controlling for additional predictors of mathematics achievement. 

Model M3 shows the relation between accuracy on incongruent nonsymbolic number 

comparison trials and transformed mathematics achievement, controlling for domain-general 
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executive functioning. Hearts and Flowers and backward Corsi performance have a statistically 

significant relation with mathematics achievement (z = 7.71, p < .0001 and z = 7.12, p < .0001, 

respectively), controlling for nonsymbolic number comparison. Parameter estimates and 

statistical significance of relations remain stable when controlling for reading performance in 

Kindergarten (see Table 3, M4) and age of mathematics testing in 6th grade (see Table 3, M5), 

though the magnitudes decrease slightly. Additional models were fit testing demographic 

variables (e.g., gender) and interaction terms among the nonsymbolic comparison and executive 

function predictors, however, none were statistically significant (p’s ranged from .06 to .98). 

Further, we conducted a sensitivity analysis to examine whether students with DD may be 

driving the relationship between performance on incongruent trials and mathematics 

achievement. To do so, we refit model M5 without the DD subgroup (n = 22). Results were 

unchanged. Taken together, the analysis suggests that student performance on incongruent trials 

of nonsymbolic number comparison is predictive of concurrent mathematics achievement, above 

and beyond non-numerical, domain-general executive functioning, early reading achievement, 

and age at testing in 6th grade. For detailed explanation of the model fit, see Appendix B.  

 

--INSERT TABLE 3 APPROXIMATELY HERE— 

 

Discussion 

The current study investigated the relation among ANS function, executive function, and 

mathematics achievement by examining performance on the nonsymbolic comparison task, 

separately for congruent and incongruent trials, while controlling for multiple components of 

executive function measured in non-numerical contexts. We investigated this relation first as it 

relates to group differences among DD, LA, and TA students and then as a factor related to 
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mathematics across a full range of achievement. Results indicated that an interaction of the ANS 

and executive function mechanisms, beyond either mechanism alone, represents a deficit specific 

to DD and is also related to mathematics across a full range of mathematics achievement. 

Together, the current findings suggest that a focus on ANS alone is insufficient to explain the 

relation between basic number processing and mathematics outcomes. Therefore, we suggest that 

our results point to a need to reframe existing models of the relation between number processing 

and mathematics competence to include the relation between executive function mechanisms and 

magnitude processing, and to move beyond single mechanism explanations more generally. 

Achievement Group Comparison 

 In the first analysis, we compared accuracy rates in the nonsymbolic comparison task 

across three mathematics achievement levels (i.e. DD, LA, and TA) defined through six years of 

consistent achievement, including the first three years of school entry (Pre-K-1st grade) and three 

later years of entry to middle school (5th-7th grade). Our results showed that accuracy on 

incongruent trials, and not congruent trials, was significantly lower for DD (defined at two 

different thresholds) compared to LA and TA groups, even after controlling for early reading 

achievement, visuo-spatial working, inhibitory control, and task shifting. LA and TA groups, on 

the other hand, did not differ from one another, thus supporting the hypothesis that an 

impairment in the interaction between executive function and the ANS is characteristic of 

individuals with DD. 

Explanations of the link between ANS and mathematics achievement that involve a 

dynamic interaction between the ANS and executive function have considerable support from a 

large body of research linking low mathematics performance with various executive function 

impairments. These include associations between low mathematics achievement and inhibitory 
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control (Blair & Razza, 2007; Espy et al., 2004; Szűcs et al., 2013), spatial processing (Rourke & 

Conway, 1997), verbal and visuospatial working memory (Bull & Lee, 2014; Bull & Scerif, 

2001; Geary, 2004; Lee & Bull, 2016; Szűcs et al., 2013), set shifting (Willcutt et al., 2013), 

sustained visual attention (Anobile, Stievano, & Burr, 2013), and inattentive behaviors (Fias et 

al., 2013; Shalev et al., 1995). Further, DD has a high rate of comorbidity with attention-

deficit/hyperactivity disorder (Czamara et al., 2013). Though the link is often made between 

general measures of executive function and mathematics achievement, there is evidence that the 

relation is specific to measures of executive function involving numerically relevant information. 

For example, Siegel and Ryan (1989) found that individuals with DD have impairments of 

working memory related to processing numerical information and not language. Experimental 

studies have also demonstrated a distinction between executive function to numerical and non-

numerical content. Ashkenazi et al. (2009) found that individuals with DD had more difficulty 

recruiting attention to numerical information but not non-numerical information under 

heightened cognitive load compared to TD peers. This array of findings has led some to suggest 

that DD may involve a domain-specific executive function problem (e.g. Bull & Scerif, 2001). In 

other words, individuals with DD may not have a generally impaired ANS system, but rather 

have difficulty working with numerical magnitudes under additional executive function 

demands. Results from the current study showing mathematics achievement group differences in 

nonsymbolic comparison performance only during incongruent trials, after controlling for non-

numerical executive function, lend further support to this hypothesis. Whether this deficit is 

driven by a failure to upregulate numerical information above competing information as attention 

shifting would require, or perhaps a failure to disengage attention from non-numerical 

information by inhibiting interference from irrelevant stimulus dimensions remains an open 
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empirical question. As the DD group’s average performance during incongruent trials is around 

chance, little can be inferred with about strategy during these trials. 

The current study results contrast with some previous studies using an alternative method 

for controlling visual parameters of dot stimuli which have not found an effect of congruency on 

response behaviors (Odic et al., 2014; Odic, Libertus, Feigenson, & Halberda, 2013). However, 

in those studies, the effect of congruency may be confounded by the fact that degree of visual 

congruency (and incongruency) is linearly related to trial ratio. This means that in difficult ratio 

trials, which capture the most variance related to individual differences in ANS acuity, each dot 

set is very similar in terms of surface area, thus decreasing the likelihood of finding a 

congruency effect. Although this method may be appropriate for measurement of general ANS 

acuity, the effects of congruency are difficult to separate from the effects of numerical ratio, 

since the two are linked so tightly. The current study uses a method of controlling congruency 

that is more balanced across ratios and controls for a greater number of stimulus properties 

beyond dot size and surface area (for a detailed discussion, see Clayton et al., 2015). Therefore, 

the effects of congruency and ANS function are more clearly disentangled in the current study. 

One unexpected result from the first, group-wise analysis is that DD and TA groups 

showed congruency effects, as expected, but LA children did not. Despite this lack of a 

congruency effect in the current findings for this achievement group, we caution against any 

strong interpretation of this result. There is a trend in the expected direction for each of the LA 

children groupings (10th percentile and 6.7th percentiles cutoffs), in which children are more 

accurate on congruent trials than incongruent trials. Despite the lack of a significant effect, the 

effect sizes are relatively large (Hedge’s g = 0.359 and Hedge’s g = 0.71) and mean differences 

are 6 accuracy points and 10 accuracy points for each sample respectively. It is likely that the 
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absence of a statistically significant congruency effect for LA children is due to high variance in 

accuracy on incongruent trials and a lack of power for this comparison. 

Full Range of Achievement 

In the second analysis, we examined whether 6th graders’ accuracy on nonsymbolic 

number comparison for incongruent and congruent trials predicted concurrent mathematics 

achievement for the full sample of students, and whether the relation changed when controlling 

for early reading achievement and non-numerical, domain-general executive functioning. The 

sample for this analysis included a wide range of mathematics achievement levels that included 

all participants from the first analysis and participants in the broader study that did not 

consistently achieve in the same level year-to-year. Similar to the logic of the first analysis, if 

number-specific executive function is related to individual differences in mathematics 

achievement across a wide range of achievement, performance on incongruent trials should 

predict mathematics achievement beyond what can be accounted for by congruent trials and 

early reading achievement, visuo-spatial working, inhibitory control, and task shifting. Indeed, 

results showed that accuracy on incongruent trials predicted concurrent mathematics 

achievement even after controlling for early reading achievement, visuo-spatial working, 

inhibitory control, and task shifting, thus supporting the hypothesis that number-specific 

executive function relates to individual differences in mathematics achievement across a wide 

range of achievement levels. Further, the relation remained unchanged when we excluded 

individuals with DD from the regression. These findings build on previous research that has 

shown other number-specific measures of executive function relate to mathematics achievement 

in typically developing and high achieving groups. For example, Dark and Benbow (Dark & 

Benbow, 1994) found that working memory tasks with numerical stimuli were more closely 
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related to mathematical precocity than non-numerical stimuli across a range of tasks in adults. 

Similarly, studies of children have demonstrated that inhibitory control and working memory of 

numerical information accounts for significant variance in individual differences of mathematics 

ability and early numeracy beyond similar non-numerical measures of executive function (Bull 

& Scerif, 2001; Merkley, Thompson, & Scerif, 2016).  

 Interestingly, bivariate correlations indicated that children with high accuracy on 

incongruent trials tended to have low accuracy on congruent trials (and vice versa), even though 

congruent trials were not related to mathematics achievement. This may be important for two 

reasons. First, if only incongruent trials are related to mathematics achievement, researchers may 

be tempted to design measures consisting exclusively of incongruent trials. However, this inverse 

relation may indicate that incongruent trials are inherently related to congruent trials such that 

removing congruent trials would change the nature of the task demands for incongruent trials. 

Second, speculation about inhibitory control has dominated the conversation about the cognitive 

mechanisms underlying the difference between incongruent trials and congruent trials of the 

nonsymbolic comparison task (Cragg et al., 2017; Gilmore et al., 2015). While inhibitory control 

may be a factor, the inverse correlation between congruency conditions may indicate that some 

individuals are unable to switch between strategies that capitalize on visual cues during 

congruent trials and ignore these cues otherwise. In addition to working memory and inhibitory 

control, task shifting may contribute to differences in performance between incongruent and 

congruent trials. Third, this inverse correlation is somewhat consistent with a developmental 

account recently suggested by Piazza et al. (2018), whereby development and education both 

correlate with an increased ability to filter our irrelevant cues in incongruent number comparison 

trials, similar to those in the current study. In contrast, performance on congruent trials dropped 
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or remained the same with increased education and age, suggesting there was not a generalized 

increase in acuity of number perception. Piazza et al.’s developmental findings suggests that 

better performers on incongruent trials may not benefit as much from congruent visual cues, 

which may explain this inverse correlation. 

 In the current study, accuracy on congruent trials was unrelated to mathematics 

achievement, either as a factor distinguishing between achievement groups or as a predictor of 

mathematics achievement. This was true even before controlling for other academic or cognitive 

factors. Since current theory suggests engagement of the ANS for successful completion of 

congruent and incongruent trials, we expected a relation, albeit weaker, between mathematics 

achievement and accuracy rate on congruent trials. However, neither analysis showed a 

statistically significant relationship between performance on congruent trials and mathematics 

achievement. Further, the magnitude of this relationship in both analyses was close to zero, 

showing no trend in the expected direction. This calls into question whether ANS function alone, 

not measured under high executive function demands, is an important factor related to DD and 

mathematics achievement more generally. Studies showing no relation between nonsymbolic 

number comparison performance and math achievement after controlling for executive function 

have argued this point. For example, in a large sample of TD children, Szűcs et al. (2014) found 

that after controlling for other executive function measures such as dot matrices, visuo-spatial 

working memory, and the trail-making task, nonsymbolic comparison did not significantly relate 

to mathematics achievement. Interestingly, in that study, sustained visual attention was the best 

correlate of ANS acuity, which may further indicate that attention mechanisms and ANS 

mechanisms are integrally related.  
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 Previous neuroimaging research has shown that congruent and incongruent trials of the 

nonsymbolic number comparison task recruit different neural mechanisms, with incongruent 

trials recruiting large portions of the fronto-parietal attention network (Leibovich, Vogel, Henik, 

& Ansari, 2016; Wilkey, Barone, Mazzocco, Vogel, & Price, 2017). Recruitment of additional 

neurocognitive mechanisms during incongruent trials may be an integral component of the 

previously assumed direct relation between ANS and mathematics achievement in studies of 

mathematics learning disability, but also across the full range of achievement. Supporting this 

interpretation, recent neuroimaging evidence from Wilkey & Price (in press) shows that 

individual differences in neural activity of inferior frontal brain regions related to the numerical 

congruency effect in the nonsymbolic comparison task related to mathematics achievement in a 

typically developing sample of 3rd and 4th grade children. This relation held even after 

controlling for neural activity in a Flanker task and domain general cognitive factors. In contrast, 

individual differences in the ratio effect (a neural metric of numerical acuity) did not relate to 

mathematics, including activity in expected posterior parietal regions. This finding underscores 

the importance of the neurocognitive mechanisms that interact with magnitude processing 

mechanisms for mathematics competence, and again speak to the need to move beyond a single 

mechanism explanation of foundational competencies for mathematics development. 

Limitations and Future Directions 

 Several factors should be taken into account when interpreting the results of the current 

study. First, participants were recruited from an urban public school system and were mostly 

from low-income households. Low household income often impedes access to high-quality early 

mathematics experiences (Ramani & Siegler, 2008), so factors driving the relation between 

nonsymbolic comparison and mathematics achievement may differ across students with differing 
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household incomes. Further, the relation between nonsymbolic comparison and mathematics 

achievement in low-income samples has been reportedly lower than middle- and high-income 

samples (Fuhs, Kelley, O’Rear, & Villano, 2016; Fuhs & McNeil, 2013). However, effect sizes 

of the relation between nonsymbolic comparison and mathematics achievement from the current 

study are in line with previous meta-analyses (Chen & Li, 2014; Schneider et al., 2017). 

Additionally, the lack of relation between mathematics achievement and congruent trials, and 

significant relation between mathematics achievement and incongruent trials has been previously 

reported in low-income (Fuhs & McNeil, 2013) and middle-to-high income individuals (Keller 

& Libertus, 2015). Further, Price and Wilkey (2017) showed that the mediating relation among 

nonsymbolic comparison accuracy rates and mathematics achievement in the same group of 

children as the current study follows the same patterns as previously reported literature from 

wider SES samples (Lyons & Beilock, 2011). 

 Second, alternative explanations of the current results are possible. For example, rather 

than our hypothesis about domain-specific executive function, the current results could indicate 

that individuals who utilize an appropriate strategy for incongruent trials, whether consciously or 

not, are better at mathematics. If framed as a task strategy, then strategy selection does not 

necessarily equate to number-specific executive function. Another alternative is that individual 

differences in task performance are based not on cognitive efficiencies, but rather a 

predisposition to focus on one aspect of the visual stimuli. A deficit of number-specific executive 

function is different than the failure to utilize it. Prior research has documented that individuals 

with a tendency to spontaneously focus on exact quantities have higher arithmetic abilities 

(Batchelor, Inglis, & Gilmore, 2015; Hannula, Lepola, & Lehtinen, 2010). Recently, this line of 

research has been expanded to incorporate spontaneous orientation to conflicting or irrelevant 
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dimensions of non-numerical magnitude similar to those of the current study (Viarouge et al., 

2017). Research on the underlying neurocognitive mechanisms can also help to distill the root of 

the differences observed in the current results.  

 A third factor to consider, specifically in regards to the group comparison results, is that 

choosing to identify a DD group based on consistent, low mathematics achievement over time 

has both benefits and limitations for interpreting results. In our methods, we make an argument 

that DD is likely heterogenous in nature and that identifying a “pure dyscalculic” group via the 

use of an IQ-math achievement discrepancy criteria results in the exclusion of individuals with 

DD that do not show a discrepancy due to the high comorbidity of other developmental deficits 

which would affect IQ or another achievement measure such as reading. With this analytic 

decision comes the limitation that some individuals within the DD group may perform poorly in 

mathematics testing due to a more globalized cognitive deficit (e.g. IQ) rather than a specific 

math deficit, and further, that this global deficit was not adequately controlled for when 

covarying out reading ability and executive function. One solution suggested by Szűcs (2016) 

may be to focus more on positioning individuals in a multidimensional parametric space that 

identifies specific cognitive functions related to mathematical performance. The current results 

suggest that number-specific executive function is likely to be one such cognitive function. 

 Fourth, the current study makes the case that number-specific executive function may be 

impaired in DD and also related to mathematics achievement across a wide achievement range. 

This conclusion is based on the idea that a relation between two variables (i.e. math achievement 

and performance on incongruent trials of the number comparison task) survives after controlling 

for individual differences in other cognitive factors (i.e., executive function in a non-numerical 

context). In this type of analysis, the conclusion is only as strong as the validity and specificity of 
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control variables. In the current study, only two variables are used as control measures for 

executive function, and therefore, caution is warranted when considering how completely our 

variables controlled for all aspects of executive function unrelated to number.  

Conclusion 

In sum, the two sets of analyses presented here suggest that performance on incongruent 

trials alone relates to the presence of severe mathematics learning deficits as well as individual 

differences in mathematics across a wide range of achievement, even when excluding DD 

individuals. Results suggest that number-specific executive function is a unique predictor of 

mathematics achievement beyond measures that target the ANS or executive function 

independently. In order to understand how the intersection of these multiple cognitive 

mechanisms relates to the acquisition of mathematics skills, future studies should move from a 

domain-specific vs. domain-general approach to experiments that deconstruct this framework. In 

so doing, future hypotheses can more closely address the integration of cognitive mechanisms 

required to complete a complex task such as mathematical thought. Further, the current findings 

do little to explain the relation between nonsymbolic number perception and symbolic number. 

Understanding their relation may further explain why number-specific executive function relates 

to symbolic mathematics. This type of investigation may lead to an enhanced understanding of 

what type of training or remediation of a specific skill set provides the most potential for transfer 

to improved mathematics achievement more broadly. Given that the current study provides 

support for an integral relation between a “domain-general” mechanism with a number-specific 

one, a training that seeks to leverage this intersection should be explored. 
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Table 1. Descriptive statistics for achievement subgroups. 

* z-scores presented based on full sample of 448 individuals.  
WCJ-III = Woodcock Johnson III. KM-3 = KeyMath-3. 

Achievement Group 
Sample 

DD  
(n = 22, 7 females) 

LA  
(n = 12, 6 females) 

TA 
(n = 188, 106 females) 

Mean SD Range Mean SD Range Mean SD Range 

Age (years), Pre-K 5.1 0.5 4.5-6.4 5.0 0.3 4.7-5.5 5.1 0.3 4.5-5.6 

Age (years), 6th grade 12.2 0.5 11.4-13.4 12.0 0.3 11.6-12.5 12.0 0.3 11.4-12.6 

Nonsymbolic Comparison  
(accuracy, %) 71.5 5.3 62.9-81.4 78.2 6.4 70.0-87.1 75.8 5.0 58.6-91.4 

Nonsymbolic Comparison  
(Congruent accuracy, %) 78.7 9.1 63.6-90.9 76.9 10.7 54.5-86.4 76.3 11.1 40.9-95.5 

Nonsymbolic Comparison  
(Incongruent accuracy, %) 53.5 13.3 27.8-83.3 70.8 21.3 33.3-94.4 65.7 14.0 33.3-94.4 

Nonsymbolic Comparison  
(weber fraction, w) 0.37 0.11 0.21-.65 0.26 0.10 .13-.48 0.27 0.07 0.10-0.56 

Backward Corsi* 
(z-score of max span) -1.21 1.22 -2.4-0.95 0.03 0.57 -0.75-0.95 0.37 0.85 -2.44-2.65 

Hearts and Flowers*  
(z-score of accuracy, %) -1.29 0.79 -2.33-0.82 -0.16 0.83 -1.90-1.83 0.40 0.83 -1.90-1.83 

Letter-Word Identification 
(WCJ-III, standard score) 91.4 9.90 75-113 97.4 11.9 73-113 115.1 11.9 85-144 
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Figure 1. Nonsymbolic numerical magnitude comparison stimuli and paradigm timing. (A) 
Incongruent trial example of ratio 0.67 (smaller number dot set/larger number dot set, 6/9 = 
0.67). (B) Congruent trial example, also of ratio 0.67. 
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Figure 2. Nonsymbolic number comparison accuracy rates by achievement group. DD = 
developmental dyscalculia. LA = low achieving. TA = typically achieving. Error bars represent 
standard errors. P-values are indicated for differences in accuracy between congruent and 
incongruent trials (*** p < .001). 
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Table 2. Descriptive statistics for experimental and standardized measures for full sample. 

 Entire Sample  
(n = 448, 250 females) 

 Mean SD Range 

Age (years), 6th grade 12.0 .32 11.4-13.4 

Nonsymbolic Comparison  
(accuracy, %) 74.8 5.48 48.6-91.4 

Nonsymbolic Comparison  
(Congruent accuracy, %) 76.6 11.2 36.4-100 

Nonsymbolic Comparison  
(Incongruent accuracy, %) 63.1 14.5 22.2-94.4 

Nonsymbolic Comparison 
(weber fraction, w) 0.29 0.10 0.10-1.42 

Backward Corsi * 
(max span) 4.81 1.22 2-8 

Hearts and Flowers*  
(accuracy, %) 73.4 14.5 35-100 

Letter-word ID – WCJ-III  
(K, percentile rank) 109.7 12.7 73-144 

Math Achievement - KM-3 
(6th grade, percentile rank) 27.0 23.1 0.5-92.5 

* Raw scores reported here for year available. See sections 2.4.2 and 2.4.3 for a detailed 
description of scores used for analyses. WCJ-III = Woodcock Johnson III. KM-3 = KeyMath-3. 
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Figure 3. Nonsymbolic number comparison accuracy rates split by (left) congruent and (right) 
incongruent trials including all individuals from the full sample plotted against �𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖3 , the 
outcome variable of equation 1 below, cube root of the composite math achievement percentile 
rank. DD = developmental dyscalculia. LA = low achieving. TA = typically achieving. pr = 
percentile rank. Bivariate correlations of the full sample are presented in the bottom corner of 
each panel (*** p < .001). Orange diamonds represent individuals who did not fit our selection 
criteria for stable achievement grouping based on Pre-K to 7th grade achievement. 
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Table 3. Taxonomy of fitted multi-level models describing the relation between the cubed root 
of 6th grade mathematics achievement and accuracy on nonsymbolic number comparison, 
separately for incongruent and congruent trials, controlling for working memory, inhibitory 
control and task switching, reading achievement, and age of testing in 6th grade (nschools = 75; 
nstudents = 448).  
 

 6th grade mathematics achievement (cubed root) 

 M1 M2 M3 M4 M5 

Intercept 0.562*** 0.286** 0.480*** 0.011 -1.084** 
(0.015) 

[.532–.593] 
(0.091) 

[.107–.465] 
(0.036) 

[.410–.551] 
(0.072) 

[-.131–.152] 
(0.337) 

[-1.744–-.424] 
Nonsymbolic Comparison, 
incongruent trials, acc. 

 0.321*** 0.144** 0.141** 0.126* 
 (0.066) 

[.192–.449] 
(0.053) 

[.039–.248] 
(0.051) 

[.042–.241] 
(0.050) 

[.027–.224] 
Nonsymbolic Comparison, 
congruent trials, acc. 

 0.097    
 (0.083) 

[-.066–.261] 
   

Backward Corsi,  
max span 

  0.054*** 0.051*** 0.050*** 
  (0.008) 

[.039–.069] 
(0.007) 

[.037–.065] 
(0.007) 

[.036–.064] 
Hearts and Flowers,  
mixed trials, acc. 

  0.060*** 0.053*** 0.051*** 
  (0.008) 

[.045–.075] 
(0.007) 

[.038–.067] 
(0.007) 

[.036–.065] 
Reading achievement, 
LWID, end of Kindergarten 

   0.004*** 0.005*** 
   (0.001) 

[.003–.006] 
(0.001) 

[.004–.007] 
Age of KeyMath-3 testing,  
6th grade 

    0.007*** 
    (0.002) 

[.003–.011] 

𝜎𝜎�𝑢𝑢 
0.094*** 0.091*** 0.073*** 0.057*** 0.051*** 
(0.014) (0.014) (0.011) (0.010) (0.010) 

𝜎𝜎�𝑒𝑒 
0.174*** 0.170*** 0.150*** 0.144*** 0.143*** 
(0.006) (0.006) (0.005) (0.005) (0.005) 

𝜌𝜌� 
0.225*** 0.223*** 0.190*** 0.134*** 0.112** 
(0.057) (0.057) (0.050) (0.043) (.040) 

Log-likelihood  114.559 126.743 185.816 211.721 217.176 

*p < .05, **p < .01, ***p < .001. Acc. = accuracy, LWID = letter-word identification, 𝜎𝜎�𝑢𝑢 = School-
level residual standard deviation, 𝜎𝜎�𝑒𝑒= Student-level residual standard deviation, 𝜌𝜌� = Intra-class 
correlation. Standard errors are in parentheses and 95% confidence intervals are in brackets.  
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Appendix A. Detailed Results from 6.7th Percentile cutoff sample achievement group analysis. 

 

 

To make current results more easily comparable to previous literature that used differing cutoff 

thresholds for determining DD groups, the current study also examined whether there were differences 

between two commonly used thresholds for determining a dyscalculic sample. This threshold has varied 

widely across studies, and has likely contributed to disagreement among findings (Mazzocco & Myers, 

2003). Another commonly used threshold is mathematics achievement scores 1.5 standard deviations 

below the nationally normed means, which is equivalent to performance below the 6.7th percentile 

(Kaufmann et al., 2013; Price et al., 2007; Rotzer et al., 2009). This threshold resulted in the following 

achievement groupings: DD,  ≤ 6.7th percentile; LA, 6.7th - 25th percentile; TA, 25th - 95th percentile. 

Again, individuals were placed in achievement groups if their mathematics achievement scores were 

consistently in the designated achievement range at two of the three early assessments (PreK-1st grade) 

AND two of the three later assessments (5th-7th grades).  Given these criteria, 221 children fit into 

consistent achievement groups across early and later assessment periods, 11 children met the criteria for 

DD, 22 for LA, and the same 188 children were TA. Descriptive statistics in Table A1. 

Results 

As in the first achievement group sample, there were no differences according to gender 

distribution percentages of mathematics achievement groups with the 6.7th percentile cutoff grouping 

(Pearson χ2(2) = 4.045, p = .132, Cramer’s V = .132), nor in mathematics achievement (t(446) = 1.182, p 

= .238, Cohen’s d = 0.112) or in nonsymbolic comparison accuracy (t(446) = 0.780, p = .436, Cohen’s d 

= 0.074) at 6th grade, the outcome year of interest for the second set of primary analyses. 
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Table A1. Descriptive statistics for experimental and standardized measures. 

* Raw scores reported here for year available. See sections 2.4.2 and 2.4.3 for a detailed description of 
scores used for analyses. WCJ-III = Woodcock Johnson III. KM-3 = KeyMath-3. 

 

 

Detailed Results from 6.7th Percentile cutoff sample achievement group analysis. For the 6.7th 

percentile cutoff sample, there was an effect of congruency in the DD and TA groups [t(10) = 3.855, p = 

.003, Cohen’s d = 1.968 for DD; t (187) = 6.795, p < .001, Cohen’s d = 0.844 for TA], but not in the LA 

group [t (21) = .705, p = .068, Cohen’s d = 0.705]. The right panel of Figure A2 shows the congruency 

 
10th Percentile Cutoff 

Sample 
(n = 222, 116 females) 

6.7th Percentile Cutoff 
Sample 

(n = 221, 115 females) 

Entire Sample  
(n = 448, 250 females) 

 Mean SD Range Mean SD Range Mean SD Range 

Age (years),  Pre-K 5.1 0.3 4.5-6.4 5.1 0.3 4.5-6.4    

Age (years), 6th grade 12.0 0.3 11.4-13.4 12.0 0.3 11.4-13.4 12.0 .32 11.4-13.4 

Nonsymbolic Comparison  
(accuracy, %) 75.5 5.29 58.6-91.4 75.6 5.3 58.6-91.4 74.8 5.48 48.6-91.4 

Backward Corsi * 
(max span) 5.1 1.2 2-8 5.2 1.1 2-8 4.81 1.22 2-8 

Hearts and Flowers*  
(accuracy, %) 76.4 14.4 40-100 76.8 13.9 44-100 73.4 14.5 35-100 

Letter-word ID – WCJ-III  
(K, percentile rank) 111.8 14.1 73-144 111.8 14.2 73-144 109.7 12.7 73-144 

Math Achievement- WCJ-III 
(Pre-K, percentile rank) 51.3 24.9 1.0-95.0 52.4 23.8 1.0-95.0    

Math Achievement- WCJ-III 
(K, percentile rank) 52.1 24.7 0.0-93.0 52.7 23.8 0.0-93.0    

Math Achievement- WCJ-III 
(1st grade, percentile rank) 48.1 24.6 0.4-95.5 48.6 24.1 0.4-95.5    

Math Achievement - KM-3 
(5th grade, percentile rank) 39.2 23.5 0.5-96.2 39.6 23.1 0.7-96.2    

Math Achievement - KM-3 
(6th grade, percentile rank) 42.1 22.7 0.5-92.5 42.4 22.3 1.0-92.5 27.0 23.1 0.5-92.5 

Math Achievement - KM-3 
(7th grade, percentile rank) 42.6 22.9 0.5-94.1 42.9 22.5 0.5-94.1    
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effect for DD and TA groups in the 6.7 percentile cutoff sample. Levene’s test of equality of variances 

showed no significant differences in variance across groups for mean accuracy of congruent trials or 

incongruent trials. Results from the ANOVA showed that there was no effect of achievement group on 

number comparison performance for congruent trials [F(2, 218) = .389, p = .679., η2 = 0.003], but there 

was a significant effect of achievement group on number comparison performance for incongruent trials 

[F(2, 218) = 4.947, p = .008, η2 = 0.043]. After adjusting for multiple comparisons, one-tailed post-hoc 

tests indicated lower accuracy rates for DD than TA children (Bonferroni adjusted p = .003, Hedge’s g = 

0.997), lower accuracy rates for DD than LA children (Bonferroni adjusted p = .011, Hedge’s g = 0.821), 

and no difference between LA and TA groups (Bonferroni adjusted p = .500, Hedge’s g = 0.028).  

Results from the ANCOVAs with the covariates of mean accuracy on the Hearts and Flowers 

mixed trials, max span on the backward Corsi block-tapping test, age at grade 6 testing, and letter-word 

identification at the end of Kindergarten indicated there was no effect of achievement group on number 

comparison performance for congruent trials [F(2, 214) = .208, p = .812, partial η2 = 0.002], but there was 

a significant effect for incongruent trials [F(2, 214) = 3.356, p = .037, partial η2 = 0.030]. After adjusting 

for multiple comparisons, one-tailed post-hoc tests indicated lower accuracy rates for DD than TA 

children (Bonferroni adjusted p = .034, Hedge’s g = 0.895 lower accuracy rates for DD than LA 

(Bonferroni adjusted p = .017, Hedge’s g = 0.893), and no difference between LA and TA groups 

(Bonferroni adjusted p = .500, Hedge’s g = 0.112). These results replicate the pattern observed in the 

ANOVA. 

The same ANOVA’s and ANCOVA’s were conducted on groups formed with the 6.7th percentile 

cutoff threshold for both congruent and incongruent trials and results fit the same pattern as those of the 

10th percentile cutoff. In sum, all ANOVA’s and ANCOVA’s conducted on both the 10th and 6.7th 

percentile cutoff samples show the same pattern of results whereby: (1) no group differences are observed 

for congruent trials of the nonsymbolic comparison task, (2) the DD group performs significantly below 

LA and TA groups on incongruent trials even when controlling for other cognitive factors and early 
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reading achievement, and (3) no group differences are present between LA and TA groups on incongruent 

trials. 

 

 

Figure A2. Nonsymbolic number comparison accuracy rates for the sample with developmental 
dyscalculia (DD) defined as achievement below the 10th percentile (left) and 6.7th percentile (right) split 
by congruency. LA = low achieving. TA = typically achieving. Error bars represent standard errors. P-
values are indicated for differences in accuracy between congruent and incongruent trials (*** p < .001). 
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Appendix B. Details of missing 6th grade Corsi span scores. 

 

At the 6th grade assessment, 22 children (of n = 448) did not proceed from instruction in 

the backward Corsi to successful completion of a trial, indicating noncompliance with the task or 

a failure to understand instructions. Scores on outcome measures and covariates of interest for 

these children were different, on average, from those children who successfully completed the 

task (nonsymbolic accuracy t(446) = 3.728, p < .001, Cohen’s d = 0.794; Hearts and Flowers 

mean accuracy t(446) = 3.508, p < .001, Cohen’s d = 0.716; 6th grade mathematics achievement 

t(446) = 2.587, p = .010, Cohen’s d = 0.613). Therefore, to avoid nonrandom missing data and 

include these children in our analyses, backward Corsi max span from the 5th grade was used, 

where available. To maintain the relative position of children’s scores in the 5th grade among 

other children’s 6th grade scores (5th grade mean max span = 4.52, 6th grade mean span = 4.88), 

both years of backward Corsi max spans were z-scored and 5th grade z-scores of the 22 children 

were used instead of 6th grade z-scores, which were used for the other 426 children.  

 



ANS, math, and EF relation  65 

Appendix C. Exploration of the model fit. 

 In order to better interpret the non-linear relation between accuracy on incongruent trials 

of the nonsymbolic number comparison task and mathematics achievement, we plot this relation 

in Figure 3. This figure shows the fitted relation between untransformed 6th grade mathematics 

achievement and nonsymbolic number comparison accuracy on incongruent trials for Model M6, 

holding Hearts and Flowers accuracy, backward Corsi span, early reading achievement, and age 

at testing in 6th grade at their sample means. As Figure 3 shows, the magnitude of the relation 

between accuracy on incongruent trials and mathematics achievement is greater for students with 

higher accuracy, on average. For example, the estimated difference between students with 30% 

and 40% accuracy on nonsymbolic number comparison is associated with a difference of 1.0 

percentile rank points in 6th grade mathematics achievement, on average. The difference between 

students with 75% and 85% accuracy on nonsymbolic number comparison is associated with a 

difference of 1.3 percentile rank points in 6th grade mathematics achievement, on average.  

 
Figure B1. Predicted 6th grade mathematics achievement as a function of accuracy on 
incongruent trials of nonsymbolic number comparison, for students with average domain-general 
executive functioning and early reading achievement, and of average age at testing in 6th grade.  
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Table S1. Descriptive statistics for experimental and standardized measures. 

 
Achievement Group 

Sample 
(n = 222, 116 females) 

Entire Sample  
 

(n = 448, 250 females) 
 Mean SD Range Mean SD Range 

Age (years),  Pre-K 5.1 0.3 4.5-6.4    

Age (years), 6th grade 12.0 0.3 11.4-13.4 12.0 .32 11.4-13.4 

Nonsymbolic Comparison  
(accuracy, %) 75.5 5.29 58.6-91.4 74.8 5.48 48.6-91.4 

Nonsymbolic Comparison  
(Congruent accuracy, %)    76.6 11.2 36.4-100 

Nonsymbolic Comparison  
(Incongruent accuracy, %)    63.1 14.5 22.2-94.4 

Nonsymbolic Comparison 
(weber fraction, w)` 0.28 0.08 0.10-0.65 0.29 0.10 0.10-1.42 

Backward Corsi * 
(max span) 5.1 1.2 2-8 4.81 1.22 2-8 

Hearts and Flowers*  
(accuracy, %) 76.4 14.4 40-100 73.4 14.5 35-100 

Letter-word ID – WCJ-III  
(K, percentile rank) 111.8 14.1 73-144 109.7 12.7 73-144 

Math Achievement- WCJ-III 
(Pre-K, percentile rank) 51.3 24.9 1.0-95.0    

Math Achievement- WCJ-III 
(K, percentile rank) 52.1 24.7 0.0-93.0    

Math Achievement- WCJ-III 
(1st grade, percentile rank) 48.1 24.6 0.4-95.5    

Math Achievement - KM-3 
(5th grade, percentile rank) 39.2 23.5 0.5-96.2    

Math Achievement - KM-3 
(6th grade, percentile rank) 42.1 22.7 0.5-92.5 27.0 23.1 0.5-92.5 

Math Achievement - KM-3 
(7th grade, percentile rank) 42.6 22.9 0.5-94.1    

* Raw scores reported here for year available. See sections 2.4.2 and 2.4.3 for a detailed 
description of scores used for analyses. WCJ-III = Woodcock Johnson III. KM-3 = KeyMath-3. 
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Supplementary Table S2. Task details for number comparison tasks of all formats, n = 448. 

Nonsymbolic Number Comparison Task Details and Accuracy Rates By Ratio 

Ratios 

Accuracy (%) 

all trials (SD) 

Accuracy (%) 

CON (SD) 

Accuracy (%) 

INC (SD) 

Trials 

(CON) 

Trials 

(INC) 

0.33 (5 v 15) 0.984 0.977 0.983 2 2 

0.5  (5 v 10) 0.958 0.935 0.974 2 2 

0.67 (6 v 9) 0.925 0.949 0.844 4 2 

0.8 (8 v 10) 0.697 0.743 0.472 6 2 

0.86 (12 v 14) 0.640 0.701 0.394 4 2 

0.88 (7 v 8) 0.504 0.488 0.500 2 6 

0.9 (9 v 10) 0.530 0.502 0.512 2 2 

SD= standard deviation. CON = congruent. INC = incongruent. Average ratio for congruent 
trials was 0.733 and for incongruent trials was 0.744 
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Table S3. Pearson r values for bivariate correlations between measures included in regression 
model predicting 6th grade mathematics achievement. 

Measure  (n = 448) 1 2 3 4 5 

1. Nonsymbolic Comparison, 
congruent trials, acc.      

2. Nonsymbolic Comparison, 
incongruent trials, acc. 

-.447*** 
[-.518, -.369]     

3. Backward Corsi, max span -.051 
[-.143, .042] 

.193*** 
[.102, .280]    

4. Hearts and Flowers,  
       mixed trials, acc. 

.017 
[-.076, .109] 

.186*** 
[.095, .274] 

.242*** 
[.153, .327]   

5. Reading achievement, 
LWID, end of Kindergarten 

-.010 
[-.102, .083] 

.071 
[-.022, .162] 

.130** 
[.038, .220] 

.172*** 
[.081, .260]  

6. Mathematics achievement, 
composite, grade 6 

-.067 
[-.158, .026] 

.226*** 
[.136, .312] 

.396*** 
[.315, .471] 

.411*** 
[.331, .485] 

.412*** 
[.332, .486] 

* p < .05, **p<.01, *** p < .001. Acc. = accuracy; LWID = letter-word identification (WCJ-III). 
The mathematics achievement composite score is cube-root transformed as described below. 
95% Confidence Intervals in brackets. 
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Supplementary Table S4. Comparison of nonsymbolic comparison performance and Keymath-3 subtest correlations. 
 

 
KeyMath-3 Number Subscale:  

Age-scaled Score 
KeyMath-3 Algebra Subscale:  

Age-scaled Score 
KeyMath-3 Geometry 

Subscale:  Age-scaled Score 
Nonsymbolic Comparison  
(accuracy, %) 

Pearson Correlation .151** .166** .197** 
Sig. (2-tailed) .001 .000 .000 
Fischer r-to-z; z test Number vs Algebra p= .818 Algebra vs Geometry p = .631 Geometry vs Number p = .478 

Nonsymbolic Comparison  
(Congruent accuracy, %) 

Pearson Correlation -.086 -.052 -.040 
Sig. (2-tailed) .069 .274 .397 
Fischer r-to-z; z test Number vs Algebra p= .610 Algebra vs Geometry p = .857 Geometry vs Number p = .490 

Nonsymbolic Comparison  
(Incongruent accuracy, %) 

Pearson Correlation .196** .182** .232** 
Sig. (2-tailed) .000 .000 .000 
Fischer r-to-z; z test Number vs Algebra p= .826 Algebra vs Geometry p = .435 Geometry vs Number p = .576 

Nonsymbolic Comparison  
(weber fraction, w) 

Pearson Correlation -.200** -.231** -.209** 
Sig. (2-tailed) .000 .000 .000 
Fischer r-to-z; z test Number vs Algebra p= .631 Algebra vs Geometry p = .734 Geometry vs Number p = .889 

 
* Pearson r values were compared by transforming the r value to a z value and comparing the z values using a two-tailed z test with an 
alpha of .05. 
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Figure S5. Scatter plots of nonsymbolic number comparison performance measures and composite math 
achievement (A, B, C) and a plot of congruent by incongruent accuracy rates (D). 
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