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Abstract

Although there have been repeated attempts to define the concept of
an Archimedean algebra for individual classes of residuated lattices, there
is no all-purpose definition that suits the general case. We suggest as a
possible candidate the notion of a normal-valued and e-cyclic residuated
lattice that has the zero radical compact property — namely, a normal-
valued and e-cyclic residuated lattice in which every principal convex sub-
universe has a trivial radical (understood as the intersection of all its max-
imal convex subuniverses). We characterize the Archimedean members in
the variety of e-cyclic residuated lattices, as well as in various special cases
of interest. A theorem to the effect that each Archimedean and prelinear
GBL-algebra is commutative, subsuming as corollaries several analogous
results from the recent literature, is grist to the mill of our proposal’s
adequacy. Finally, we revisit the concept of a hyper-Archimedean resid-
uated lattice, another notion with which researchers have engaged from
disparate angles, and investigate some of its properties.

1 Introduction

If we are given two real numbers a, b such that 0 < a < b, we know that
there must be a positive integer n such that na > b — in other words, R
contains no infinitesimal elements. This Archimedean property is one of the
most distinctive and useful features of the field of the reals; it grounds both
the theory of magnitudes and classical, as opposed to nonstandard, analysis.
Given its crucial role in mathematics, it is desirable to inquire whether it can
be extended beyond its original domain of significance, so as to be applicable to
more general ordered structures, such as residuated lattices [4, 28, 33].

Indeed, for individual classes of residuated lattices – such as `-groups [2, Ch.
2] or MV-algebras [7, §§ 3.6, 6.3], just to name two examples – there exist well-
worked definitions of an infinitesimal element and of an Archimedean algebra,
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that capture the idea of such algebras “having no infinitesimals”. In the general
case, however, it is by no means obvious how to express this intuitive concept
in rigorous terms, all the more so if we aim (as in [14, 8]) at encompassing
under a common umbrella all the extant definitions. In the literature, two main
viewpoints have been adopted according to whether the notion of Archimedean
algebra or the notion of infinitesimal element is viewed as more fundamental:

• Some authors have suggested to identify Archimedean residuated lattices
with semisimple algebras, letting infinitesimal elements be the non-unit
elements of an algebra’s normal radical (see below).

• In other areas, instead, it is more customary to seek a handy character-
ization of infinitesimal (or of non-infinitesimal) element, which is subse-
quently employed to yield a definition of Archimedean residuated lattice
as a residuated lattice containing no infinitesimals in precisely this sense.

It will be clear from what follows that neither viewpoint is general enough.
In fact, one can find residuated lattices that should count as Archimedean by
all reasonable standards but elude the former definition, while it is hard to
come up with a definition of infinitesimal element that can be applied across
the board. Before advancing an alternative proposal, however, let us review
these perspectives in some more detail.

Let us recall that a semisimple algebra is an algebra that is isomorphic to a
subdirect product of simple algebras. Equivalently, an algebra A is semisimple
just in case the intersection of its maximal congruences is the identity rela-
tion ∆. Since all varieties of residuated lattices are ideal-determined1, such an
equivalence assumes in this context an especially attractive form: a residuated
lattice L is semisimple if the intersection of all the maximal normal convex
subuniverses of L — in other words, its normal radical — is the singleton of
its unit element {e}. The circumstance that, at least in some paradigmatic
cases, the members of the normal radical can be described via an appropriate
“non-Archimedean” condition invites the identification of infinitesimal elements
with the non-unit elements of the normal radical of L, and consequently, the
identification of Archimedean and semisimple residuated lattices [7, § 3.6].

This viewpoint has its allure and provides an intriguing bridge to the clas-
sical notion, especially in varieties of residuated lattices whose strongly simple
members can be embedded into algebras over the real numbers. However, it
does not work in general — the obvious pitfall being varieties of residuated lat-
tices, such as `-groups, whose members need not have maximal normal convex
subuniverses. For example, let X be a Stone space with nonmeasurable car-
dinality and with no isolated points, and let D (X) be the set of continuous,
almost finite real-valued functions on X [2, Ex. E21]. D (X) can be made into
the universe of an `-group which is Archimedean in the `-group sense, but not
semisimple.

1Let us remark that the property of being an ideal variety is a Maltsev property, whence
it carries over from a variety V to its subvarieties.
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The alternative viewpoint, as we have observed, focuses on the notion of
an infinitesimal element. For example, an element a < e of an `-group L is
said to be infinitesimal just in case there exists b < e in L such that for all
positive integers n, an > b, and an Archimedean `-group is usually defined as
an `-group with no infinitesimals. However, this definition wears thin as soon
as we trespass onto varieties of (pointed) residuated lattices that can contain
non-trivial idempotent members. For example, if we apply this definition to the
class of Boolean algebras, it turns out, against anyone’s better judgment, that
no non-trivial Boolean algebra is Archimedean.

For integral and involutive2 pointed residuated lattices, there is a way around
this problem. Let L be such a residuated lattice, and let a ∈ L be such that
a < e. Then a is said to be infinitesimal just in case for all positive integers n,
an ≥ a\f , and Archimedean residuated lattices are those residuated lattices that
contain no such infinitesimals [19]. Interestingly enough, in the case of pseudo-
MV algebras (see below), these are just the semisimple algebras: [16], [7, Prop.
3.6.4]. But again, although this concept works well in integral and pointed
structures, it is ill-suited for non-pointed residuated lattices, and certainly its
failure to account for Archimedean `-groups represents a major drawback.

A recurrent theme that spans the literature on Archimedean residuated lat-
tices is provided by results to the effect that, given some class K of residu-
ated lattices, and given a definition of Archimedean algebra that suits K, all
Archimedean members of K are commutative: [2, Thm. 2.2], [16, Thm. 4.2],
[18, Thm. 3.3], [30, Cor. 5.2]. On the other hand, examples of noncommutative
residuated lattices, usually taken from outside the class of GBL-algebras, that
are Archimedean under some of the above acceptations have been discussed as
well [8]. Against this backdrop, a natural challenge is to find a definition of
Archimedean residuated lattice that, unlike the above-mentioned suggestions,
subsumes all the existing concepts, and to single out a large enough class K
for which being Archimedean in this sense implies being commutative. This is
what we set out to do in the present paper.

The way we intend to approach this problem is inspired by the work of P.F.
Conrad, who, in the 1960s, launched a general program for the investigation
of `-groups [9, 10, 11, 12], aimed at capturing relevant information about these
algebras by inquiring into the structure of their lattices of convex `-subgroups,
as well as at showing that many significant properties of `-groups are, in essence,
either purely lattice-theoretic, or at least such that the underlying group struc-
ture does not play a predominant role. A natural continuation of Conrad’s
original program consists in extending it from `-groups to more comprehensive
domains, in primis residuated lattices. This extended Conrad program has fu-
eled some of the recent developments in the theory of residuated structures,
leading to promising results e.g. in the study of semilinear and Hamiltonian
varieties [5], in the investigation of normal-valued residuated lattices [6] and in
the description of projectable objects [25, 31].

2In [8], a generalization of this definition to the case of not necessarily involutive residuated
lattices is introduced and discussed.
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What in our view is the most far-reaching attempt to capture the Archimedean
property so far, due to Jorge Martinez [32], is indeed consistent with Conrad’s
approach. An algebraic distributive lattice L, where the set of compact elements
is closed under finite meets, has the zero radical compact property3 if for each
compact element c ∈ L, the meet of all the maximal elements in the interval
[⊥, c] in L is ⊥. Martinez observed that an Abelian `-group is Archimedean
if and only if its lattice of convex subuniverses has the zero radical compact
property [32, p. 249]. In this special case, therefore, the Archimedean prop-
erty is fully captured in the lattices of convex subuniverses of the `-groups in
question. However, this is no longer true, even in the `-group setting, once
we bring non-commutative algebras to the fore, divorcing thereby the notion of
convex subuniverse from the notion of normal convex subuniverse. Our hopes
of pinning down the Archimedean property in purely lattice-theoretic terms are
readily dashed once we consider that there exist Archimedean `-groups and non-
normal-valued `-groups whose lattices of convex subuniverses are isomorphic [2,
Ex. E53].

We advance hereby a suggestion to the effect that a residuated lattice is
Archimedean just in case (1) it is e-cyclic; (2) it is normal-valued; and (3) its
lattice of convex subuniverses has the zero radical compact property. The re-
striction to e-cyclic residuated lattices is motivated by the fact that only in the
e-cyclic case lattices of convex subuniverses are known to behave in the appro-
priate way – for example, they are distributive lattices [5]. The desideratum
(3) is clearly inspired by Martinez’s characterization of Archimedean Abelian
`-groups. Finally, (2) supplements the lattice-theoretic toolbox with the needed
extra information for fully describing the property. In Definition 8, we will state
the property of being normal-valued in such a way that it includes e-cyclicity,
a convention that we assume to take effect hereafter.

A stronger notion of a hyper-Archimedean residuated lattice has been paid
some attention in the literature: [18], [39], [7, § 6.3]. A hyper-Archimedean
(pointed) residuated lattice is at times defined as a residuated lattice L such
that for all a ∈ L there exists some n ≥ 1 such that an = an+1 (this n
need not be the same for all elements, unlike in n-potent residuated lattices,
namely, residuated lattices satisfying the equation xn ≈ xn+1 for some n ≥
1). This condition is quite restrictive, since all GBL-algebras that are hyper-
Archimedean in this sense are necessarily integral and Hamiltonian [18]; more-
over, it does not mix well with cancellativity. In other contexts, for example
in the `-group case, hyper-Archimedean residuated lattices are characterized as
residuated lattices whose quotients modulo any normal convex subuniverse are
Archimedean. These two different perspectives can be reconciled by defining a
hyper-Archimedean residuated lattice as a normal-valued residuated lattice L
whose prime (meet-irreducible) convex subuniverses are maximal – that is, they
form an anti-chain. Observe that this definition requires no additional foray
outside the borders of the lattice-theoretic territory, other than those that are

3Martinez calls such lattices Archimedean. We prefer to use a brand new label in order to
avoid conflicts with the notion of an Archimedean residuated lattice.
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already demanded by the notion of an Archimedean lattice.
Let us now illustrate the article’s discourse. In Section 2, we dispatch some

preliminaries on residuated lattices and their convex subuniverses. In Section 3,
we initially consider normal-valued residuated lattices with a strong order unit,
giving a description of their maximal convex subuniverses and, consequently, of
their radicals. This characterization is put to good use once we have introduced
the notion of an Archimedean residuated lattice. Given a residuated lattice L,
an element a ∈ L and a sequence γ = 〈γ1, ..., γm〉 of iterated conjugation maps
in L, let

πuγ (a) =

m∏
j=1

γj (|a|) \u ∧ e,

and, for n ∈ Z+,
πun (a) = |a|n\u ∧ e.

The main results of this section (whose full terminology and notation will be
duly explained there) are as follows:

Theorem A (see Theorem 18) Let L be a non-trivial normal-valued residu-
ated lattice. The following statements are equivalent:

1. L is Archimedean.

2. For all u < e in L and all elements a 6= e in C[u], there exists m ∈ Z+

such that πun(πum (a)) 6= e, for all n ∈ Z+.

3. For all u < e in L and all elements a 6= e in C[u], there exists an m-tuple
γ = 〈γ1, ..., γm〉 of iterated conjugation maps in L such that πuδ (πuγ (a)) 6=
e, for all n-tuples δ = 〈δ1, ..., δn〉.

Theorem B (see Theorem 24) Let L be a non-trivial normal-valued, prelin-
ear, and cancellative residuated lattice. The following statements are equivalent:

1. L is Archimedean.

2. For all u < e in L and all elements a < e in C[u], there exists m ∈ Z+

such that u ≮ am.

Next, we consider generalized BL-algebras (or GBL-algebras: [28]): basi-
cally, divisible residuated lattices. In Section 5, we connect a number of results
scattered in the literature and observe that GBL-algebras are amenable to a
generalization of Hőlder’s theorem for `-groups, to the effect that any strongly
simple totally ordered GBL-algebra (i.e., any totally ordered GBL-algebra with
no non-trivial convex subuniverse) is isomorphic to either a subalgebra of R, or
a subalgebra of R−, or a subalgebra of the standard MV-algebra on [0, 1]. The
main result of this section is a theorem that subsumes as special cases most of
the above-mentioned results on the commutativity of Archimedean residuated
lattices:

5



Theorem C (see Theorem 32) Any Archimedean and prelinear GBL-algebra
is commutative.

Since generalized MV-algebras [23] are prelinear, we obtain in particular
that:

Theorem D (see Theorem 34) Any Archimedean GMV-algebra is commu-
tative.

In the final section, we lay the groundwork for an investigation of hyper-
Archimedean residuated lattices. Several equivalent characterizations of this
class are available for individual classes of residuated lattices, such as pseudo-
MV-algebras or `-groups. These characterizations generalize as follows to GMV-
algebras (again, the full terminology and notation will be explained in Section
6).

Theorem E (see Theorem 41) For any normal-valued GMV-algebra L the
following conditions are equivalent:

(1) L is hyper-Archimedean.

(2) The interval [H,L] in C(L) has the zero radical compact property, for every
H ∈ C(L).

(3) The prime subuniverses of every principal convex subuniverse H of L are
maximal convex subuniverses of H.

(4) L = C [a]⊗ a⊥, for all a ∈ L.

(5) For all a, b ∈ L−, there exists a natural number m such that b ∨ am =
b ∨ am+1.

2 Preliminaries

2.1 Residuated lattices

We refer the reader to [4, 28, 33, 22] for basic results in the theory of residuated
lattices. Here, we only review background material needed in the remainder of
the paper.

A binary operation · on a partially ordered set A = (A,≤) is said to be
residuated provided there exist binary operations \ and / on A such that for all
a, b, c ∈ A,

(Res) a · b ≤ c iff a ≤ c/b iff b ≤ a\c.

We refer to the operations \ and / as the left residual and right residual of ·,
respectively. As usual, we write xy for x · y, x2 for xx and adopt the convention
that, in the absence of parentheses, · is performed first, followed by \ and /,

and finally by ∨ and ∧, if present.

n∏
j=1

xj is shorthand notation for x1 · · ·xn. We

6



tend to favor \ in calculations, but any statement about residuated structures
has a “mirror image” obtained by reading terms backwards (i.e., replacing xy
by yx and interchanging x/y with y\x).

We are primarily interested in the situation where · is a monoid operation
with unit element e and the partial order ≤ is a lattice order. In this case, we
add the monoid unit and the lattice operation symbols to the similarity type
and refer to the resulting structure L = (L,∧,∨, ·, \, /, e) as a residuated lattice.
The class of residuated lattices forms a variety (see e.g. [33, Prop. 4.5]) that
we denote throughout this paper by RL.

A pointed residuated lattice is an algebra L = (L,∧,∨, ·, \, /, e, f) such that
(L,∧,∨, ·, \, /, e) is a residuated lattice and f is a designated element of L. The
variety of pointed residuated lattices will be denoted by PRL, and analogously,
given any class of residuated lattices, we prepend a “P” to its name to denote
the corresponding class of pointed residuated lattices.

A subvariety of RL of particular interest is the variety CRL of commutative
residuated lattices, which satisfies the equation xy ≈ yx, and hence the equation
x\y ≈ y/x. We always think of this variety as a subvariety ofRL, but we slightly
abuse notation by listing only one occurrence of the operation \ in describing
its members. A restricted form of commutativity is e-cyclicity. A residuated
lattice L is said to be e-cyclic if a\e = e/a for all a ∈ L. It will become clear
below that the structure theory of residuated lattices is especially smooth in the
e-cyclic case.

Given a residuated lattice L = (L,∧,∨, ·, \, /, e), an element a ∈ L is said
to be integral if e = a\e = e/a, and L itself is said to be integral if every
member of it is integral. We denote by IRL the variety of all integral residuated
lattices. The negative cone L− = {x ∈ L : x ≤ e} of a a residuated lattice L
is the universe of an integral residuated lattice L−; the monoid and lattice
operations of L− are just the restrictions of the operations of L, while the
residuals are given by a\L−b = a\Lb∧ e and b/L

−
a = b/La∧ e, for all a, b ∈ L−.

Throughout this article we will sometimes abbreviate by x\−y (respectively, by
y/−x) the term x\y ∧ e (respectively, y/x ∧ e).

An element a ∈ L is said to be invertible if (e/a)a = e = a(a\e). This
is of course true if and only if a has a (two-sided) inverse a−1, in which case
e/a = a−1 = a\e. The residuated lattices in which every element is invertible
are precisely the `-groups. Perhaps a word of caution is appropriate here. An
`-group is usually defined in the literature as an algebra G = (G,∧,∨, ·, −1, e)
such that (G,∧,∨) is a lattice, (G, ·, −1, e) is a group, and multiplication is
order preserving (or, equivalently, it distributes over the lattice operations). The
variety of `-groups is term equivalent to the subvariety LG of RL defined by
the equation (e/x)x ≈ e; the term equivalence is given by x−1 = e/x and x/y =
xy−1, x\y = x−1y. Throughout this paper, the members of this subvariety will
be simply referred to as `-groups. It follows from the preceding comments that
negative cones of `-groups are residuated lattices as well. We denote by LG−
the class, which is indeed a variety [3], of negative cones of `-groups.
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2.2 Convex subuniverses

In this subsection, we review some relevant properties of the lattice of convex
subuniverses of an e-cyclic residuated lattice. An extensive study of related
topics can be found in [5].

A subset C of a poset P = (P,6) is order-convex (or simply convex ) in P
if for every a, b, c ∈ P , whenever a, c ∈ C with a 6 b 6 c, then b ∈ C. For a
residuated lattice L, we write C(L) for the algebraic closure system of all convex
subuniverses of L, partially ordered by set-inclusion. It is noted in Theorem 4
below that C(L) is a distributive lattice.

For any S ⊆ L, we let C[S] denote the smallest convex subuniverse of L
containing S, as well as the corresponding algebra. As is customary, we call
C[S] the convex subuniverse generated by S and let C[a] = C[{a}]. We refer
to C[a] as the principal convex subuniverse of L generated by the element a.
The principal convex subuniverses in C(L) are the compact members of C(L),
as by Lemma 3.(3) below, every finitely generated convex subuniverse of L is
principal.

An important concept in the theory of `-groups is the notion of absolute
value. This idea can be fruitfully generalized in the context of residuated lattices
[5, 37].

Definition 1

1. The absolute value of an element x in a residuated lattice L is the element

|x| = x ∧ e/x ∧ e.

2. If X ⊆ L, we set |X| = {|x| : x ∈ X}.

The proof of the following lemma is routine:

Lemma 2 [5] Let L be an e-cyclic residuated lattice, x ∈ L, and a ∈ L−. The
following conditions hold:

1. x 6 e if and only if |x| = x;

2. |x| 6 x 6 |x|\e;

3. |x| = e if and only if x = e;

4. a 6 x 6 a\e if and only if a 6 |x|; and

5. if H ∈ C(L), then x ∈ H if and only if |x| ∈ H.

In what follows, given a subset S of a residuated lattice L, we write 〈S〉 for
the submonoid of L generated by S. Thus, x ∈ 〈S〉 if and only if there exist
elements s1, . . . , sn ∈ S such that x = s1 · · · sn.

The next lemma provides an intrinsic description of the convex subuniverse
generated by a subset of an e-cyclic residuated lattice.
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Lemma 3 [5] Let L be an e-cyclic residuated lattice.

1. For S ⊆ L,

C[S] = C[|S|] = {x ∈ L : h 6 x 6 h\e, for some h ∈ 〈|S|〉}
= {x ∈ L : h 6 |x|, for some h ∈ 〈|S|〉}.

2. For a ∈ L,

C[a] = C[|a|] = {x ∈ L : |a|n 6 x 6 |a|n\e, for some n ∈ N}
= {x ∈ L : |a|n 6 |x|, for some n ∈ N}.

3. For a, b ∈ L, C[a] ∩ C[b] = C[|a| ∨ |b|] and C[a] ∨ C[b] = C[|a| ∧ |b|]
= C[|a| |b|].

4. If H is a convex subuniverse of L, then H = C[H−].

Lemma 3 yields the following results.

Theorem 4 [5, Thm. 3.8] If L is an e-cyclic residuated lattice, then:

1. C(L) is an algebraic distributive lattice.

2. The poset K(C(L)) of compact elements of C(L) – consisting of the prin-
cipal convex subuniverses of L – is a sublattice of C(L).

In view of the preceding theorem, the lattice C(L) of convex subuniverses of
a residuated lattice L is an algebraic distributive lattice. As such, it satisfies
the join-infinite distributive law

X ∩
∨
i∈I

Yi =
∨
i∈I

(X ∩ Yi),

and hence it is relatively pseudocomplemented. That is, for all X,Y ∈ C(L),
the relative pseudocomplement X → Y of X relative to Y exists:

X → Y = max{Z ∈ C(L) : X ∩ Z ⊆ Y }.

The next lemma provides an element-wise description of X → Y in terms of the
absolute value, and in particular one for the pseudocomplement X⊥ = X → {e}
of X.

Lemma 5 [5] If L is an e-cyclic residuated lattice, then C(L) is a relatively
pseudocomplemented lattice. Specifically, given X,Y ∈ C(L),

X → Y = {a ∈ L : |a| ∨ |x| ∈ Y, for all x ∈ X},

and in particular,

X⊥ = X → {e} = {a ∈ L : |a| ∨ |x| = e, for all x ∈ X}.
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We can define X⊥ for any non-empty subset X ⊆ L. It is not hard to show
that X⊥ = C[X]⊥, so X⊥ is always a convex subuniverse. We refer to X⊥ as
the polar of X; in case X = {x}, we write x⊥ instead of {x}⊥ (or C[x]⊥) and
refer to it as the principal polar of x.

The map ⊥ : C(L) → C(L) is a self-adjoint inclusion-reversing map, while
the map sending H ∈ C(L) to its double polar H⊥⊥ is an intersection-preserving
closure operator on C(L). By a classic result due to Glivenko, the image of this
closure operator is a (complete) Boolean algebra BC(L) with least element {e}
and largest element L. The complement of H in BC(L) is precisely H⊥, whereas,
for any pair of convex subuniverses H,K ∈ BC(L),

H ∨BC(L) K = (H⊥ ∩K⊥)⊥ = (H ∪K)⊥⊥.

On the other hand, meets in BC(L) are just intersections.
This is a convenient place to discuss briefly congruence relations of residuated

lattices. It is proved in [4] (see also [22, Thm. 3.47]), that the congruences
of any residuated lattice L are completely determined by its normal convex
subuniverses. In more detail, given u ∈ L, we define

λu(x) = u\xu ∧ e and ρu(x) = ux/u ∧ e,

for all x ∈ L. We refer to λu and ρu as left conjugation and right conjugation
by u. A convex subuniverse H of L is said to be normal if it is closed under
all left and right conjugation maps. In other words, for all x ∈ H and u ∈ L,
λu(x), ρu(x) ∈ H. An iterated conjugation map in L is a composition γ =
γ1 ◦ ... ◦ γn, where each γi is either a right conjugation or a left conjugation by
an element ai ∈ L. It is clear that H is normal if and only if it is closed under
all iterated conjugation maps. If X ⊆ L, we denote by ΓL [X], or simply by
Γ [X], the set of all iterated conjugates of elements of X in L, letting as usual
Γ [a] be short for Γ [{a}]. In the next lemma, we describe the normal convex
subuniverse NC[S] generated by S ⊆ L.

Lemma 6 [4] Let L be a residuated lattice. For S ⊆ L,

NC[S] = NC[|S|] = {x ∈ L : h 6 x 6 h\e, for some h ∈ 〈Γ [S]〉}
= {x ∈ L : h 6 |x|, for some h ∈ 〈Γ [S]〉}.

Let us remark that, by [4, Thm. 4.12], given a normal convex subuniverse H of
L, the relation

ΘH = {(x, y) ∈ L2 : x\y ∧ y\x ∧ e ∈ H}

is a congruence of L. Conversely, given a congruence relation Θ of L, the
equivalence class [e]Θ is a normal convex subuniverse of L. Further, this corre-
spondence establishes an isomorphism between the congruence lattice of L and
the lattice of its normal convex subuniverses. In what follows, if H is a normal
convex subuniverse of L, we write L/H for the quotient algebra L/ΘH, and
denote the equivalence class of an element x ∈ L by [x]H .
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We close this subsection by introducing a key concept for our considerations.
A residuated lattice L is said to be strongly simple in case its only convex
subuniverses are L and {e}. Clearly, if L is Hamiltonian (that is, every convex
subuniverse is normal), then it is strongly simple if and only if it is simple. In
general, however, there are simple residuated lattices having non-trivial convex
subuniverses, as the following example shows.

Example 7 [5, Ex. 6.1] The residuated lattice with the Hasse diagram displayed
below:

e = 1

a b

c

0

and whose multiplication table is

· 0 a b c e
0 0 0 0 0 0
a 0 a 0 0 a
b 0 c b c b
c 0 c 0 0 c
e 0 a b c e

is simple, but has two non-trivial convex subuniverses, {e, a} and {e, b}.

3 Archimedean residuated lattices

This section discusses the class of Archimedean residuated lattices. Most of the
results below will be essentially devoted to buttressing up the identification of
Archimedean residuated lattices with normal-valued residuated lattices whose
lattices of convex subuniverses have the zero radical compact property. We will
do so by showing that, in all cases of special interest, the latter enjoy many of
the properties one reasonably expects from Archimedean objects.

We proceed with a couple of pertinent definitions. Recall that H ∈ C(L)
is said to be prime if it is meet-irreducible in C(L). That is, whenever X,Y ∈
C(L), and X ∩ Y = H, then X = H or Y = H. In view of the fact that
C(L) is distributive (Theorem 4), H is meet-prime in C(L), that is, whenever
X,Y ∈ C(L), and X ∩ Y ⊆ H, then X ⊆ H or Y ⊆ H.

The definitions of a normal-valued residuated lattice requires the related
concept of a completely meet-irreducible convex subuniverse. Recall that H
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is completely meet-irreducible in C(L) if whenever {Xi : i ∈ I} is a family of
convex subuniverses of L such that H =

∧
i∈I Xi, then H = Xi for some i ∈ I.

Each completely meet-irreducible convex subalgebra H has a unique cover H]

in C(L).

Definition 8 A residuated lattice L is said to be normal-valued provided it is e-
cyclic and each completely meet-irreducible convex subuniverse H of L is normal
in its cover H] in C(L) (more precisely, the subalgebra of L whose universe is
H]).

The term normal-valued is borrowed from the theory of `-groups. In our
setting, a value of a non-identity element a ∈ L is a convex subuniverse H of
L that is maximal with respect to not containing the element a. The convex
subuniverse H, whose existence is guaranteed by Zorn’s Lemma, is easily seen
to be a completely meet-irreducible convex subuniverse of L. This is actually a
lattice-theoretic concept. A value of a compact element c 6= ⊥ in an algebraic
lattice is an element that is maximal with respect to not exceeding c. Such an
element is necessarily completely meet-irreducible. Thus, given an element a of
an e-cyclic residuated lattice L, a subuniverse H of L is a value of a if and only
if H is a value of the principal convex subuniverse C[a] in the algebraic lattice
C(L) of convex subuniverses of L.

It has been known for some time that normal-valued `-groups form a variety
[40], and that this is the largest proper variety of `-groups [27]. It is an open
question as to whether the class of all e-cyclic normal-valued residuated lattices
is a variety. However, an extension of this characterization to a subclass of
normal-valued residuated lattices, see Theorem 21 below, has recently been
established in [5] and will be essential for the results of Section 4.

Moving to the zero radical compact property, we first present it as a purely
lattice-theoretic property, and then, by extension, as a property that is applica-
ble to residuated lattices via their lattices of convex subuniverses.

Definition 9 An algebraic distributive lattice L, whose set of compact elements
is closed under finite meets, has the zero radical compact property if for every
compact element c ∈ L, the meet of all maximal elements in ↓ c is the bottom
element ⊥ of L.

Definition 10 A residuated lattice L is said to have the zero radical compact
property if the lattice C (L) has the zero radical compact property.

Finally, we spell out our definition of an Archimedean residuated lattice.

Definition 11 A residuated lattice L is said to be Archimedean if it is normal-
valued and has the zero radical compact property.

A characterization of Archimedean residuated lattices calls for some work.
For a start, we will stay in the setting of unital residuated lattices, a concept
that is recalled hereafter.

12



Definition 12 A residuated lattice L is called unital if there exists u ∈ L−

(called a strong unit of L) such that C[u] = L.

In view of Lemma 3, L is unital if and only if, for all a ∈ L−, un ≤ a for some
positive integer n.

Definition 13 If L is unital, we denote by M (L) the set of maximal convex
subuniverses of L; the set

⋂
M (L) will be called the radical of L and denoted

by Rad (L).

Observe thatM (L) and Rad (L), being defined for unital objects, are always
non-empty.

With an eye to describing the maximal convex subuniverses in the case of
normal-valued and unital residuated lattices, we need the following result whose
simple proof is left to the reader:

Lemma 14 Let L and M be e-cyclic residuated lattices, let φ : L → M be
a surjective homomorphism, let H = {x ∈ L : φ(x) = e} be the kernel of
φ, and let [H,L] denote the principal order-filter determined by H in C(L).
Then the maps φ[] : [H,L] → C(M) and φ−1[] : C(M) → [H,L] – defined by
φ[K] = {φ(x) : x ∈ K} and φ−1[N ] = {x ∈ L : φ(x) ∈ N} – are mutually
inverse isomorphisms between [H,L] and C(M).

We make a note of an important preliminary observation that will be useful
in the rest of the section. Whenever L is a normal-valued residuated lattice
with strong unit u, the lattices C (L) of convex subuniverses of L and NC (L)
of normal convex subuniverses of L have exactly the same maximal members,
because maximal convex subuniverses, being values of u, are normal in their
cover L.

Let L be a residuated lattice and a, u ∈ L. Given a sequence γ = 〈γ1, ..., γm〉
of iterated conjugation maps, we define:

πuγ (a) =

m∏
j=1

γj (|a|) \−u, (1)

and, for n ∈ Z+,

πun (a) = |a|n\−u. (2)

The results below generalize several theorems variously scattered in the lit-
erature: e.g. [7, Prop. 3.6.4], [22, Lm. 11.4], [38], [24, Prop. 3.12].

Lemma 15 Let L be a normal-valued and unital residuated lattice with strong
unit u, and let F be a proper normal convex subuniverse of L. Then the following
are equivalent:

(1) F ∈M(L).
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(2) for all a ∈ L, either a ∈ F or πun(a) ∈ F , for some positive integer n.

(3) for all a ∈ L, either a ∈ F or πuγ (a) ∈ F , for some tuple γ of iterated
conjugation maps.

Proof.

(1)⇒ (2). Suppose that F is maximal and that there exists a ∈ L−F such
that, for all positive integers n, πun (a) /∈ F . Under this assumption, [|a|]F 6=
[e]F 6= [πun(a)]F , for all such n. However, by Lemma 3.(2),

C[[|a|]F ] =
{

[x]F ∈ L/F : [|a|]mF ≤ [x]F , for some m ∈ Z+
}

.

As [e]F 6= [πun(a)]F , for all n ≥ 1, it follows that [u]F /∈ C[[|a|]F ]. Therefore,
C[[|a|]F ] is not {e}, because [|a|]F 6= [e]F , and, moreover, it differs from L/F ,
for [u]F /∈ C[[|a|]F ]. But this contradicts the fact that, by Lemma 14, L/F is
strongly simple, because of the maximality of F .

(2)⇒ (3) Under the hypothesis in (2), if a ∈ L− F , then there is a positive
integer n such that πun(a) = |a|n\−u ∈ F . Upon taking γ to be an n-tuple of
iterations of the identity conjugation map, it follows that πuγ (a) ∈ F .

(3)⇒ (1). Let a /∈ F . Then, by virtue of statement (3), there is a sequence
γ of iterated conjugation maps such that πuγ (a) ∈ F . This means that m∏

j=1

γj (|a|)


F

\− [u]F = [e]F ,

and so [u]F ∈ NC [[a]F ]. In sum, for any a ∈ L such that [a]F 6= [e]F , we have
that NC [[a]F ] = L/F . In other words, L/F is simple and non-trivial, whence
F is maximal in NC (L) and hence in C (L).

Lemma 16 Let L be a normal-valued and unital residuated lattice with strong
unit u, and let a ∈ L, a 6= e. The following statements are equivalent:

(1) The element a is in Rad (L).

(2) For every m ∈ Z+, there exists n ∈ Z+ such that πun(πum(a)) = e.

(3) For every m-tuple γ = 〈γ1, ..., γm〉 of iterated conjugation maps in L, there
exists another such n-tuple δ = 〈δ1, ..., δn〉 such that πuδ (πuγ (a)) = e.

Proof. (1) ⇒ (2). Suppose that (2) fails. Then there exists m ∈ Z+ such
that, for all n ∈ Z+, we have that πun (πum (a)) 6= e. In view of Lemma 2, we
may assume that a ∈ L−. It follows that (am\−u)n 6≤ u. Let z = am\−u, and
consider the principal convex subuniverse C[z] of L. By Lemma 3, u /∈ C[z].
Therefore, by Zorn’s Lemma, C[z] can be extended to a value H of u, which is
clearly in M(L).

We first claim that πun (πum (a)) /∈ H, for all n ∈ Z+. Indeed, suppose that
πun (πum (a)) ∈ H, for some n ∈ Z+. Then

[e]H = [πun (πum (a))]H = [z]nH\−[u]H = [e]H\−[u]H = [u]H ,
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as zn ∈ H. This implies that H = L, which clashes with the maximality of H.
Next, we prove that am /∈ H. Suppose on the contrary that am ∈ H. Then,

[πun (πum (a))]H =([a]mH\−[u]H)n\−[u]H

=([e]H\−[u]H)n\−[u]H

=[u]nH\−[u]H

=[e]H .

This yields the contradiction that πun (πum (a)) ∈ H. Hence, a /∈ Rad(L).
(2)⇒ (3) Take an m-tuple γ of conjugation maps, and consider the element

z =
∏
i≤m γi(|a|). Then, by hypothesis, there exists an appropriate n-tuple δ of

iterations of the identity conjugation map such that πuδ (πu1 (z)) = πuδ (πuγ (a)) = e.
(3)⇒ (1). Let a /∈ Rad (L), that is, a /∈ F for some F ∈M (L). Now, since

F is normal, Lemma 15 implies the existence of an m-tuple γ = 〈γ1, ..., γm〉 of
iterated conjugation maps such that πuγ (a) ∈ F . Let now δ = 〈δ1, ..., δn〉 be any
n-tuple of iterated conjugation maps. We compute:

[
πuδ (πuγ (a))

]
F

=

 n∏
i=1

δi

 m∏
j=1

γj (|a|) \−u

 \−u

F

=

 n∏
i=1

δi

 m∏
j=1

γj (|a|) \−u


F

\− [u]F

=

n∏
i=1

[δi]F

 m∏
j=1

γj (|a|) \−u


F

 \− [u]F

=

n∏
i=1

[δi]F ([e]F ) \− [u]F

= [e]F \− [u]F = [u]F .

It follows that πuδ (πuγ (a)) 6= e, and this establishes the claim.
The considerations above imply the following second-order characterization

of unital and normal-valued residuated lattices that are subdirect products of
strongly simple residuated lattices.

Theorem 17 Let L be a non-trivial normal-valued and unital residuated lattice.
The following statements are equivalent:

(1) L is a subdirect product of strongly simple residuated lattices.

(2) Rad (L) = {e}.

(3) For all a 6= e in L, there exists m ∈ Z+ such that πun(πum (a)) 6= e, for all
n ∈ Z+.
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(4) For all a 6= e in L, there exists an m-tuple γ = 〈γ1, ..., γm〉 of iterated
conjugation maps in L such that πuδ (πuγ (a)) 6= e, for all n-tuples δ =
〈δ1, ..., δn〉.

As a consequence of the preceding result, Archimedean residuated lattices
admit an element-wise description, in analogy with the case of `-groups.

Theorem 18 Let L be a non-trivial normal-valued residuated lattice. The fol-
lowing statements are equivalent:

(1) L is Archimedean.

(2) For all u < e in L and all elements a 6= e in C[u], there exists m ∈ Z+

such that πun(πum (a)) 6= e, for all n ∈ Z+.

(3) For all u < e in L and all elements a 6= e in C[u], there exists an m-tuple
γ = 〈γ1, ..., γm〉 of iterated conjugation maps in L such that πuδ (πuγ (a)) 6=
e, for all n-tuples δ = 〈δ1, ..., δn〉.

4 Prelinearity and the Archimedean property

In this section we specialize our study of the Archimedean property to the class
of normal-valued, prelinear and cancellative residuated lattices. A byproduct of
our theory is the characterization of this property for the well-studied classes of
`-groups and MV-algebras. In particular, it will become evident that our usage
of the term “Archimedean” does not clash with the established meaning this
phrase possesses in the theory of `-groups.

A residuated lattice L is said to be left prelinear if it satisfies the equation
(x\y∧e)∨(y\x∧e) ≈ e, and right prelinear if it satisfies the equation (y/x∧e)∨
(x/y ∧ e) ≈ e. Although these identities are not equivalent, all the properties of
concern in the present paper hold for left prelinear residuated lattices if and only
if they hold for right prelinear ones. In the sequel, therefore, we will call prelinear
a residuated lattice that satisfies either law. The reader is also reminded that
a residuated lattice is called cancellative, if its monoid reduct is cancellative. It
is shown in [3] that the class CanRL of all cancellative residuated lattices is a
variety with defining equations xy/y ≈ x ≈ y\yx.

When L is prelinear and e-cyclic, the prime convex subuniverses have special
properties, which are summarized in the following lemma.

Lemma 19 [5] Let L be a prelinear e-cyclic residuated lattice. For a convex
subuniverse H of L, the following are equivalent:

(1) H is a prime convex subuniverse of L.

(2) For all a, b ∈ L, if |a| ∨ |b| ∈ H, then a ∈ H or b ∈ H.

(3) For all a, b ∈ L, if |a| ∨ |b| = e, then a ∈ H or b ∈ H.
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(4) For all a, b ∈ L, a\b ∧ e ∈ H or b\a ∧ e ∈ H.

(5) The set of all convex subuniverses exceeding H is a chain under set-
inclusion.

We also have the following important consequence:

Corollary 20 [5] Let L be a prelinear e-cyclic residuated lattice. If C (L) is
totally ordered, then so is L. In particular, if P is a prime convex subuniverse
that is normal, then L/P is totally ordered.

Furthermore, the following result generalizes the corresponding result for
normal-valued `-groups.

Theorem 21 [6] The class of normal-valued and prelinear residuated lattices
is a variety.

Lemma 22 Let L be non-trivial normal-valued, prelinear and cancellative uni-
tal residuated lattice with a strong unit u. The following statements are equiva-
lent for an element a ∈ L.

(1) The element a is in Rad (L).

(2) For all k ∈ Z+, u < |a|k.

Proof. (1) ⇒ (2). Let a ∈ Rad(L) =
⋂
M(L). Note that a ∈ Rad(L) if and

only if |a| ∈ Rad(L), if and only if |a|k ∈ Rad(L), for all k ∈ Z+. Thus, it
will suffice to assume that a ≤ e and prove that u < a. Suppose that u 6< a.
Then, u\−a = u\a ∧ e 6= e. Let V be a value of u\−a. We observe that u /∈ V ,
as u\−a 6= e. By Zorn’s Lemma, V can be extended to a value H of u, which
belongs to M(L). By prelinearity, (u\−a) ∨ (a\−u) = e ∈ V ⊆ H. From the
fact that u\−a /∈ V , we deduce from Lemma 19 that a\−u ∈ V ⊆ H. As
a ∈ Rad(A), a fortiori a ∈ H. But, as we noticed, also a\−u ∈ H. Then, from
the fact that a\−u ≤ a\u we obtain that a(a\−u) ≤ u = |u| ∈ H, by Lemma 6,
a contradiction. Thus, u < a, as was to be shown.

(2) ⇒ (1). Assume that u < |a|k, for all k ∈ Z+. To simplify notation, we
may assume without loss of generality that a < e. Suppose that there exists
m ∈ Z+ such that (am\−u)n\−u 6= e, for all n ∈ Z+. Then, am\−u is not a
strong unit of L. For otherwise, there is n ∈ Z+ such that (am\−u)n ≤ u, and
this violates the assumption (am\−u)n\−u 6= e, for all n ∈ Z+. Consequently,
by Lemma 3, u 6∈ C[am\−u]. Therefore, Zorn’s Lemma can be used to extend
C[am\−u] to a value H of u. By hypothesis, u < am+1. As L is cancellative,
am\−u ≤ am\−am+1 = a. It follows that a, and hence am, are in H. But
then, am(am\−u) ≤ am(am\u) ≤ u ∈ H, contradicting the fact that H is a
value of u. As a consequence, for any m ∈ Z+, there exists n ∈ Z+ such that
πnu(πmu (a)) = e, which implies, by Lemma 16-(2), that a ∈ Rad(L).

Lemma 22 implies the following refined version of Theorem 17 for prelinear
and cancellative residuated lattices.
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Theorem 23 Let L be a non-trivial normal-valued, prelinear and cancellative
unital residuated lattice with a strong unit u. The following statements are
equivalent:

(1) L is a subdirect product of strongly simple residuated lattices.

(2) Rad (L) = {e}

(3) For all a 6= e in L, there exists m ∈ Z+ such that u ≮ |a|m.

The preceding considerations imply the following result.

Theorem 24 Let L be a non-trivial normal-valued, prelinear and cancellative
residuated lattice. The following statements are equivalent:

(1) L is Archimedean.

(2) For all u < e in L and all elements a < e in C[u], there exists m ∈ Z+

such that u ≮ am.

(3) Whenever u, a are in L− and u ≤ an, for all n ∈ Z+, then a = e.

Proof. The equivalence of (1) and (2) is a direct consequence of Theorem 23.
The proof of the equivalence of (2) and (3) is quite simple. Indeed, suppose first
that (3) fails. Then there exist u, a < e in L such that u ≤ an, for all n ∈ Z+.
It follows that a ∈ C[u], and hence (2) is not satisfied. Conversely, suppose
that (2) is not satisfied. Then there exist u < e and a < e in C[u] such that
u ≤ an, for all n ∈ Z+. But then (3) fails. We have proved that (2) and (3) are
equivalent.

We close this section with two observations. The first observation concerns
`-groups. Recall that an `-group is Archimedean if it satisfies Condition (3) of
Theorem 24. It is almost evident from this theorem that our present usage of
the term “Archimedean”does not clash with the established meaning this phrase
possesses in the theory of `-groups. However, it may be appropriate to dignify
this observation as a full-fledged proposition.

Proposition 25 An `-group L is Archimedean in the traditional sense (that is,
it satisfies condition (3) of Theorem 24) iff it is Archimedean in the sense of
this paper (Definition 11).

Proof. It will suffice to prove that any non-trivial `-group that satisfies Con-
dition (3) of Theorem 24 is cancellative, prelinear and normal-valued. The first
two properties, however, hold for any `-group, while the proof of third property
can be found in any book on `-groups, for example, in [2, p. 31].

Second, we show how Condition (2) in Lemma 16 simplifies to a more familiar
characterization of the radical in an especially well-behaved case. Indeed, let L
be an Abelian `-group with strong unit u. It is well-known that the interval [u, e]
in L is the universe of an MV-algebra Γ (L, u), whose operations are defined as
follows:
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• x ·Γ(L,u) y = x ·L y ∨ u;

• x\Γ(L,u)y = x\Ly ∧ e;

• eΓ(L,u) = e.

If we further let ¬x = x\Γ(L,u)u ∧ e, a quick calculation yields that

πun(πum(a)) = ¬(¬(am)n).

In [36, Thm. 6.2, Cor. 6.3], it is shown that if L is an MV-algebra, then
a ∈ Rad (L) iff for every m ∈ Z+, there exists n ∈ Z+ such that ¬ ((¬ (am))

n
) =

e, and that this description of the radical is equivalent to the usual one, given
in [20] or [7, Prop. 3.6.4]. It follows from the previous considerations that this
result may be viewed as a corollary of Lemma 16.

5 Commutativity and the Archimedean prop-
erty

In this section we explore the Archimedean property for GBL-algebras and
GMV-algebras, and prove theorems to the effect that all Archimedean and pre-
linear GBL-algebras (in particular, all Archimedean GMV-algebras) are com-
mutative. A crucial step in this process consists in showing that any strongly
simple prelinear GBL-algebra is totally ordered. Then, we apply a generalized
version of Hölder’s Theorem which completely characterizes these algebras ei-
ther as subalgebras of R, or of R−, or of the standard MV-algebra on the real
interval [0, 1].

5.1 Preliminaries on GBL-algebras

A residuated lattice L = (L,∧,∨, ·, \, /, e) is a generalized basic logic algebra
(for short,GBL-algebra) if it satisfies the equation

E1 y (y\ (x ∧ y)) ≈ x ∧ y,

as well as its mirror image. In case L is a pointed residuated lattice satisfying
the same identities, we call it a pointed GBL-algebra. In both cases, if L is
integral, E1 reduces to

E2 y (y\x) ≈ x ∧ y,

and its mirror image undergoes an analogous simplification. We use the symbols
GBL and IGBL to denote the varieties of GBL-algebras and integral GBL-
algebras, respectively. The same equations also axiomatize PGBL and PIGBL
relative to PRL. The variety of pseudo-BL-algebras is term equivalent to the
subvariety PsBL of PIGBL whose equational basis relative to PIGBL is given
by the equation:
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E3 f ≤ x.

Commutative and semilinear pseudo-BL-algebras go under the name of BL-
algebras. It is well-known that both `-groups (which form prominent examples
of GBL-algebras) and BL-algebras are both e-cyclic and distributive as lattices.
One may then wonder whether these properties are shared by all GBL-algebras.
The next proposition confirms that this is indeed the case.

Proposition 26 [23, Lemmas 2.7 and 2.9] Any GBL-algebra is e-cyclic and
has a distributive lattice reduct.

The study of GBL-algebras is facilitated by Theorem 28 below, whose state-
ment requires the next definition.

Definition 27 [29] A residuated lattice L is said to be the inner direct product
of its subalgebras B and C – in symbols, L = B⊗C – if B∨C = L, where the
join is taken in the lattice of subuniverses of L and the map (b, c) 7→ bc is an
isomorphism from B×C to L. In other words: (i) every a ∈ L can be written
uniquely as a product bc, for some b ∈ B and c ∈ C; (ii) each element in B
commutes with every element in C; and (iii) b1c1 ≤ b2c2 – with b1, b2 ∈ B and
c1, c2 ∈ C – if and only if b1 ≤ b2 and c1 ≤ c2.

Theorem 28 [23, Thm. 5.2] Every L ∈ GBL can be decomposed as an inner
direct product of its `-group subalgebra of invertible elements and of its integral
GBL-subalgebra of integral elements.

A crucial construction in the investigation of integral GBL-algebras is pro-
vided by ordinal sums of integral totally ordered GBL-algebras [21, 1, 17]. Let
(I,≤) be a totally ordered set, and, for any i ∈ I, let Li be an integral to-
tally ordered GBL-algebra. Suppose, in addition, that for i 6= j we have that
Li ∩ Lj = {e}. The ordinal sum of the family {Li}i∈I is the algebra

⊕
i∈I

Li =

(⋃
i∈I
Li,∧,∨, ·, \, /, e

)
,

where:

• For a ∈ Li − {e}, b ∈ Lj − {e}, a ≤ b iff either i < j or i = j and a ≤Li b.
Further, for all a ∈

⋃
i∈I Li, a ≤ e.

• If a, b ∈ Li, then a ·b = a ·Li b, while if i < j, a ∈ Li−{e} and b ∈ Lj−{e},
then a · b = a.

These clauses uniquely determine the behavior of meet, join, and the resid-
uals in the following terms:

• If a, b ∈ Li, then a ◦ b = a ◦Li b for ◦ ∈ {∧,∨}, while if i < j, a ∈ Li − {e}
and b ∈ Lj − {e}, then a ∧ b = a and a ∨ b = b.
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• If a, b ∈ Li, then a ◦ b = a ◦Li b for ◦ ∈ {\, /}, while if i < j, a ∈ Li − {e}
and b ∈ Lj − {e}, then a\b = e = b/a and b\a = a = a/b.

It can be seen that
⊕
i∈I

Li is an integral totally ordered GBL-algebra— actually,

it is a totally ordered pseudo-BL-algebra if (I,≤) has a bottom element ⊥ and
L⊥ is a totally ordered pseudo-BL-algebra. Conversely, we say that an integral

totally ordered GBL-algebra L is ordinally irreducible if whenever L '
⊕
i∈I

Li,

for some family of subalgebras {Li}i∈I , there exists j ∈ I such that L ' Lj ,
while for i 6= j, Li = {e}. We have that:

Theorem 29 ([17, Thm. 4.1]; see also [34, 21, 1]) Let L be an integral totally
ordered GBL-algebra. Then there exists a unique family {Li}i∈I of ordinally
irreducible integral totally ordered GBL-algebras (with I totally ordered) such

that L '
⊕
i∈I

Li.

If an integral totally ordered GBL-algebra fails to be ordinally irreducible,
it must have at least one non-trivial convex subalgebra. Moreover, there is
not much leeway in the class of ordinally irreducible integral totally ordered
GBL-algebras:

Theorem 30 [17, Prop. 3.7] Every ordinally irreducible integral totally ordered
GBL-algebra L is either a totally ordered pseudo-MV-algebra (see below) or the
negative cone of a totally ordered group.

An especially important subvariety of GBL is given by GMV-algebras [23],
simultaneous generalizations of MV-algebras [7] to the noncommutative, un-
bounded and non-integral case. The variety GMV of GMV-algebras is axioma-
tized relative to RL by the equations

E4 x/ ((x ∨ y) \x) ≈ x ∨ y ≈ (x/ (x ∨ y)) \x.

In the context of the other residuated lattice identities, E4 implies E1,
whence all GMV-algebras are GBL-algebras. The variety IGMV of integral
GMV-algebras, of course, is axiomatized relative to IRL by the equation E4,
which in this context simplifies to

E5 x/ (y\x) ≈ x ∨ y ≈ (x/y) \x.

The class LG− of negative cones of `-groups is a subvariety of IGMV, ax-
iomatized relative to IGMV [3, Thm. 6.2] by the cancellativity equations

E6 x\xy ≈ y ≈ yx/x.
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The same equations also axiomatize the linguistic expansion of PGMV and
PIGMV relative to PRL. In this context, the variety of pseudo-MV-algebras
is term equivalent to the subvariety PsMV of PIGMV whose equational basis
relative to PIGMV is given by the equation E3. Finally, the variety of MV
algebras is term equivalent to the subvariety MV of PsMV whose equational
basis relative to PsMV is given by the equation:

E7 xy ≈ yx.

GMV-algebras are thoroughly studied in [23]. The reader is referred to this
article for a detailed account of their properties.

5.2 Strongly simple totally ordered GBL-algebras

Around the turn of last century, O. Hölder proved that any strongly simple
totally ordered group is isomorphic to an `-subgroup of the additive reals. As
noted in [13, p. 145], this fundamental achievement has “enormous importance
in the theory of `-groups, being the ultimate basis for most of the representations
we encounter”. Analogous representations of simple totally ordered algebras in
terms of subalgebras of the real numbers are available for other subvarieties of
GBL; for example, any simple (hence totally ordered) MV-algebra is isomorphic
to a subalgebra of the standard MV-algebra with universe [0, 1] [7, Theorem
3.5.1]. As we presently show, this is no accident, for an appropriate version of
Hölder’s theorem can be generalized to the whole of GBL.

Connecting a number of results in the literature, we make the following
observation (for a different proof, see [6]):

Theorem 31 A totally ordered GBL-algebra L is strongly simple if and only if
it is isomorphic to one of the following algebras:

1. a subalgebra of R (viewed as a member of LG);

2. a subalgebra of R− (viewed as a member of LG−); or

3. a subalgebra of the standard MV-algebra on [0, 1].

Proof. All the algebras on the real numbers mentioned in the above state-
ment are readily seen to be simple, commutative, and hence strongly simple.
Indeed, any convex subuniverse would be normal (because of commutativity).
Conversely, let L be a strongly simple totally ordered GBL-algebra. In particu-
lar, L is directly indecomposable, whence by Theorem 28 L is either a strongly
simple totally ordered group, or a strongly simple integral totally ordered GBL-
algebra. If the former, then we apply Hölder’s theorem to obtain the required
embedding into R. If the latter, we observe that L is ordinally irreducible. In
fact, suppose otherwise — then, as remarked immediately after Theorem 29, L
would admit a non-trivial convex subalgebra, a contradiction. Thus, by Theo-
rem 30, L is either a totally ordered pseudo-MV-algebra or the negative cone of
a totally ordered group — and, again, we go through a case-splitting argument.
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(1) Suppose L is a totally ordered pseudo-MV-algebra. Since any strongly
simple totally ordered pseudo-MV-algebra is commutative [15, Theorem 4.3], L
is in fact a simple totally ordered MV-algebra, and therefore, as already recalled,
it is isomorphic to a subalgebra of the standard MV-algebra on [0, 1].

(2) Suppose, on the other hand, that L is the negative cone of some totally
ordered group G. Since the sole convex subuniverses of L are the trivial ones,
and given that the convex subuniverses of an `-group are uniquely determined
by their negative cones, it follows that G is itself a strongly simple `-group.
Consequently, by Hölder’s theorem, G is isomorphic to a subalgebra H of R, and
the restriction of such an isomorphism to the negative elements of G provides
the required embedding of L into R−.

5.3 Archimedean GBL-algebras

With Theorem 31 at our disposal, we can show that any Archimedean and
prelinear GBL-algebra is commutative. This result, which generalizes analogous
theorems for special classes of GBL-algebras mentioned in the introduction, can
be seen as a benchmark for the adequacy of our definition as an umbrella notion
encompassing the various concepts of Archimedean residuated lattices available
in the literature.

Theorem 32 Any Archimedean and prelinear GBL-algebra L is commutative.

Proof. Let L be as in the statement of the theorem. To prove that L is
commutative, it will suffice to show that all its principal convex subalgebras
are commutative. Indeed, any two elements a, b ∈ L− belong to the convex
subuniverse C[ab] of L, and hence the commutativity of C[ab] will imply in
particular that ab = ba. By assumption, C[ab] has a zero radical and, by
Lemma 16 and Theorem 17, it is a subdirect product of strongly simple algebras.
Thus, what we need to show is that every strongly simple, normal-valued and
prelinear GBL-algebra is commutative. To this end, let H be such an algebra.
Using the prelinearity assumption, Corollary 20 yields that H is totally ordered.
Consequently, Theorem 31 can be invoked to show that H is either R, R− or
the standard MV-algebra on [0, 1], hence commutative.

Since all GMV-algebras are prelinear, the preceding results simplify as fol-
lows for GMV:

Lemma 33 Every strongly simple GMV-algebra L is totally ordered and com-
mutative.

Theorem 34 Any Archimedean GMV-algebra L is commutative.

Outside GBL, of course, there can be no presumption to the effect that
Archimedean residuated lattices are commutative. The next example, indeed,
shows that there are non-commutative Archimedean, cancellative and integral
residuated lattices.
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Example 35

...

e = 〈 〉

1

11

111

L1

L2

L3

Let L = ({0, 1},∧,∨) be the 2-element lattice with greatest
element 1, and let L∗ = (L∗, ·) be the free monoid over
L. We will define a cancellative residuated lattice whose
multiplicative reduct is that of L∗ and whose lattice reduct
contains L as a sublattice. We let l(w) denote the length of
w ∈ L∗. We define now an order on L∗ by setting u ≤ v if
and only if

(i) l(u) > l(v), or

(ii) l(u) = l(v) and ui ≤ vi for i = 1, . . . , n, where u =
u1 . . . un and v = v1 . . . vn.

Then the empty word e is the greatest element of L∗ and,
for any n ∈ N , the words of length n form a sublattice
isomorphic to the direct power (Ln,∧,∨). If u ≤ v, then
clearly u\v = e. If u � v with u = u1 . . . um and v =
v1 . . . vn, then m ≤ n and

u\v =

{
vm+1 . . . vn if m < n and ui ≤ vi for i = 1, . . . ,m,

1k otherwise, where k = n−m+ 1.

The operation / has a very similar characterization. It follows easily that the
residuated lattice (L∗,∧,∨, ·, \, /, e) is cancellative and that L is a sublattice of
its underlying lattice structure. It can be seen that L∗ is an Archimedean integral
cancellative residuated lattice whose monoidal operation is not commutative.

6 Hyper-Archimedean GMV-algebras

As we recalled in our introduction, both `-group theorists and researchers who
are interested in integral subclasses ofRL have often brought hyper-Archimedean
algebras to the spotlight. We also observed that there is no consensus on a gen-
eral definition that encompasses all the existing proposals. The purpose of this
final section is to advance a positive suggestion to this effect, as well as to stack
up as much evidence as possible in its favor.

Here goes the suggestion:

Definition 36 A normal-valued residuated lattice L is said to be hyper-Archimedean
if all its prime convex subuniverses are trivially ordered (that is, they are max-
imal convex subuniverses).

In the literature on individual varieties of residuated lattices, it is not infre-
quent to encounter theorems that provide several equivalent characterizations
of hyper-Archimedean algebras (e.g. [7, Thm. 6.3.2]). Once again it has to be
noticed that, more often than not, these results involve an admixture of proper-
ties that depend on peculiar features of the algebras in question, and of purely
lattice-theoretic properties of their lattices of convex subuniverses. From the
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point of view of the extended Conrad’s program, it is crucial to understand how
much headway we can make with just plain lattice theory. This is what we are
going to do next, in the context of GMV-algebras. We will see that some of the
equivalent descriptions one can find of hyper-Archimedean algebras in GMV
(or subclasses of such) are purely lattice-theoretic – on the other hand, to get
the complete list, one has to resort to the full power of the structure theory of
GMV.

Lemma 37 If L is an algebraic distributive lattice, and ⊥ 6= a ∈ L, then the
poset Pa of meet-prime elements in the downset ↓ a is isomorphic to the poset
P̃a of meet-prime elements of L that do not exceed a. The isomorphism is
implemented by the mutually inverse maps fa : Pa → P̃a and f̃a : P̃a → Pa
defined by fa(x) = a→ x and f̃a(x) = a ∧ x, respectively.

Proof. Let p ∈ Pa. As p is a meet-prime element of ↓ a, p 6= a. Hence a 6≤ p
and a 6≤ a→ p. Suppose next that b, c ∈ L are such that b ∧ c ≤ a→ p. Then,
(a∧ b)∧ (a∧ c) = a∧ b∧ c ≤ p. So, a∧ b ≤ p or a∧ c ≤ p, and then b ≤ a→ p or
c ≤ a→ p. This shows that a→ p ∈ P̃a and that fa is well-defined. Conversely,
let q ∈ P̃a. We claim that a ∧ q ∈ Pa. Note that a ∧ q < a, as a 6≤ q. Let now
b, c ∈ L be such that b ∧ c ≤ a ∧ q. Then b ∧ c ≤ q and so, b ≤ q or c ≤ q. This
trivially implies that b ≤ a ∧ q or c ≤ a ∧ q. Hence, a ∧ q ∈ Pa and, moreover,
fa is well-defined.

It is clear that both fa and f̃a are order-preserving. Further, for all p ∈ Pa,
f̃afa(p) = f̃a(a → p) = f̃a(p) = a ∧ p = p; and likewise, faf̃a(q) = q, for all
q ∈ P̃a. Thus fa and f̃a are inverses of each other and order-isomorphisms.

The preceding lemma immediately implies the following result:

Lemma 38 [5] Let L be an algebraic distributive lattice. If a ∈ K(L), and
⊥ 6= a, then the preceding isomorphism restricts to a bijection between the values
of a in L and the co-atoms of ↓ a.

We will also need the following result, stated here without a proof.

Lemma 39 [5] Let L be an algebraic distributive lattice such that K(L) forms
a sublattice, and let a ∈ K(L) be such that a → b ≤ p, for b ∈ L. Then, there
exists a meet-irreducible element q such that a 6≤ q, and b ≤ q ≤ p.

We now collect in the next lemma the purely lattice-theoretic implications of
the property that prime convex subuniverses are maximal. Even though most of
these equivalences appear in [32], we provide a streamlined proof for the reader’s
benefit.

Lemma 40 Let L be an algebraic distributive lattice whose join-semilattice
K(L) of compact elements is a sublattice. Then Conditions (1)-(4) below are
equivalent:

(1) The meet-irreducible (equivalently, meet-prime) elements of L are maxi-
mal.
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(2) The meet-irreducible elements of ↓ a are maximal, whenever a is a non-
zero element of K(L).

(3) Every compact element of the lattice ↓ a has a complement, whenever
a ∈ K(L).

(4) Every element of K(L) has a complement.

Moreover, these conditions imply that the interval [h,>] in L has the zero radical
compact property, for all h ∈ L.

Proof.
(1)⇒ (2) Let us assume that (1) is satisfied, and let a ∈ K(L). By assump-

tion, the set of meet-irreducible elements of L that do not exceed a is precisely
the set of values of a. Hence, by Lemmas 37 and 38, all meet-irreducible elements
in ↓ a are maximal.

(2) ⇒ (3) Suppose that (2) is satisfied and let a ∈ K(L). Note that
b ∈ K(↓ a) if and only if b ∈ K(L)∩ ↓ a. Let b be such an element and let
b⊥a denote its pseudo-complement in ↓ a. We need to prove that b ∨ b⊥a = a.
Suppose, on the contrary that b ∨ b⊥a < a. Then, there is a meet-irreducible
element p such that b, b⊥a ≤ b ∨ b⊥a ≤ p. By Lemma 39, there exists a meet-
irreducible element q ∈↓ a such that b 6≤ q and q ≤ p. As b 6≤ q and b ≤ p, it
must be that q < p. Hence, there is a meet-irreducible element in K(↓ a) which
is not maximal, contradicting (2).

(3)⇒ (4) Assume that (3) holds. Let b ∈ K(L) and let b⊥ denote the pseudo-
complement of b in L. We proceed to show that b ∨ b⊥ = >. Observe first that
for each a ∈ K(L) with b ≤ a, b⊥a = b⊥ ∧ a. Clearly, > =

∨
{a ∈ K(L) : b ≤ a}.

Then, for each such a, a = b∨b⊥a = b∨(b⊥∧a) = (b∨b⊥)∧(b∨a) = (b∨b⊥)∧a.
Thus, b ∨ b⊥ ≥ a and > = b ∨ b⊥.

(4) ⇒ (1) Suppose that (1) fails, and let p < q, with p, q meet-irreducible
elements of L. Then, there is an element b ∈ K(L) such that b 6≤ p and b ≤ q.
Then, as ⊥ = b ∧ b⊥ ≤ p, and b 6≤ p, we have that b⊥ ≤ p < q. Hence,
b ∨ b⊥ ≤ q < >, which shows that (4) fails.

Lastly, suppose that L satisfies the preceding equivalent conditions. Let
h ∈ L. We claim that the interval [h,>] has the zero radical compact property.
Note first that [h,>] is an algebraic distributive lattice. An element a ∈ [h,>]
is compact if and only if a = h∨c for some c ∈ K(L). Observe that as the meet-
irreducible elements of L are maximal, then the same is true for those of the
interval [h,>]. Consider a ∈ K([h,>]). (As one might expect, the proof actually
works for an arbitrary a ∈ [h,>].) Denoting by Pa the set of co-atoms of the
lattice [h, a], we need to prove that

∧
Pa = h. Let P denote the set of meet-

prime elements of [h,>], let P1 = {p ∈ P : p ≥ a} and let P2 = {p ∈ P : p 6≥ a}.
It is clear that P = P1∪P2. In view of Lemma 37, Pa = {p∧a : p ∈ P2}. Hence,
h = h∧a =

∧
P =

∧
P1∧

∧
P2∧a = (

∧
P1∧a)∧ (

∧
P2∧a) = a∧

∧
Pa =

∧
Pa.

This completes the proof of the claim.

Lattice theory cannot take us beyond this point. To extend the list of equiv-
alent characterizations of hyper-Archimedean algebras in subvarieties of RL,
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we must use specific properties of these subvarieties. For the variety GMV of
GMV-algebras, the preceding considerations lead to the following theorem.

Theorem 41 For any normal-valued GMV-algebra L the following conditions
are equivalent:

(1) L is hyper-Archimedean.

(2) The interval [H,L] in C(L) has the zero radical compact property, for every
H ∈ C(L).

(3) The prime subuniverses of every principal convex subuniverse H of L are
maximal convex subuniverses of H.

(4) L = C [a]⊗ a⊥, for all a ∈ L.

(5) For all a, b ∈ L−, there exists a natural number m such that b ∨ am =
b ∨ am+1.

Proof. Let us first recall that the variety of GMV-algebras satisfies the quasi-
equation x ∨ y = e ⇒ xy = x ∧ y [23]. The proof for the variety IGMV of
integral GMV-algebras – and hence also for the variety of GMV-algebras with
the use of Theorem 28 – is simple. Indeed, let x, y be orthogonal elements of
an integral GMV-algebra G, that is x ∨ y = e. The equation E5 implies that
y/(x\y) = x ∨ y = e, and so x\y ≤ y. Hence, employing E1, we get that
x ∧ y = x(x\y) ≤ xy. As the inequality xy ≤ x ∧ y holds trivially, we have
xy = x ∧ y.

Proceeding with the proof, we note that by [26, Proposition 18], C [a]∨a⊥ =
C [a] ⊗ a⊥, for all a ∈ L. Thus, by Lemma 40, (1), (3) and (4) are equivalent
and imply (2).

(2) ⇒ (3) Suppose (2) holds. L is Archimedean because [{e}, L] = C(L)
has the zero radical compact property. By Theorem 34, L is commutative. Let
M be a proper prime convex subuniverse in C(L). It follows from Corollary 20
that L/M is totally ordered. By (2), L/M is also Archimedean. Therefore,
by Theorem 28 L/M is either an `-group, a negative cone of an `-group, or a
pseudo-MV-algebra. In either of these cases L/M is strongly simple, and so M
is maximal.

(4) ⇒ (5) Suppose that (4) is satisfied and let a, b ∈ L−. By (4), b = b1b2,
for some b1 ∈ C [a] and b2 ∈ a⊥. Thus, there exists a positive integer m such
that am ≤ b1. As b1 and b2 (respectively, am and b2) are orthogonal,

b ∨ am = b1b2 ∨ am = (b1 ∧ b2) ∨ am =

(b1 ∨ am) ∧ (b2 ∨ am) = b1 ∧ (b2 ∨ am) = b1 ∧ e = b1.

Likewise, the orthogonality of am+1 and b2 implies that b ∨ am+1 = b1 =
b ∨ am.

(5) ⇒ (4) Suppose (5) holds. We first prove that the implication holds for
integral GMV-algebras. Let a ∈ L. We need to prove that L = C [a] ⊗ a⊥.
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More precisely, we need to prove that any b ∈ L can be written as b = b1b2, for
some b1 ∈ C [a] and b2 ∈ a⊥. Consider such a b. By (5), there exists a positive
integer m such that b ∨ am = b ∨ am+1. We claim that (i) b1 = b ∨ am ∈ C[a];
(ii) b2 = am\b ∈ a⊥; and (iii) b = b1b2.

Condition (i) trivially holds. For (ii), we have to show that e ≤ a ∨ (am\b),
or equivalently that e ≤ (am\b)/(a\(am\b)). The later inequality is in turn
equivalent to am+1\b = a\(am\b) ≤ am\b. We verify the last inequality (in
fact, equality) by making use of (5): am+1\b = [b/(am+1\b)]\b = [b∨am+1]\b =
[b ∨ am]\b = [b/(am\b)]\b = am\b.
For (iii), as

b1b2 = (b ∨ am)(am\b) = (b/(am\b))(am\b),

we have that b1b2 ≤ b. For the other direction, using the fact that b1 and b2
are orthogonal, we get that b ≤ (b ∨ am) ∧ (am\b) = b1 ∧ b2 = b1b2. (The first
inequality is valid due to the integrality of L.) This completes the proof of (iii)
for integral GMV-algebras.

Finally, using the representation Theorem of GMV-algebras (Theorem 28),
and the fact that the claim is true for `-groups [13, Theorem 55.1], the result
follows.

It would be interesting to see whether the full list of equivalences continues
to hold for some notable proper superclass of GMV, but this problem must be
deferred to another paper.
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