Assessing the Flipped Classroom Model in Organic Chemistry

Emilianne McCranie and Michelle Sulikowski

Department of Chemistry, Vanderbilt University

BIENDEDaONIINE LEARNNG DESIGN FELLOWS

Introduction

Nuclear magnetic resonance (NMR) spectroscopy is a topic with which many Organic Chemistry II students struggle. The theory behind NMR can be difficult to grasp solely from lectures and static
representations. Additionally, NMR spectroscopy is very much a problem-based discipline where students must apply their knowledge
to solve structures of organic compounds. With these challenges in to solve structures of organic compounds. With these challenges in mind, we decided to assess a flipped classroom model for the NMR c Chemistry II.
At the completion of the module, students should

- Know how nuclear spins are affected by a magnetic field
- Be able to predict number of proton signals expected from a compound given its structure
- Be able to interpret and predict simple and complex splitting patterns
- Be able to predict chemical shift trends
- Be able to assign peaks in an NMR spectrum to specific protons in a compound
- Be able to interpret integration of NMR spectra
- Use J values to predict geometric isomers
- Be able to determine the structure of a compound using NMR given other pertinent information such as molecular formula

Methods

Results

level of questions was determined by Sapling Learning.

Students' perceptions of their learning
 60

"It is helpful to work problems when other students and the professor are available to answer questions as opposed to doing homework by myself."

Fig 3. Students were asked to rate their agreement with this statement: It is helpful to work problems when other students and the professor are available to answer questions as opposed to doing homework by myself

Conclusions

No significant difference between control and experimental groups

In contrast to the literature which shows that the
In contrast to the literature which shows tha
active learning improves student learning ${ }^{3,4}$
Student perceptions indicated that at least half of the students did not like the flipped classroom model in an course

- Student expectations and resistance to a different instructional may have played a role in the module'
effectiveness

Future Work

Different way to measure student learning gains

- Stratify students in analysis
- Decrease student resistance

Help students understand why this instructiona technique is used
Improvements to the module

Student Suggestions for Improvement

Mini-lecture

In-video practice

Video Improvements
More people to answer questions

> Other

$$
\begin{aligned}
& 10 \quad 15 \quad 20 \quad 25 \\
& \text { Percentage of Students }
\end{aligned}
$$

Fig 2. Students were asked to choose one of the four responses that best described their evaluation of the flipped classroom module.

Most important use of class time

References

 http://dx.doi.org/10.1145/2556325.2566239
2. Richard E. Mayer "Applying the Science of Learning: Evidence-Based Priniciles sor the Design of Multimedia Instruction" A merican
Psychologist November 2008; $760-769$.
3. Freeman, Scott. etal. Active learning increases student performance in science, engineering, and
U.S.A. $111(23) ; ; 8410-8415$.
4. Walker, J.D. Cotner, Sehoya, H., Baepler, Paul M., and Decker, Mark D. A deilicate balance: integrating active learning, into a large lecture

Acknowledgements

We would like to thank Cynthia Brame, Rhett McDaniel, and We would ilike to thank Cynthia Brame, Ren McDaniel, and and discussions during this project.
This material is based on work supported by the National Science Foundation under Grant No. DUE-1231286.

解 H . Adam Steinberg adam@artforscience.com

