
Biostatistics PhD Comprehensive Exam: Theory

June 1 - 4, 2021

Instructions: Please adhere to the following guidelines:

• The PhD Theory Comprehensive Exam will be administered on Tuesday, June 1 at 9:00am (central
time); you have until Friday, June 4 at 12:00pm (central time) to complete the exams and place
your responses into your respective Box folder. You may (should) place draft solutions in your Box
folder throughout the examination period; the latest version submitted prior to the deadline will
be considered the final version. In addition, please also email your final version to Drs. Andrew
Spieker (andrew.spieker@vumc.org) and Robert Greevy (robert.greevy@vumc.org) prior to
the deadline (dual submission helps ensure the exam is received).

• There are six equally weighted problems of varying length and difficulty. Note that not all sub-
problems are weighted equally. You are advised not to spend too much time on any one problem.

• Answer each question clearly and to the best of your ability. Partial credit will be awarded for
partially correct answers.

• Be as specific as possible, show your work when necessary, and please write legibly for any hand-
written responses.

• This is an open-book and open-notes examination, but it is an individual effort ; do not discuss
any part of this exam with anyone. Vanderbilt University’s academic honor code applies.

• Please email any clarifying questions to:
Dr. Andrew Spieker (andrew.spieker@vumc.org),
Dr. Matt Shotwell (matt.shotwell@vumc.org), and
Dr. Bob Johnson (robert.e.johnson@vumc.org).



1. 25 pts Let (Ω,F , P ) denote a probability space, and let {An ∈ F}∞n=1 denote a sequence of events, each

having associated probability measure P(An) = 1
n2 . Let Xn(ω) = n2IAn(ω)− 1 denote a sequence of random

variables, where

IAn(ω) =

{
1 if ω ∈ An
0 otherwise

.

(a) For each n, determine the values of E[Xn] and Var[Xn].

(b) Determine the distribution function, FXn(t), of Xn.

(c) On separate graphs, plot FXn(t) for −5 ≤ t ≤ 20 when n = 2, n = 3, and n = 4 (it is acceptable to use
R or to draw the figure legibly by hand). Briefly explain the behavior of FXn(t) as n grows.

(d) Let X ≡ −1 denote a degenerate random variable with CDF FX(t) = I(t ≥ −1). Show that

lim
n−→∞

|FXn(t)− FX(t)| = 0 for all t ∈ R.

Does Xn converge to X in distribution?

(e) Prove that Xn
a.s.−→ X.

(f) Prove that there exists no random variable Y such that Xn
L1−→ Y .



2. 25 pts Your client is a doctor seeking to model the time it takes patients to receive medical care in her
solo practice. You may assume time to be measured in discrete, integer-valued (non-negative) units. Let
δn denote the number of patients arriving to the clinic at time n, with probability mass function given by
P(δn = k) = αk(1 − α)1−k for α > 0 and k = 0, 1 (that is, no more than one patient can arrive at a single
time). You may further assume that the δn’s are mutually independent.

An arriving patient waits in a queue (if there is one), which is served by a single receptionist. When arriving
to the front of the queue, the patient is directed to the examination room and receives one of a number of
medical care services. The time to render that service is distributed as a discrete random variable S with
probability mass function given by

P(S = k) =

{
pk if k = 1, 2, . . .K

0 otherwise
,

for some fixed and known value K (you may assume that the services received by the patients are mutually
independent). Let Wn denote the total time a patient arriving at time n will spend until he or she receives
care (that is, the time spent in queue prior to receiving the service).

(a) Determine an expression for the expected time between arrivals (in terms of α).

(b) Determine an expression for the expected service time (in terms of p1, . . . , pK).

(c) Argue that Wn+1 = (Wn + Snδn − 1)+ = max(0,Wn + Snδn − 1), where Sn are i.i.d. random variables
distributed like S. Provide a plain-language interpretation of this equation for your client.

(d) Argue that {Wn} is a Markov chain, and describe the transition probabilities in terms of α and pk.

For the remainder of this question, suppose K = 2, with p1 = 1− β and p2 = β, for some β ∈ (0, 1).

(e) Describe the transition probabilities in terms of α and β.

(f) Determine the expected time between arrivals and the expected service time in terms of α and β.

(g) Determine conditions on α and β such that the stationary (steady-state) distribution exists. Provide a
plain-language interpretation of these conditions for your client.

(h) Determine the stationary distribution, denoted by π1, π2, · · · , and explicitly name the family of distribu-
tions to which it belongs.

(i) Determine the expected waiting time in steady-state.

(j) Suppose that α = 4/5 (that is, 4 patients arrive every 5 units of time, on average). Determine the
maximum value that β can take such that a stationary distribution exists.

(k) Suppose that α = 4/5 and β = 0.24. Determine the expected waiting time, in steady-state. Provide a
plain-language interpretation of this result for your client with respect to individual service times.



3. 25 pts Survival analysis methods often focus on modeling the hazard function, which uniquely determines the
distribution of the (continuous) survival time, T . Let λi(t) denote the subject-specific time-varying hazard
function for independently sampled subjects i = 1, . . . , n. One way to model the subject-specific hazard is
to consider it equal to some “baseline” hazard, λ0(t), times a positive-valued random variable, G, that we
refer to as the frailty :

λi(t) = λ(t|G = g) = λ0(t)g

Assume without loss of generality that E[G] = 1. When G = 1, the subject-specific hazard corresponds to
the hazard of an “average” subject. Subjects having G > 1 have a higher hazard (lower mean survival), while
those with G < 1 have a lower hazard (higher mean survival). Variation in G serves as a source of variation
in time-to-event outcome apart from that which is explainable by the hazard function alone. Because a
subject’s frailty cannot be observed, a frailty distribution must be assumed. One choice for G is the inverse
Gaussian distribution with probability density function depending upon µ > 0 and τ > 0:

fG(g;µ, τ) =

√
τ

2πg3
exp

(
−τ(g − µ)2

2µ2g

)
, for g > 0.

Denote this distribution as IG(µ, τ).

(a) Express the expectation and variance of G
d
= IG(µ, τ) in terms of µ and τ , and determine the values of

µ and τ such that E[G] = 1 and Var[G] = σ2.

(b) Assume a frailty distribution parameterized by G
d
= IG(1, 1/σ2). Under this parameterization, it is

possible to show that the conditional hazard function is given by λ(t|T ≥ t) = λ0(t)(1 + 2σ2Λ0(t))
−1/2,

where Λ0(t) is the baseline cumulative hazard function. In the specific case where σ2 = 1 and λ0(t) = 1,

i. Determine the baseline cumulative hazard function, Λ0(t).

ii. Use R to plot the density function of fG(g).

iii. Use R to plot the conditional hazard function λ(t|T ≥ t).
What does this suggest about the frailty of survivors as t increases?

(c) An interesting property of the inverse Gaussian distribution is that it is related to first passage times
in a Brownian motion. Suppose (Ws) is a Wiener process (a standard Brownian motion) where s ≥ 0.
Define Sa = inf{s > 0 : Ws ≥ a} where a > 0 is a real constant. Sa is the random time it takes the

Wiener process to first equal or exceed a. Prove that Sa
d
= lim

µ−→∞
IG(µ, a2).

(d) Now Xs = νs+φWs where ν > 0 and φ > 0 (note that (Xs) is known as a Brownian motion with drift),
and let Sa = inf{s > 0 : Xs ≥ a}.

i. Use R to demonstrate empirically that Sa
d
= IG

(
a
ν , (

a
φ)2
)

.

ii. Describe the Brownian motion with drift that corresponds to the frailty distribution IG(1, 1/σ2).



4. 25 pts Suppose we collect multiple independent data points on some outcome Y at each of K distinct values
of some exposure X. Consider the “no-intercept” linear regression model

y11
...

y1N1

y21
...

y2N2

...
yK1

...
yKNK



=



x1
...
x1
x2
...
x2
...
xK
...
xK



β +



ε11
...

ε1N1

ε21
...

ε2N2

...
εK1

...
εKNK



,

for some real-valued, unknown parameter β. In this problem, you may assume the errors εkj to be pairwise
independent, to be of mean zero, and to have constant variance σ2.

(a) Determine the least squares estimator for β—namely, the estimator that minimizes the following quantity:

K∑
k=1

Nk∑
j=1

(ykj − xkβ)2.

(b) Show that the least squares estimator you derived in part (a) also minimizes the following quantity:

K∑
k=1

Nk(yk − xkβ)2,

where yk = N−1k
∑Nk

j=1 ykj denotes the sample mean value of the outcome Y among all observations with
exposure value X = xk.

(c) Show that the least squares estimator you derived in part (a) is exactly the same as the weighted least
squares estimate obtained from the linear model

y1
y2
...
yK

 =


x1
x2
...
xK

β +


ε∗1
ε∗2
...
ε∗K

 ,

where the weights are given by Nk for k = 1, . . . ,K.



5. 25 pts Let `(β) = (y −Xβ)T (y −Xβ) denote the sum of squared errors for a linear regression model, where
y is an n-vector and X is an n× p matrix of covariates. The vector of coefficients, β, is said to be estimable
if and only if `(β) = `(β′) implies that β = β′, for all β and β′ that minimize (globally) `(β). In plain
language, β is estimable if and only if `(β) possesses a unique global minimum. Note that a global minimum
must satisfy the estimating equation `′(β) = 0, where `′(β) denotes the gradient evaluated at β.

(a) Let β̂ denote a global minimum of `(β). Write an expression to approximate `′(β) in a neighborhood
about β̂ using a first-order Taylor expansion. Argue that `′′(β̂)(β̂−β) 6= 0 is a condition for estimability
of β, where

`′′(β̂) =

[
∂2`(β)

∂β∂βT

]
β=β̂

.

(b) Compute the value of `′′(β̂). What does the estimability condition imply about the matrix X?

(c) Now consider the ridge-penalized residual sum of squares `(β) = (y −Xβ)T (y −Xβ) + λβTβ. Show
that the ridge regression estimate of β can be obtained by ordinary least squares regression using an
augmented data set X′ and y ′, where X′ is the covariate matrix X augmented with p additional rows
defined by

√
λI, and y ′ is y is augmented with p zeros. Using the augmented covariate matrix X′, argue

that β is always estimable.

(d) When `(β) is a likelihood function, similar logic defines an estimability condition for a maximum likeli-
hood estimate, where −`′′(β̂) is the observed Fisher information. What does the estimability condition
imply about the observed Fisher information matrix?

(e) Consider the data augmentation method described in part (c). Would the augmented data X′ and y ′

ensure estimability for a maximum likelihood estimate? Explain why, or why not.



6. 25 pts Let X1, . . . , Xn are independent and identically distributed normal random variables with unknown

mean µ and known variance σ2 = 1. Suppose you are asked to use the sample mean, X = n−1
∑n

i=1Xi, to
decide between the following three decisions:

• State that µ < 0

• Abstain from making a statement about the value of µ

• State that µ > 0

For convenience, refer to these three decisions numerically as d = −1, d = 1, and d = 0, respectively. Further,
let L(µ, d) = 1− d× sign(µ) denote the loss function for this decision problem, and let R(µ, d) = E[L(µ, d)]
denote the risk (as a function of µ) associated with the decision rule d.

(a) Fill in the 3× 3 table below with the corresponding values of L(µ, d):

Decision Description of decision µ < 0 µ = 0 µ > 0

d = −1 State that µ < 0
d = 0 Abstain from statement
d = 1 State that µ > 0

Very briefly explain this choice of a loss function.

(b) Consider the specific decision rule δ(x) = sign(x)×I(|x| > 1). Plot δ(x) as a function of x (it is acceptable
to use R or to draw the figure legibly by hand).

(c) Determine the risk function R(µ, δ(x)) as a function of µ and n. You may of course use the notation
Φ(·) for the standard normal CDF in your response.

(d) Using your response to part (c), show that R(0, δ(x)) = 1 for all n.

(e) Using your response to part (c), prove that limn−→∞R(µ, δ(x)) = I(|µ| < 1) + 0.5× I(|µ| = 1).

(f) On a single plot, graph R(µ, δ(x)) as a function of µ for:

• n = 1

• n = 10

• n = 50

• n = 100,000

This plot should be consistent with the statements in parts (d) and (e).

(g) The decision rule δ1 is said to be asymptotically dominated by the decision rule δ2 if for all values of µ,

lim
n−→∞

R(µ, δ2) ≤ lim
n−→∞

R(µ, δ1),

and there exists at least one value of µ (call it µ∗) for which

lim
n−→∞

R(µ∗, δ2) < lim
n−→∞

R(µ∗, δ1).

Propose a decision rule that you would expect to asymptotically dominate δ(x) based on an extremely
simple modification to δ(x). Although you needn’t redo the math, please heuristically argue your choice.

(h) A decision rule is said to be asymptotically admissible within a class of decision rules if it cannot be
asymptotically dominated by another decision rule in that class. Consider the set of decision rules
for this problem of the form δa(x) = sign(x) × I(|x| > a) with a > 0. Argue heuristically that no
asymptotically admissible decision rule exists within this special class.


